

Q1 Finding Common Patients
7 Points

This homework has instant feedback. When you click "Save
Answer," if the answer is correct, you will see an explanation. You
can resubmit as many times as you want.

Relevant sections:
Symmetric-key Encryption (textbook),
Hashing (textbook)

Caltopia has two hospitals: Bear Hospital and Tree Hospital, each
with a database of confidential medical records. Each record is a
tuple (p;, m;), where p; is a patient’s full name and m; is the
patient's medical record. Each Caltopian citizen has a unique
name.

Each hospital has a list of records, (z1, m1), ..., (z,, m,) for Bear
Hospital and (y;,m1), ..., (Yn, M,) for Tree Hospital.

Note: the values of m; may differ between the two hospitals,
even for the same patient.

The two hospitals wish to identify patients that attend both
hospitals, but are afraid of eavesdroppers like Eve (who has a list
of all the plaintext names of the citizens of Caltopia) listening in.

Bear Hospital and Tree Hospital share a key k that is not known to
anyone else. Assume r; is some random bitstring, and || is the
bitwise concatenation operation.

Q1.1
1 Point

Tree Hospital suggests applying some cryptographic function to
its list of users, transforming it into a list (y3,y3, ..., Y.), which it
will send to Bear Hospital.

Bear Hospital will then either decrypt y;, or compute z; in the
same way and compare (whichever is appropriate).

Which of the following give y; such that Eve cannot win the IND-
CPA game? Select all that apply.

O y; = SHA(y:)

O yi = ril[SHA(yi||r:)

y; = AESg(r;)|[SHA (yi[|r:)
yr = AES-CBCy(y;)

y; = AES-CBCy(SHA(y;))

[J None of the above

Q1.2
1 Point

For the rest of the question, assume that the lengths of each
name are different, and each name is between 1 and 127 bytes
long.

Which of the following give y; such that Eve cannot learn
anything about the patient names in this new threat model?
Select all that apply.

Hint: This question requires stronger security than IND-CPA,
because it cannot leak the lengths of names either. This means if a

scheme is not IND-CPA secure, it is not secure in this threat model
either.

O y; = SHA(y;)

O y; = ril|[SHA(ys||r;)

y; = AESy(r;)||SHA (yi||r:)
O yi = AES-CBCx(y:)

yr = AES-CBC;(SHA(y;))

Q1.3
1 Point

The hospitals soon realize that, due to privacy laws, they cannot
share any plaintext information about patients even with each
other (including their names) unless both hospitals know in
advance that a patient has in fact used both hospitals.

Bear Hospital will transform its names using z} = F(x;), and
Tree Hospital using y; = Fj,(y;), for some function F'. A trusted
third party S agrees to take the transformed names

i,y T, Y1, -, Yn from both hospitals, and compute a set of
pairs:

P ={(i,j) : 27 = y;}
We want to ensure three requirements with the above scheme:

1.if z; = y;, then (i,5) € P

2.if z; # y;, then itis very unlikely that (¢, j) € P

3. even if Eve compromises S, she cannot learn the name of any patient at
either hospital or the medical information for any patient.

4. Your solution must still provide guarantee #3 even if a new user with an
extremely long (and unique) name were to join Caltopia.

Below are potential candidates for a function F'. Select all
candidates that meet all four requirements:

Hint: To narrow down the options, consider condition 4 to
eliminate two of the options.

O Fi(p) = AES-ECBy(p)
O Fi(p) = AES-CBCy(p)
O Fi(p) = SHA(p)

Fy,(p) = SHA(pl k)

O Fi(p) = SHA(p)|[SHA()

[J None of the above

Q1.4
1 Point

(Same question as the previous part.) Select all candidates that
meet all four requirements.

Hint: To narrow down the options, consider condition 1 to
eliminate three of the options.

O Fi(p) = AES,(r;)||SHA(p||r;), ; is random.
Fy.(p) = AES-ECB;(SHA(p))
O Fi(p) = AES-CBC}(SHA(p))
Fy(p) = SHA(AES-ECBy(p))
O Fy(p) = SHA(AES-CBCy(p))

[J None of the above

Q1.5
1 Point

Why does Fj(p) = SHA(k||p) meet requirement 1?

Recall requirement 1: if z; = y;, then (4, j) € P

O SHA-256 is one-way

O SHA-256 is collision-resistant

® SHA-256 is deterministic

O SHA-256 has constant-length output

O An attacker cannot compute SHA-256 without knowing k

O None of the above

Q1.6
1 Point

Why does F(p) = SHA(k||p) meet requirement 2?

Recall requirement 2: if ¢; # y;, then it is very unlikely that
(i,j) € P

O SHA-256 is one-way

@® SHA-256 is collision-resistant

O SHA-256 is deterministic

O SHA-256 has constant-length output

O An attacker cannot compute SHA-256 without knowing k

O None of the above

Q1.7
1 Point

Why does Fj(p) = SHA(k||p) meet requirement 4?

Recall requirement 4: Eve cannot learn the name of any patient at
either hospital or the medical information for any patient, even if

a new user with an extremely long (and unique) name were to join
Caltopia.

O SHA-256 is one-way

O SHA-256 is collision-resistant

O SHA-256 is deterministic

® SHA-256 has constant-length output

O An attacker cannot compute SHA-256 without knowing k
O None of the above

Q2 Go tutorial
2 Points

In Project 2, you will be writing a substantial amount of code (300-
1000 lines) in Go. This question walks you through some common
programming patterns and mistakes in Go.

You might find A Tour of Go helpful for a quick rundown of the
basics before trying out this question. You can also use the Go
Playground to try out some code snippets in this question.

Q2.1 Data Marshalling
1 Point

Consider the following code snippet (Go Playground link):

type BotColor struct {
ID int
name string

color string

// Create a struct

group := BotColor({
ID: 1,
name: "EvanBot",
color: "Purple",

// Use json.Marshal to compress the struct

// into a byte array

marshalBot, err := json.Marshal (group)
if err != nil {
fmt.Println("error:", err)

// use Jjson.Unmarshal to decompress the struct

var unmarshalBot BotColor

err = json.Unmarshal (marshalBot, &unmarshalBot)
if err != nil {
fmt.Println ("error:", err)

}

fmt.Printf ("$+v", unmarshalBot)

Assuming err is always ni1, which of the following is the output

of this snippet?

C) {ID:1 name:EvanBot color:Purple}
C) {ID:1 name:EvanBot color:}

@ {ID:1 name: color:}

C) {ID: name: color:}

Q2.2 UUID
1 Point

Consider the following code snippet (Go Playground link):

// Create a UUID from bytes

a := []byte("A stack of pancakes")

alUUID, err := uuid.FromBytes(a[:16])

if err != nil {
fmt.Println("error:", err)

}
fmt.Println (aUUID)

// Want to see me do it again?

b := [lbyte("A stack of pancakes")
bUUID, err := uuid.FromBytes (b[:16])
if err != nil {

fmt.Println ("error:", err)

}
fmt.Println (bUUID)

Assuming err is always ni1, what should you see printed?
@® Always the same UUID twice
O Always two different UUIDs

O Either the same UUID twice or two different UUIDs (different
every run)

Q3 Project 2 Warm-Up
7 Points

As of 07/11 at 1:00 AM, the project two spec is not out. We will
update this once it is!

In Project 2, you'll be implementing a secure file storage system
on an insecure data storage service using the cryptographic
schemes we've seen in the cryptography unit.

To get started, take a look at the Project 2 spec. We understand that
this spec is longer and denser than the project specs you might
be used to. As we've mentioned in class, cryptography is often
very fragile with a lot of edge cases, so we've cover as many of
these edge cases as possible to help make the design process
easier for you.

To guide you through the spec, here are some short questions to
check your understanding.

Q3.1 Threat Model
1 Point

Relevant section: 2. Threat Model

How many types of adversaries exist in our threat model?
Oo
O 1
@2
O3

Q3.2 Design Requirements
1 Point

Relevant section: 3. Design Requirements

In the next few subparts, consider the given design and choose
whether it's valid or invalid according to the design requirements.

When a user creates a file nyrile with contents rei1o worid, create
a variable called nyriie with the value se110 worid. When the user
wants to retrieve nyriie, return the value of the nyriie variable.

O Valid design
@ Invalid design

Q3.3
1 Point

When a user creates a file mnyriie with contents neiio worid, create
an entry in Keystore with key nyriie and value neiioc worid.

O Vvalid design

@ Invalid design

Q34
1 Point

Files are stored on Datastore. When a user wants to append to a
file, download the entire file from Datastore using patastorecet),
add the appended data, and then upload the changed file to
Datastore using patastoreset .

O Valid design
@ Invalid design

Q3.5 Sharing, Receiving, and Revoking
1 Point

Relevant section: 3.6 Sharing_and Revoking

In the next few subparts, consider the following sharing sequence
and choose whether it's defined or undefined according to the
design requirements.

Remember, undefined test cases are not tested by our
autograder: your code can implement any behavior in undefined
scenarios.

Alice creates a file. Alice shares the file with Bob. Alice shares the
file with Charlie. Charlie shares the file with Bob.

O Defined
@® Undefined

Q3.6
1 Point

Alice creates a file. Alice shares the file with Bob. Bob shares the
file with Charlie. Alice revokes the file from Charlie.

O Defined

@® Undefined

Q3.7

1 Point
Alice calls StoreFile ("Alice's filename", "my file contents") |
Alice calls CreatelInvitation ("Alice's filename", "Bob"), which

returns a UUID invitationper. Alice gives invitationpcr to Bob.

Bob calls

AcceptInvitation("Alice", invitationPtr, "Bob's filename") .

What is returned if Bob calls 1.oadriie ("Bob's filename") ?

O Error

@ "my file contents"

Q4 Feedback
0 Points

What's something we could do to make the class better? How was
the midterm? What would you like to see in the future?

Homework 4

fl Select each question to review feedback and grading details.

Student

Yiyun Chen

@ Graded

Total Points

16/ 16 pts
Question 1

Finding Common Patients

1.1 (notitle)
1.2 (no title)
1.3 (no title)
1.4 (notitle)
1.5 (no title)
1.6 (notitle)

1.7 (notitle)

Question 2

Go tutorial

2.1 =~ Data Marshalling

22 UUID

Question 3

Project 2 Warm-Up

3.1 Threat Model

3.2 Design Requirements

3.3 (notitle)

3.4 (notitle)

3.5 Sharing, Receiving, and Revoking
3.6 | (no title)

3.7 (no title)

Question 4
Feedback

717 pts
1/1 pt

1/1 pt
1/1 pt
1/1 pt
1/1 pt
1/1 pt

1/1 pt

2/2pts
1/1 pt

1/1pt

717 pts
1/1 pt

1/1 pt
1/1 pt
1/1 pt
1/1 pt
1/1 pt

1/1pt

0/0 pts

