
Sessions, CSRF and XSS
CS 161 Fall 2024

2

Last Time: Cookies

● Cookie: a piece of data used to maintain state across multiple requests
○ Set by the browser or server
○ Stored by the browser
○ Attributes: Name, value, domain, path, secure, HttpOnly, expires

● Cookie policy
○ Server with domain X can set a cookie with domain attribute Y if the domain attribute is a

domain suffix of the server’s domain, and the domain attribute Y is not a top-level domain
(TLD)

○ The browser attaches a cookie on a request if the domain attribute is a domain suffix of the
server’s domain, and the path attribute is a prefix of the server’s path

○ Cookie domain: example.com and cookie path: /some/path will be included in request to
https://foo/example/com/some/path/index.html

Session Authentication

3

● Session: A sequence of requests and responses associated with the same
authenticated user

○ Example: When you check all your unread emails, you make many requests to Gmail. The Gmail
server needs a way to know all these requests are from you

○ When the session is over (you log out, or the session expires), future requests are not associated with
you

● Naïve solution: Type your username and password before each request
○ Problem: Very inconvenient for the user!

● Better solution: Is there a way the browser can automatically send some information
in a request for us?

○ Yes: Cookies!

Session Authentication: Intuition

● Imagine you’re attending a concert
● The first time you enter the venue:

○ Present your ticket and ID
○ The doorperson checks your ticket and ID
○ If they’re valid, you receive a wristband

● If you leave and want to re-enter later
○ Just show your wristband!
○ No need to present your ticket and ID again

4

Session Tokens

5

● Session token: A secret value used to associate requests with an
authenticated user

● The first time you visit the website:
○ Present your username and password
○ If they’re valid, you receive a session token
○ The server associates you with the session token

● When you make future requests to the website:
○ Attach the session token in your request
○ The server checks the session token to figure out that the request is from you
○ No need to re-enter your username and password!

Session Tokens with Cookies

● Session tokens can be implemented with cookies
○ Cookies can be used to save any state across requests (e.g. dark mode)
○ Session tokens are just one way to use cookies

● The first time you visit a website:
○ Make a request with your username and password
○ If they’re valid, the server sends you a cookie with the session token
○ The server associates you with the session token

● When you make future requests to the website:
○ The browser attaches the session token cookie in your request
○ The server checks the session token to figure out that the request is from you
○ No need to re-enter your username and password!

● When you log out (or when the session times out):
○ The browser and server delete the session token 6

Session Tokens: Security
● If an attacker steals your session token, they can log in as you!

○ The attacker can make requests and attach your session token
○ The browser will think the attacker’s requests come from you

● Servers need to generate session tokens randomly and securely
● Browsers need to make sure malicious websites cannot steal session tokens

○ Enforce isolation with cookie policy and same-origin policy
● Browsers should not send session tokens to the wrong websites

○ Enforced by cookie policy

7

Session Token
Cookie Attributes

● What attributes should the server set for the
session token?

○ Domain and Path: Set so that the cookie is
only sent on requests that require
authentication

○ Secure: Can set to True to so the cookie is
only sent over secure HTTPS connections

○ HttpOnly: Can set to True so JavaScript
can’t access session tokens

○ Expires: Set so that the cookie expires
when the session times out

8

Name token

Value {random value}

Domain mail.google.com

Path /

Secure True

HttpOnly True

Expires {15 minutes later}

(other fields omitted)

Cross-Site Request Forgery (CSRF)

9

Review: Cookies and Session Tokens

10

● Session token cookies are used to associate a request with a user
● The browser automatically attaches relevant cookies in every request

Cross-Site Request Forgery (CSRF)
● Idea: What if the attacker tricks the victim into making an unintended request?

○ The victim’s browser will automatically attach relevant cookies
○ The server will think the request came from the victim!

● Cross-site request forgery (CSRF or XSRF): An attack that exploits
cookie-based authentication to perform an action as the victim

11

Steps of a CSRF Attack

12

Attacker

User

Server

Steps of a CSRF Attack

1. User authenticates to the server
○ User receives a cookie with a valid session token

13

Attacker

User

Server

1. Login

Steps of a CSRF Attack

1. User authenticates to the server
○ User receives a cookie with a valid session token

2. Attacker tricks the victim into making a malicious request to the server

14

Attacker

User

Server

1. Login

2. Make this
request

Steps of a CSRF Attack

1. User authenticates to the server
○ User receives a cookie with a valid session token

2. Attacker tricks the victim into making a malicious request to the server
3. The server accepts the malicious request from the victim

○ Recall: The cookie is automatically attached in the request

15

Attacker

User

Server

1. Login

2. Make this
request

3. Malicious request

Steps of a CSRF Attack

1. User authenticates to the server
○ User receives a cookie with a valid session token

2. Attacker tricks the victim into making a malicious request to the server
3. The server accepts the malicious request from the victim

○ Recall: The cookie is automatically attached in the request

16

Executing a CSRF Attack

● How might we trick the victim into making a GET request?
● Strategy #1: Trick the victim into clicking a link

○ Later we’ll see how to trick a victim into clicking a link
○ The link can directly make a GET request:

https://www.bank.com/transfer?amount=100&to=Mallory
○ The link can open an attacker’s website, which contains some JavaScript that makes the actual

malicious request
● Strategy #2: Put some HTML on a website the victim will visit

○ Example: The victim will visit a forum. Make a post with some HTML on the forum
○ HTML to automatically make a GET request to a URL:

■ This HTML will probably return an error or a blank 1 pixel by 1 pixel image, but the GET

request will still be sent...with the relevant cookies!

17

Executing a CSRF Attack
● How might we trick the victim into making a POST request?

○ Example POST request: Submitting a form
● Strategy #1: Trick the victim into clicking a link

○ Note: Clicking a link in your browser makes a GET request, not a POST request, so the link
cannot directly make the malicious POST request

○ The link can open an attacker’s website, which contains some JavaScript that makes the
actual malicious POST request

● Strategy #2: Put some JavaScript on a website the victim will visit
○ Example: Pay for an advertisement on the website, and put JavaScript in the ad
○ Recall: JavaScript can make a POST request

18

Top 25 Most Dangerous Software Weaknesses (2020)

19

Rank ID Name Score
[1] CWE-79 Improper Neutralization of Input During Web Page Generation (’Cross-site Scripting’) 46.82
[2] CWE-787 Out-of-bounds Write 46.17
[3] CWE-20 Improper Input Validation 33.47

[4] CWE-125 Out-of-bounds Read 26.50

[5] CWE-119 Improper Restriction of Operations within the Bounds of a Memory Buffer 23.73

[6] CWE-89 Improper Neutralization of Special Elements used in an SQL Command (’SQL Injection’) 20.69
[7] CWE-200 Exposure of Sensitive Information to an Unauthorized Actor 19.16

[8] CWE-416 Use After Free 18.87

[9] CWE-352 Cross-Site Request Forgery (CSRF) 17.29

[10] CWE-78 Improper Neutralization of Special Elements used in an OS Command (’OS Command Injection’) 16.44
[11] CWE-190 Integer Overflow or Wraparound 15.81

[12] CWE-22 Improper Limitation of a Pathname to a Restricted Directory (’Path Traversal’) 13.67

[13] CWE-476 NULL Pointer Dereference 8.35

[14] CWE-287 Improper Authentication 8.17

[15] CWE-434 Unrestricted Upload of File with Dangerous Type 7.38

[16] CWE-732 Incorrect Permission Assignment for Critical Resource 6.95

[17] CWE-94 Improper Control of Generation of Code (’Code Injection’) 6.53

https://cwe.mitre.org/data/definitions/79.html
https://cwe.mitre.org/data/definitions/787.html
https://cwe.mitre.org/data/definitions/20.html
https://cwe.mitre.org/data/definitions/125.html
https://cwe.mitre.org/data/definitions/119.html
https://cwe.mitre.org/data/definitions/89.html
https://cwe.mitre.org/data/definitions/200.html
https://cwe.mitre.org/data/definitions/416.html
https://cwe.mitre.org/data/definitions/352.html
https://cwe.mitre.org/data/definitions/78.html
https://cwe.mitre.org/data/definitions/190.html
https://cwe.mitre.org/data/definitions/22.html
https://cwe.mitre.org/data/definitions/476.html
https://cwe.mitre.org/data/definitions/287.html
https://cwe.mitre.org/data/definitions/434.html
https://cwe.mitre.org/data/definitions/732.html
https://cwe.mitre.org/data/definitions/94.html

CSRF Example: YouTube

20

● 2008: Attackers exploit a CSRF vulnerability on YouTube
● By forcing the victim to make a request, the attacker could:

○ Add any videos to the victim’s "Favorites"
○ Add any user to the victim’s "Friend" or "Family" list
○ Send arbitrary messages as the victim
○ Make the victim flag any videos as inappropriate
○ Make the victim share a video with their contacts
○ Make the victim subscribe to any channel
○ Add any videos to the user’s watchlist

● Takeaway: With a CSRF attack, the attacker can force the victim to perform a
wide variety of actions!

CSRF Example: Facebook

21
Takeaway: The HTML image tag can be used to execute a CSRF attack

Link

Facebook Hit by Cross-Site Request Forgery Attack

Sean Michael Kerner August 21, 2009

Nevertheless, that Facebook accounts were compromised in the wild is noteworthy because the attack
used a legitimate HTML tag to violate users’ privacy.

According to Zilberman’s disclosure, the attack simply involved the malicious HTML image tag residing on
any site, including any blog or forum that permits the use of image tags even in the comments section.

"The attack elegantly ends with a valid image so the page renders normally, and the attacked user does
not notice that anything peculiar has happened," Zilberman said.

http://www.internetnews.com/security/article.php/3835596/Facebook+Hit+by+CrossSite+Request+Forgery+Attack.htm

CSRF Defenses

22

CSRF Defenses

23

● CSRF defenses are implemented by the server (not the browser)
● Defense: CSRF tokens
● Defense: Referer validation
● Defense: SameSite cookie attribute

CSRF Tokens
● Idea: Add a secret value in the request that the attacker doesn’t know

○ The server only accepts requests if it has a valid secret
○ Now, the attacker can’t create a malicious request without knowing the secret

● CSRF token: A secret value provided by the server to the user. The user must
attach the same value in the request for the server to accept the request.

○ CSRF tokens cannot be sent to the server in a cookie!
■ The token must be sent somewhere else (e.g. a header, GET parameter, or POST

content)
○ CSRF tokens are usually valid for only one or two requests

24

CSRF Tokens: Usage
● Example: HTML forms

○ Forms are vulnerable to CSRF
■ If the victim visits the attacker’s page, the attacker’s JavaScript can make a POST request with

a filled-out form
● CSRF tokens are a defense against this attack

○ Every time the user requests a form from the legitimate website, the server attaches a CSRF token as
a hidden form field (in the HTML, but not visible to the user)

○ When the user submits the form, the form contains the CSRF token
○ The attacker’s JavaScript won’t be able to create a valid form, because they don’t know the CSRF

token!
○ The attacker can try to fetch their own CSRF token, but it will only be valid for the attacker, not the

victim

25

CSRF Tokens: Usage

26

Server

1. Login

Attacker

3. Make this request
with attacker token

2. Get token
User

4. Make request

The request in step 4 will fail, because
the attacker doesn’t know the token!

token in
form

Referer Header
● Idea: In a CSRF attack, the victim usually makes the malicious request from a

different website
● Referer header: A header in an HTTP request that indicates which webpage made

the request
○ “Referer” is a 30-year typo in the HTTP standard (supposed to be “Referrer”)!
○ Example: If you type your username and password into the Facebook homepage, the Referer header

for that request is https://www.facebook.com
○ Example: If an img HTML tag on a forum forces your browser to make a request, the Referer header

for that request is the forum’s URL
○ Example: If JavaScript on an attacker’s website forces your browser to make a request, the Referer

header for that request is the attacker’s URL

27

Referer Header
● Checking the Referer header

○ Allow same-site requests: The Referer header matches an expected URL
■ Example: For a login request, expect it to come from https://bank.com/login

○ Disallow cross-site requests: The Referer header does not match an expected URL
● If the server sees a cross-site request, reject it

28

Referer Header: Issues

29

● The Referer header may leak private information
○ Example: If you made the request on a top-secret website, the Referer header might show you

visited http://intranet.corp.apple.com/projects/iphone/competitors.html
○ Example: If you make a request to an advertiser, the Referer header gives the advertiser

information about how you saw the ad
● The Referer header might be removed before the request reaches the server

○ Example: Your company firewall removes the header before sending the request
○ Example: The browser removes the header because of your privacy settings

● The Referer header is optional. What if the request leaves the header blank?
○ Allow requests without a header?

■ Less secure: CSRF attacks might be possible
○ Deny requests without a header?

■ Less usable: Legitimate requests might be denied
○ Need to consider fail-safe defaults: No clear answer

SameSite Cookie Attribute
● Idea: Implement a flag on a cookie that makes it unexploitable by CSRF attacks

○ This flag must specify that cross-site requests will not contain the cookie
● SameSite flag: A flag on a cookie that specifies it should be sent only when the

domain of the cookie exactly matches the domain of the origin
○ SameSite=None: No effect
○ SameSite=Strict: The cookie will not be sent if the cookie domain does not match the origin domain
○ Example: If https://evil.com/ causes your browser to make a request to

https://bank.com/transfer?to=mallory, cookies for bank.com will not be sent if
SameSite=Strict, because the origin domain (evil.com) and cookie domain (bank.com) are
different

● Issue: Not yet implemented on all browsers

30

31

Cookies: Summary
● Cookie: a piece of data used to maintain state across multiple requests

○ Set by the browser or server
○ Stored by the browser
○ Attributes: Name, value, domain, path, secure, HttpOnly, expires

● Cookie policy
○ Server with domain X can set a cookie with domain attribute Y if the domain attribute is a

domain suffix of the server’s domain, and the domain attribute Y is not a top-level domain
(TLD)

○ The browser attaches a cookie on a request if the domain attribute is a domain suffix of the
server’s domain, and the path attribute is a prefix of the server’s path

32

Session Authentication: Summary
● Session authentication

○ Use cookies to associate requests with an authenticated user
○ First request: Enter username and password, receive session token (as a cookie)
○ Future requests: Browser automatically attaches the session token cookie

● Session tokens
○ If an attacker steals your session token, they can log in as you
○ Should be randomly and securely generated by the server
○ The browser should not send tokens to the wrong place

CSRF: Summary
● Cross-site request forgery (CSRF or XSRF): An attack that exploits

cookie-based authentication to perform an action as the victim
○ User authenticates to the server

■ User receives a cookie with a valid session token
○ Attacker tricks the victim into making a malicious request to the server
○ The server accepts the malicious request from the victim

■ Recall: The cookie is automatically attached in the request
● Attacker must trick the victim into creating a request

○ GET request: click on a link
○ POST request: use JavaScript

33

CSRF Defenses: Summary
● CSRF token: A secret value provided by the server to the user. The user must

attach the same value in the request for the server to accept the request.
○ The attacker does not know the token when tricking the user into making a request

● Referer Header: Allow same-site requests, but disallow cross-site requests
○ Header may be blank or removed for privacy reasons

● Same-site cookie attribute: The cookie is sent only when the domain of the
cookie exactly matches the domain of the origin

○ Not implemented on all browsers

34

Cross-Site Scripting (XSS)

35
Textbook Chapter 22

Top 25 Most Dangerous Software Weaknesses (2020)

36

Rank ID Name Score
[1] CWE-79 Improper Neutralization of Input During Web Page Generation (’Cross-site Scripting’) 46.82
[2] CWE-787 Out-of-bounds Write 46.17
[3] CWE-20 Improper Input Validation 33.47

[4] CWE-125 Out-of-bounds Read 26.50

[5] CWE-119 Improper Restriction of Operations within the Bounds of a Memory Buffer 23.73

[6] CWE-89 Improper Neutralization of Special Elements used in an SQL Command (’SQL Injection’) 20.69
[7] CWE-200 Exposure of Sensitive Information to an Unauthorized Actor 19.16

[8] CWE-416 Use After Free 18.87

[9] CWE-352 Cross-Site Request Forgery (CSRF) 17.29

[10] CWE-78 Improper Neutralization of Special Elements used in an OS Command (’OS Command Injection’) 16.44
[11] CWE-190 Integer Overflow or Wraparound 15.81

[12] CWE-22 Improper Limitation of a Pathname to a Restricted Directory (’Path Traversal’) 13.67

[13] CWE-476 NULL Pointer Dereference 8.35

[14] CWE-287 Improper Authentication 8.17

[15] CWE-434 Unrestricted Upload of File with Dangerous Type 7.38

[16] CWE-732 Incorrect Permission Assignment for Critical Resource 6.95

[17] CWE-94 Improper Control of Generation of Code (’Code Injection’) 6.53

https://cwe.mitre.org/data/definitions/79.html
https://cwe.mitre.org/data/definitions/787.html
https://cwe.mitre.org/data/definitions/20.html
https://cwe.mitre.org/data/definitions/125.html
https://cwe.mitre.org/data/definitions/119.html
https://cwe.mitre.org/data/definitions/89.html
https://cwe.mitre.org/data/definitions/200.html
https://cwe.mitre.org/data/definitions/416.html
https://cwe.mitre.org/data/definitions/352.html
https://cwe.mitre.org/data/definitions/78.html
https://cwe.mitre.org/data/definitions/190.html
https://cwe.mitre.org/data/definitions/22.html
https://cwe.mitre.org/data/definitions/476.html
https://cwe.mitre.org/data/definitions/287.html
https://cwe.mitre.org/data/definitions/434.html
https://cwe.mitre.org/data/definitions/732.html
https://cwe.mitre.org/data/definitions/94.html

Review: Same-Origin Policy

● Two webpages with different origins should not be able to access each other’s
resources

○ Example: JavaScript on http://evil.com cannot access the information on
http://bank.com

37

Review: JavaScript

38

● JavaScript: A programming language for running code in the web browser
● JavaScript is client-side

○ Code sent by the server as part of the response
○ Runs in the browser, not the web server!

● Used to manipulate web pages (HTML and CSS)
○ Makes modern websites interactive
○ JavaScript can be directly embedded in HTML with <script> tags

● Most modern webpages involve JavaScript
○ JavaScript is supported by all modern web browsers

● You don’t need to know JavaScript syntax
○ However, knowing common attack functions helps

Review: JavaScript

● JavaScript can create a pop-up message

39

<script>alert("Happy Birthday!")</script>

HTML (with embedded JavaScript)

Webpage

Happy Birthday!

OK

When the browser loads this HTML, it
will run the embedded JavaScript

and cause a pop-up to appear.

A Go HTTP Handler

40

func handleSayHello(w http.ResponseWriter, r *http.Request) {
 name := r.URL.Query()["name"][0]
 fmt.Fprintf(w, "<html><body>Hello %s!</body></html>", name)
}

<html><body>Hello EvanBot!</body></html>

https://vulnerable.com/hello?name=EvanBot

Handler

URL

Response

A Go HTTP Handler

41

func handleSayHello(w http.ResponseWriter, r *http.Request) {
 name := r.URL.Query()["name"][0]
 fmt.Fprintf(w, "<html><body>Hello %s!</body></html>", name)
}

https://vulnerable.com/hello?name=EvanBot

<html><body>Hello EvanBot!</body></html>

Handler

URL

Response

A Go HTTP Handler

42

func handleSayHello(w http.ResponseWriter, r *http.Request) {
 name := r.URL.Query()["name"][0]
 fmt.Fprintf(w, "<html><body>Hello %s!</body></html>", name)
}

https://vulnerable.com/hello?name=<script>alert(1)</script>

<html><body>Hello <script>alert(1)</script>!</body></html>

Handler

URL

Response

Problem: This input represents control data
(HTML), not just text!

A Go HTTP Handler

43

func handleSayHello(w http.ResponseWriter, r *http.Request) {
 name := r.URL.Query()["name"][0]
 content := "<html><body>Hello "+name+"!</body></html>"
 fmt.Fprint(w, content)
}

https://vulnerable.com/hello?name=<script>alert(1)</script>

<html><body>Hello <script>alert(1)</script>!</body></html>

Handler

URL

Response

Not just %s: It can happen with any string manipulation

Cross-Site Scripting (XSS)

● Idea: The attacker adds malicious JavaScript to a legitimate website
○ The legitimate website will send the attacker’s JavaScript to browsers
○ The attacker’s JavaScript will run with the origin of the legitimate website
○ Now the attacker’s JavaScript can access information on the legitimate website!

● Cross-site scripting (XSS): Injecting JavaScript into websites that are
viewed by other users

○ Cross-site scripting subverts the same-origin policy
● Two main types of XSS

○ Stored XSS
○ Reflected XSS

44

Stored XSS

● Stored XSS (persistent XSS): The attacker’s JavaScript is stored on the
legitimate server and sent to browsers

● Classic example: Facebook pages
○ Anybody can load a Facebook page with content provided by users
○ An attacker puts some JavaScript on their Facebook page
○ Anybody who loads the attacker’s page will see JavaScript (with the origin of Facebook)

● Stored XSS requires the victim to load the page with injected JavaScript
● Remember: Stored XSS is a server-side vulnerability!

45

Stored XSS

46

bank.com

Attacker

Victim

1. Inject m
alicious script
2. Request content

3. Receive malicious script

4. Victim browser executes malicious
script

5a. Steal valuable data (e.g. session token)

5b. Make malicious requests

Reflected XSS

● Reflected XSS: The attacker causes the victim to input JavaScript into a
request, and the content is reflected (copied) in the response from the server

● Classic example: Search
○ If you make a request to http://google.com/search?q=evanbot, the response will say

“10,000 results for evanbot”
○ If you make a request to http://google.com/search?q=<script>alert(1)</script>,

the response will say “10,000 results for <script>alert(1)</script>”
● Reflected XSS requires the victim to make a request with injected JavaScript

47

Reflected XSS

48

bank.com

Attacker

Victim

2. Request URL under attacker’s control

3. Reflect malicious script

5a. Steal valuable data (e.g. session token)

5b. Make malicious requests

4. Victim browser executes malicious
script

1. Cause malicious request (e.g. click on link)

Reflected XSS: Making a Request

● How do we force the victim to make a request to the legitimate website with
injected JavaScript?

○ Trick the victim into visiting the attacker’s website, and include an embedded iframe that
makes the request

■ Can make the iframe very small (1 pixel x 1 pixel), so the victim doesn’t notice it:
<iframe height=1 width=1
src="http://google.com/search?q=<script>alert(1)</script>">

○ Trick the victim into clicking a link (e.g. posting on social media, sending a text, etc.)
○ Trick the victim into visiting the attacker’s website, which redirects to the reflected XSS link
○ … and many more!

49

Reflected XSS is not CSRF

● Reflected XSS and CSRF both require the victim to make a request to a link
○ XSS: An HTTP response contains maliciously inserted JavaScript, executed on the client side
○ CSRF: A malicious HTTP request is made (containing the user’s cookies), executing an effect

on the server side

50

51

XSS in the Wild… On CalNet?!

● In 2021, 61C student Rohan Mathur was
exploring the CalNet login page

● Fields submitted when logging in:
○ username: What user am I logging in as?
○ password: What’s the user’s password?
○ execution: Server-side state (like a CSRF token

with extra data)

52

XSS in the Wild… On CalNet?!

● The server expects execution to be in a
specific format that contains its server-side
state

○ What if you muck with execution?
● The “corrupted” execution key is placed into

the error message in the HTML to aid
debugging

○ … and CalNet at the time did not escape the
execution key

Garbage execution value in
HTML

53

Constructing an Attack on CalNet

<html>
 <head>
 <script>

// When the malicious page finishes loading, automatically submit the form!
 document.addEventListener('DOMContentLoaded', () => {
 document.getElementById('form').submit();
 });
 </script>
 </head>
 <body>
 <!-- Malicious form containing our malicious execution data. -->
 <form id="form" action="https://auth.berkeley.edu/cas/login" method="POST">
 <input name="username" type="text" value="evanbot" />
 <input name="password" type="text" value="obviously-not-the-real-password" />
 <input name="execution" type="text" value="<script>alert('XSS!')</script>" />
 </form>
 </body>
</html>

Attack: Force a POST request to CalNet!

So What Happened?

54

● CalNet also accepts execution parameters over URL query parameters
○ A link like

https://auth.berkeley.edu/cas/login?execution=<script>alert('XSS!')</
script> would result in the same attack

● It would only fire if you clicked the button to show the error
● … But if clicked, the injected JavaScript could

○ Present a fake login prompt
○ Steal your CalNet password
○ Log you in as the attacker’s account
○ Steal your authentication session token

● Root cause: A >5 year old sample page modified by CalNet
○ CalNet uses software from Apereo, which comes with sample pages for logging in
○ Apereo fixed that bug many years before, but sample pages don’t get included in bug fixes!

55

● Defense: HTML sanitization
○ Idea: Certain characters are special, so create sequences that

represent those characters as data, rather than as HTML
● Start with an ampersand (&) and end with a semicolon (;)

○ Instead of <, use <
○ Instead of ", use "
○ And many more!

■ It is important to escape all dangerous characters (lists of
them can be found), or you will still be vulnerable!

● Note: You should always rely on trusted libraries to do this for you!

XSS Defenses
<html>
<body>
Hello <script>alert(1)</script>!
</body>
</html>

56

XSS Defenses: Escaping

func handleSayHello(w http.ResponseWriter, r *http.Request) {
 name := r.URL.Query()["name"][0]
 fmt.Fprintf(w, "<html><body>Hello %s!</body></html>", html.EscapeString(name))
}

https://vulnerable.com/hello?name=<script>alert(1)</script>

<html><body>Hello <script>alert(1)</script>!</body></html>

Handler

URL

Response

57

● If a programmer has to take an action for every usage…
○ They are going to screw up (e.g. CalNet)
○ Recall: Consider human factors!

● Nowadays, escaping is generally achieved through templating
○ HTML templates are essentially their own language, where you

declare what data goes where
○ The templating engine handles all the escaping internally
○ The HTTP library gets very angry if you don’t use templates
○ Recall (again): Consider human factors!

XSS Defenses:
Escaping

<html>
<body>
Hello {{.name}}!
</body>
</html>

Example: Golang HTML template

58

● Defense: Content Security Policy (CSP)
○ Idea: Instruct the browser to only use resources loaded from specific places
○ Uses additional headers to specify the policy

● Standard approach:
○ Disallow all inline scripts (JavaScript code directly in HTML), which prevents inline XSS

■ Example: Disallow <script>alert(1)</script>
○ Only allow scripts from specified domains, which prevents XSS from linking to external scripts

■ Example: Disallow <script src="https://cs161.org/hack.js">
● Also works with other content (e.g. iframes, images, etc.)
● Relies on the browser to enforce security, so more of a mitigation for

defense-in-depth

XSS Defenses: CSP

Summary: XSS

● Websites use untrusted content as control data
○ <html><body>Hello EvanBot!</body></html>
○ <html><body>Hello <script>alert(1)</script>!</body></html>

● Stored XSS
○ The attacker’s JavaScript is stored on the legitimate server and sent to browsers
○ Classic example: Make a post on a social media site (e.g. Facebook) with JavaScript

● Reflected XSS
○ The attacker causes the victim to input JavaScript into a request, and the content it’s reflected

(copied) in the response from the server
○ Classic example: Create a link for a search engine (e.g. Google) query with JavaScript
○ Requires the victim to click on the link with JavaScript

59

Summary: XSS Defenses

● Defense: HTML sanitization
○ Replace control characters with data sequences

■ < becomes <
■ " becomes "

○ Use a trusted library to sanitize inputs for you
● Defense: Content Security Policy (CSP)

○ Instruct the browser to only use resources loaded from specific places
○ Limits JavaScript: only scripts from trusted sources are run in the browser
○ Enforced by the browser

60

