
CS162
Operating Systems and
Systems Programming

Lecture 18

Demand Paging (Finished),
General I/O

March 21th, 2024
Prof. John Kubiatowicz

http://cs162.eecs.Berkeley.edu

Lec 18.23/21/24 Kubiatowicz CS162 © UCB Spring 2024

Recall: Page Fault  Demand Paging

virtual address

MMU
PT

instruction

physical address
page#

frame#

offsetpage fault

Operating System

exception

Page Fault Handler

load page from disk

update PT entry

Process

scheduler

retry
frame#

offset

Lec 18.33/21/24 Kubiatowicz CS162 © UCB Spring 2024

• PTE makes demand paging implementatable
– Valid  Page in memory, PTE points at physical page
– Not Valid  Page not in memory; use info in PTE to find it on

disk when necessary
• Suppose user references page with invalid PTE?

– Memory Management Unit (MMU) traps to OS
» Resulting trap is a “Page Fault”

– What does OS do on a Page Fault?:
» Choose an old page to replace
» If old page modified (“D=1”), write contents back to disk
» Change its PTE and any cached TLB to be invalid
» Load new page into memory from disk
» Update page table entry, invalidate TLB for new entry
» Continue thread from original faulting location

– TLB for new page will be loaded when thread continued!
– While pulling pages off disk for one process, OS runs another

process from ready queue
» Suspended process sits on wait queue

Recall: Demand Paging Mechanisms

Lec 18.43/21/24 Kubiatowicz CS162 © UCB Spring 2024

Recall: Demand Paging Cost Model
• Since Demand Paging like caching, can compute average access time!

(“Effective Access Time”)
– EAT = Hit Rate x Hit Time + Miss Rate x Miss Time
– EAT = Hit Time + Miss Rate x Miss Penalty

• Example:
– Memory access time = 200 nanoseconds
– Average page-fault service time = 8 milliseconds
– Suppose p = Probability of miss, 1-p = Probably of hit
– Then, we can compute EAT as follows:

EAT = 200ns + p x 8 ms
= 200ns + p x 8,000,000ns

• If one access out of 1,000 causes a page fault, then EAT = 8.2 μs:
– This is a slowdown by a factor of 40!

• What if want slowdown by less than 10%?
– EAT < 200ns x 1.1  p < 2.5 x 10-6

– This is about 1 page fault in 400,000!

Lec 18.53/21/24 Kubiatowicz CS162 © UCB Spring 2024

What Factors Lead to Misses in Page Cache?
• Compulsory Misses:

– Pages that have never been paged into memory before
– How might we remove these misses?

» Prefetching: loading them into memory before needed
» Need to predict future somehow! More later

• Capacity Misses:
– Not enough memory. Must somehow increase available memory size.
– Can we do this?

» One option: Increase amount of DRAM (not quick fix!)
» Another option: If multiple processes in memory: adjust percentage of memory

allocated to each one!
• Conflict Misses:

– Technically, conflict misses don’t exist in virtual memory, since it is a “fully-
associative” cache

• Policy Misses:
– Caused when pages were in memory, but kicked out prematurely because of

the replacement policy
– How to fix? Better replacement policy

Lec 18.63/21/24 Kubiatowicz CS162 © UCB Spring 2024

Page Replacement Policies
• Why do we care about Replacement Policy?

– Replacement is an issue with any cache
– Particularly important with pages

» The cost of being wrong is high: must go to disk
» Must keep important pages in memory, not toss them out

• FIFO (First In, First Out)
– Throw out oldest page. Be fair – let every page live in memory for same amount of time.
– Bad – throws out heavily used pages instead of infrequently used

• RANDOM:
– Pick random page for every replacement
– Typical solution for TLB’s. Simple hardware
– Pretty unpredictable – makes it hard to make real-time guarantees

• MIN (Minimum):
– Replace page that won’t be used for the longest time
– Great (provably optimal), but can’t really know future…
– But past is a good predictor of the future …

Lec 18.73/21/24 Kubiatowicz CS162 © UCB Spring 2024

Replacement Policies (Con’t)
• LRU (Least Recently Used):

– Replace page that hasn’t been used for the longest time
– Programs have locality, so if something not used for a while, unlikely to be used in

the near future.
– Seems like LRU should be a good approximation to MIN.

• How to implement LRU? Use a list:

– On each use, remove page from list and place at head
– LRU page is at tail

• Problems with this scheme for paging?
– Need to know immediately when page used so that can change position in list…
– Many instructions for each hardware access

• In practice, people approximate LRU (more later)

Page 6 Page 7 Page 1 Page 2Head

Tail (LRU)

Lec 18.83/21/24 Kubiatowicz CS162 © UCB Spring 2024

• Suppose we have 3 page frames, 4 virtual pages, and following
reference stream:

– A B C A B D A D B C B
• Consider FIFO Page replacement:

• FIFO: 7 faults
• When referencing D, replacing A is bad choice, since need A again

right away

Example: FIFO (strawman)

C

B
A

D

C
B

A

BCBDADBACBA

3
2
1

Ref:
Page:

Lec 18.93/21/24 Kubiatowicz CS162 © UCB Spring 2024

• Suppose we have the same reference stream:
– A B C A B D A D B C B

• Consider MIN Page replacement:

• MIN: 5 faults
– Where will D be brought in? Look for page not referenced farthest in future

• What will LRU do?
– Same decisions as MIN here, but won’t always be true!

Example: MIN / LRU

C

DC
B

A

BCBDADBACBA

3
2
1

Ref:
Page:

Lec 18.103/21/24 Kubiatowicz CS162 © UCB Spring 2024

• Consider the following: A B C D A B C D A B C D
• LRU Performs as follows (same as FIFO here):

– Every reference is a page fault!
• Fairly contrived example of working set of N+1 on N frames

D

Is LRU guaranteed to perform well?

C
B

A
D

C

B
A

D

C
B

A

CBADCBADCBA D

3
2
1

Ref:
Page:

Lec 18.113/21/24 Kubiatowicz CS162 © UCB Spring 2024

• Consider the following: A B C D A B C D A B C D
• LRU Performs as follows (same as FIFO here):

– Every reference is a page fault!
• MIN Does much better:

D

When will LRU perform badly?

C
B

A
D

C

B
A

D

C
B

A

CBADCBADCBA D

3
2
1

Ref:
Page:

B
C

DC
B

A

BADCBADCBA C D

3
2
1

Ref:
Page:

Lec 18.123/21/24 Kubiatowicz CS162 © UCB Spring 2024

• One desirable property: When you add memory the miss rate
drops (stack property)

– Does this always happen?
– Seems like it should, right?

• No: Bélády’s anomaly
– Certain replacement algorithms (FIFO) don’t have this obvious

property!

Graph of Page Faults Versus The Number of Frames

Lec 18.133/21/24 Kubiatowicz CS162 © UCB Spring 2024

Adding Memory Doesn’t Always Help Fault Rate
• Does adding memory reduce number of page faults?

– Yes for LRU and MIN
– Not necessarily for FIFO! (Called Bélády’s anomaly)

• After adding memory:
– With FIFO, contents can be completely different
– In contrast, with LRU or MIN, contents of memory with X pages are a

subset of contents with X+1 Page

D
C

E

B
A

D

C
B

A

DCBAEBADCBA E

3
2
1

Ref:
Page
:

CD4

E
D

B
A

E

C
B

A

DCBAEBADCBA E

3
2
1

Ref:
Page
:

Lec 18.143/21/24 Kubiatowicz CS162 © UCB Spring 2024

Administrivia
• Still grading exam

– Really sorry!
– I’m promised that midterms will be released

tonight…
• Project 2 in full swing

– Stay on top of this one. Don’t wait until last
moment to get pieces together

– Decide how to your team is going divide up
project 2

• Homework 4 also in full swing
– Learn about memory allocation

• Make sure to fill out survey!
– We really want to hear how you think we are

doing
– Also, will get a chance to suggest topics for the

special topics lecture
» Have talked about a wide variety of things in

the past
• Spring Break!!!

– Hope you all have a relaxing week.

Lec 18.153/21/24 Kubiatowicz CS162 © UCB Spring 2024

Approximating LRU: Recall PTE bits
• Which bits of a PTE entry can help us approximate LRU?

Remember Intel PTE:

– The “Present” bit (called “Valid” elsewhere):
» P==0: Page is invalid and a reference will cause page fault
» P==1: Page frame number is valid and MMU is allowed to proceed with translation

– The “Writable” bit (could have opposite sense and be called “Read-only”):
» W==0: Page is read-only and cannot be written.
» W==1: Page can be written

– The “Accessed” bit (called “Use” elsewhere):
» A==0: Page has not been accessed (or used) since last time software set A0
» A==1: Page has been accessed (or used) since last time software set A0

– The “Dirty” bit (called “Modified” elsewhere):
» D==0: Page has not been modified (written) since PTE was loaded
» D==1: Page has changed since PTE was loaded

Page Frame Number
(Physical Page Number)

Free
(OS) 0

PS D A

PC
D

PW
T U W P

01234567811-931-12

PTE:

Lec 18.163/21/24 Kubiatowicz CS162 © UCB Spring 2024

Approximating LRU: Clock Algorithm

Set of all pages
in Memory

Single Clock Hand:
Advances only on page fault!
Check for pages not used recently
Mark pages as not used recently

• Clock Algorithm: Arrange physical pages in circle with single clock hand
– Approximate LRU (approximation to approximation to MIN)
– Replace an old page, not the oldest page

• Details:
– Hardware “use” bit per physical page (called “accessed” in Intel architecture):

» Hardware sets use bit on each reference
» If use bit isn’t set, means not referenced in a long time
» Some hardware sets use bit in the TLB; must be copied back to PTE when TLB entry gets replaced

– On page fault:
» Advance clock hand (not real time)
» Check use bit: 1 used recently; clear and leave alone

0 selected candidate for replacement

Lec 18.173/21/24 Kubiatowicz CS162 © UCB Spring 2024

Clock Algorithm: More details

• Will always find a page or loop forever?
– Even if all use bits set, will eventually loop

all the way around  FIFO
• What if hand moving slowly?

– Good sign or bad sign?
» Not many page faults
» or find page quickly

• What if hand is moving quickly?
– Lots of page faults and/or lots of reference bits set

• One way to view clock algorithm:
– Crude partitioning of pages into two groups: young and old
– Why not partition into more than 2 groups?

Set of all pages
in Memory

Single Clock Hand

Lec 18.183/21/24 Kubiatowicz CS162 © UCB Spring 2024

Nth Chance version of Clock Algorithm
• Nth chance algorithm: Give page N chances

– OS keeps counter per page: # sweeps
– On page fault, OS checks use bit:

» 1  clear use and also clear counter (used in last sweep)
» 0  increment counter; if count=N, replace page

– Means that clock hand has to sweep by N times without page being used before
page is replaced

• How do we pick N?
– Why pick large N? Better approximation to LRU

» If N ~ 1K, really good approximation
– Why pick small N? More efficient

» Otherwise might have to look a long way to find free page
• What about “modified” (or “dirty”) pages?

– Takes extra overhead to replace a dirty page, so give dirty pages an extra
chance before replacing?

– Common approach:
» Clean pages, use N=1
» Dirty pages, use N=2 (and write back to disk when N=1)

Lec 18.193/21/24 Kubiatowicz CS162 © UCB Spring 2024

Clock Algorithms Variations
• Do we really need hardware-supported “modified” bit?

– No. Can emulate it using read-only bit
» Need software DB of which pages are allowed to be written (needed this anyway)
» We will tell MMU that pages have more restricted permissions than the actually do to

force page faults (and allow us notice when page is written)
– Algorithm (Clock-Emulated-M):

» Initially, mark all pages as read-only (W0), even writable data pages.
Further, clear all software versions of the “modified” bit  0 (page not dirty)

» Writes will cause a page fault. Assuming write is allowed, OS sets software
“modified” bit  1, and marks page as writable (W1).

» Whenever page written back to disk, clear “modified” bit  0, mark read-only

Lec 18.203/21/24 Kubiatowicz CS162 © UCB Spring 2024

Clock Algorithms Variations (continued)
• Do we really need a hardware-supported “use” bit?

– No. Can emulate it similar to above (e.g. for read operation)
» Kernel keeps a “use” bit and “modified” bit for each page

– Algorithm (Clock-Emulated-Use-and-M):
» Mark all pages as invalid, even if in memory.

Clear emulated “use” bits  0 and “modified” bits  0 for all pages (not used, not dirty)
» Read or write to invalid page traps to OS to tell use page has been used
» OS sets “use” bit  1 in software to indicate that page has been “used”.

Further:
1) If read, mark page as read-only, W0 (will catch future writes)
2) If write (and write allowed), set “modified” bit  1, mark page as writable (W1)

» When clock hand passes, reset emulated “use” bit  0 and mark page as invalid again
» Note that “modified” bit left alone until page written back to disk

• Remember, however, clock is just an approximation of LRU!
– Can we do a better approximation, given that we have to take page faults on some

reads and writes to collect use information?
– Need to identify an old page, not oldest page!
– Answer: second chance list

Lec 18.213/21/24 Kubiatowicz CS162 © UCB Spring 2024

Second-Chance List Algorithm (VAX/VMS)

• Split memory in two: Active list (RW), SC list (Invalid)
• Access pages in Active list at full speed
• Otherwise, Page Fault

– Always move overflow page from end of Active list to front of Second-chance list
(SC) and mark invalid

– Desired Page On SC List: move to front of Active list, mark RW
– Not on SC list: page in to front of Active list, mark RW; page out LRU victim at

end of SC list

Directly
Mapped Pages

Marked: RW
List: FIFO

Second
Chance List

Marked: Invalid
List: LRU

LRU victim

Page-in
From disk

New
Active Pages

New
SC Victims

Lec 18.223/21/24 Kubiatowicz CS162 © UCB Spring 2024

Second-Chance List Algorithm (continued)
• How many pages for second chance list?

– If 0  FIFO
– If all  LRU, but page fault on every page reference

• Pick intermediate value. Result is:
– Pro: Few disk accesses (page only goes to disk if unused for a long time)
– Con: Increased overhead trapping to OS (software / hardware tradeoff)

• With page translation, we can adapt to any kind of access the program makes
– Later, we will show how to use page translation / protection to share memory

between threads on widely separated machines
• History: The VAX architecture did not include a “use” bit.

Why did that omission happen???
– Strecker (architect) asked OS people, they said they didn’t need it, so didn’t

implement it
– He later got blamed, but VAX did OK anyway

Lec 18.233/21/24 Kubiatowicz CS162 © UCB Spring 2024

Free List

• Keep set of free pages ready for use in demand paging
– Freelist filled in background by Clock algorithm or other technique (“Pageout demon”)
– Dirty pages start copying back to disk when enter list

• Like VAX second-chance list
– If page needed before reused, just return to active set

• Advantage: faster for page fault
– Can always use page (or pages) immediately on fault

Set of all pages
in Memory

Single Clock Hand: Advances as needed to
keep freelist full (“background”)

D

D

Free Pages
For Processes

Lec 18.243/21/24 Kubiatowicz CS162 © UCB Spring 2024

• When evicting a page frame, how to know which PTEs to invalidate?
– Hard in the presence of shared pages (forked processes, shared memory, …)

• Reverse mapping mechanism must be very fast
– Must hunt down all page tables pointing at given page frame when freeing a page
– Must hunt down all PTEs when seeing if pages “active”

• Implementation options:
– For every page descriptor, keep linked list of page table entries that point to it

» Management nightmare – expensive
– Linux: Object-based reverse mapping

» Link together memory region descriptors instead (much coarser granularity)

Reverse Page Mapping (Sometimes called “Coremap”)

Lec 18.253/21/24 Kubiatowicz CS162 © UCB Spring 2024

Allocation of Page Frames (Memory Pages)
• How do we allocate memory among different processes?

– Does every process get the same fraction of memory? Different fractions?
– Should we completely swap some processes out of memory?

• Each process needs minimum number of pages
– Want to make sure that all processes that are loaded into memory can make forward

progress
– Example: IBM 370 – 6 pages to handle SS MOVE instruction:

» instruction is 6 bytes, might span 2 pages
» 2 pages to handle from
» 2 pages to handle to

• Possible Replacement Scopes:
– Global replacement – process selects replacement frame from set of all frames; one

process can take a frame from another
– Local replacement – each process selects from only its own set of allocated frames

Lec 18.263/21/24 Kubiatowicz CS162 © UCB Spring 2024

Fixed/Priority Allocation
• Equal allocation (Fixed Scheme):

– Every process gets same amount of memory
– Example: 100 frames, 5 processes  process gets 20 frames

• Proportional allocation (Fixed Scheme)
– Allocate according to the size of process
– Computation proceeds as follows:

𝑠௜ = size of process 𝑝௜ and S ൌ ∑𝑠௜
𝑚 = total number of physical frames in the system
𝑎௜ = (allocation for 𝑝௜) ൌ

௦೔
ௌ
ൈ 𝑚

• Priority Allocation:
– Proportional scheme using priorities rather than size

» Same type of computation as previous scheme
– Possible behavior: If process pi generates a page fault, select for replacement a frame

from a process with lower priority number

• Perhaps we should use an adaptive scheme instead???
– What if some application just needs more memory?

Lec 18.273/21/24 Kubiatowicz CS162 © UCB Spring 2024

Page-Fault Frequency Allocation
• Can we reduce Capacity misses by dynamically

changing the number of pages/application?

• Establish “acceptable” page-fault rate
– If actual rate too low, process loses frame
– If actual rate too high, process gains frame

• Question: What if we just don’t have enough memory?

Lec 18.283/21/24 Kubiatowicz CS162 © UCB Spring 2024

Thrashing
• If a process does not have “enough” pages, the

page-fault rate is very high.
This leads to:

– low CPU utilization
– operating system spends most of its time

swapping to disk
• Thrashing  a process is busy swapping pages

in and out with little or no actual progress
• Questions:

– How do we detect Thrashing?
– What is best response to Thrashing?

Lec 18.293/21/24 Kubiatowicz CS162 © UCB Spring 2024

Locality In A Memory-Reference Pattern
• Program Memory Access Patterns have

temporal and spatial locality
– Group of Pages accessed along a given

time slice called the “Working Set”
– Working Set defines minimum number

of pages for process to behave well
• Not enough memory for Working Set 

Thrashing
– Better to swap out process?

Lec 18.303/21/24 Kubiatowicz CS162 © UCB Spring 2024

Working-Set Model Take 2

•   working-set window  fixed number of page references
– Example: 10,000 instructions

• WSi (working set of Process Pi) = total set of pages referenced in the
most recent  (varies in time)

– if  too small will not encompass entire locality
– if  too large will encompass several localities
– if  =   will encompass entire program

• D = |WSi|  total demand frames
• if D > m  Thrashing

– Policy: if D > m, then suspend/swap out processes
– This can improve overall system behavior by a lot!

Lec 18.313/21/24 Kubiatowicz CS162 © UCB Spring 2024

What about Compulsory Misses?
• Recall that compulsory misses are misses that occur the first time that a

page is seen
– Pages that are touched for the first time
– Pages that are touched after process is swapped out/swapped back in

• Clustering:
– On a page-fault, bring in multiple pages “around” the faulting page
– Since efficiency of disk reads increases with sequential reads, makes

sense to read several sequential pages
• Working Set Tracking:

– Use algorithm to try to track working set of application
– When swapping process back in, swap in working set

Lec 18.323/21/24 Kubiatowicz CS162 © UCB Spring 2024

Linux Memory Details?
• Memory management in Linux considerably more complex than the

examples we have been discussing
• Memory Zones: physical memory categories

– ZONE_DMA: < 16MB memory, DMAable on ISA bus
– ZONE_NORMAL: 16MB  896MB (mapped at 0xC0000000)
– ZONE_HIGHMEM: Everything else (> 896MB)

• Each zone has 1 freelist, 2 LRU lists (Active/Inactive)
• Many different types of allocation

– SLAB allocators, per-page allocators, mapped/unmapped
• Many different types of allocated memory:

– Anonymous memory (not backed by a file, heap/stack)
– Mapped memory (backed by a file)

• Allocation priorities
– Is blocking allowed/etc

Lec 18.333/21/24 Kubiatowicz CS162 © UCB Spring 2024

Linux Virtual memory map (Pre-Meltdown)

Kernel
Addresses

Empty
Space

User
Addresses

User
Addresses

Kernel
Addresses

0x00000000

0xC0000000

0xFFFFFFFF

0x0000000000000000

0x00007FFFFFFFFFFF

0xFFFF800000000000

0xFFFFFFFFFFFFFFFF
3G

B
To

ta
l

12
8T

iB

1G
B

12
8T

iB

896MB
Physical 64 TiB

Physical

32-Bit Virtual Address Space 64-Bit Virtual Address Space

“Canonical Hole”

Lec 18.343/21/24 Kubiatowicz CS162 © UCB Spring 2024

Pre-Meltdown Virtual Map (Details)
• Kernel memory not generally visible to user

– Exception: special VDSO (virtual dynamically linked shared objects) facility
that maps kernel code into user space to aid in system calls (and to provide
certain actual system calls such as gettimeofday())

• Every physical page described by a “page” structure
– Collected together in lower physical memory
– Can be accessed in kernel virtual space
– Linked together in various “LRU” lists

• For 32-bit virtual memory architectures:
– When physical memory < 896MB

» All physical memory mapped at 0xC0000000
– When physical memory >= 896MB

» Not all physical memory mapped in kernel space all the time
» Can be temporarily mapped with addresses > 0xCC000000

• For 64-bit virtual memory architectures:
– All physical memory mapped above 0xFFFF800000000000

Lec 18.353/21/24 Kubiatowicz CS162 © UCB Spring 2024

Post Meltdown Memory Map
• Meltdown flaw (2018, Intel x86, IBM Power, ARM)

– Exploit speculative execution to observe contents of kernel memory
1: // Set up side channel (array flushed from cache)
2: uchar array[256 * 4096];
3: flush(array); // Make sure array out of cache (not an instruction!)

4: try { // … catch and ignore SIGSEGV (illegal access)
5: uchar result = *(uchar *)kernel_address;// Try access!
6: uchar dummy = array[result * 4096]; // leak info!
7: } catch(){;} // Could use signal() and setjmp/longjmp

8: // scan through 256 array slots to determine which loaded

– Some details:
» Reason we skip 4096 for each value: avoid hardware cache prefetch
» Note that value detected by fact that one cache line is loaded
» Catch and ignore page fault: set signal handler for SIGSEGV, can use setjump/longjmp….

• Patch: Need different page tables for user and kernel
– Without PCID tag in TLB, flush TLB twice on syscall (800% overhead!)
– Need at least Linux v 4.14 which utilizes PCID tag in new hardware to avoid flushing

when change address space
• Fix: better hardware without timing side-channels

Lec 18.363/21/24 Kubiatowicz CS162 © UCB Spring 2024

Conclusion
• Replacement policies

– FIFO: Place pages on queue, replace page at end
– MIN: Replace page that will be used farthest in future
– LRU: Replace page used farthest in past

• Working Set:
– Set of pages touched by a process recently
– Point of Replacement algorithms is to try to keep working set in memory

• Clock Algorithm: Approximation to LRU
– Arrange all pages in circular list
– Sweep through them, marking as not “in use”
– If page not “in use” for one pass, than can replace

• Nth-chance clock algorithm: Another approximate LRU
– Give pages multiple passes of clock hand before replacing

• Second-Chance List algorithm: Yet another approximate LRU
– Divide pages into two groups, one of which is truly LRU and managed on page faults.

