CS162
Operating Systems and
Systems Programming

Lecture 19

General I/O, Storage Devices

April 2nd, 2024
Prof. John Kubiatowicz
http://cs162.eecs.Berkeley.edu

Recall: Clock Algorithm (Not Recently Used)

-

Ve ~ Single Clock Hand:
/ (Advances only on page fault!
Check for pages not used recently
Se.t of all pages | Mark pages as not used recently
in Memory
\ ’
N oo

» Clock Algorithm: Arrange physical pages in circle with single clock hand
— Approximate LRU (approximation to approximation to MIN)
— Replace an old page, not the oldest page
* Details:
— Hardware “use” bit per physical page (called “accessed” in Intel architecture):
» Hardware sets use bit on each reference
» If use bit isn’t set, means not referenced in a long time
» Some hardware sets use bit in the TLB; must be copied back to page TLB entry gets replaced
— On page fault:
» Advance clock hand (not real time)

» Check use bit: 1— used recently; clear and leave alone
0— selected candidate for replacement

4/2/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 19.2

Recall: Second-Chance List Algorithm (Rearrangement)

. [

Mapped Pages 2 Unmapped Pages
Active List % Second Chance List
Marked: RW :I Marked: Invalid
List: FIF0 L% List: LRU
New New
Active Page SC Victim

+ Split memory in two: Active list (RW), SC list (Invalid)
» Access pages in Active list at full speed

» Otherwise, Page Fault

— Always move overflow page from end of Active list to front of Second-chance list (SC) and
mark invalid

— Desired Page On SC List: move to front of Active list, mark RW

4/2/12024 Kubiatowicz CS162 © UCB Spring 2024 Lec 19.3

Recall: Second-Chance List Algorithm (Page in from Disk)
o [——LRU victim

Mapped Pages %7 Unmapped Pages
Active List % Second Chance List
Marked: RW Marked: Invalid
List: FIFO I:l List: LRU
Page-in New New
From disk Active Page SC Victim

+ Split memory in two: Active list (RW), SC list (Invalid)
» Access pages in Active list at full speed

» Otherwise, Page Fault

— Always move overflow page from end of Active list to front of Second-chance list (SC) and
mark invalid

— Desired Page On SC List: move to front of Active list, mark RW
— Not on SC list: page in to front of Active list, mark RW; page out LRU victim at end of SC list
4/12/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 19.4

Thrashing

« If a process does not have “enough” pages, the

page-fault rate is very high.
This leads to:

—low CPU utilization

— operating system spends most of its time
swapping to disk
* Thrashing = a process is busy swapping pages
in and out with little or no actual progress

CPU utilization

thrashing

degree of multiprogramming

* Questions:
— How do we detect Thrashing?
— What is best response to Thrashing?

Locality In A Memory-Reference Pattern

34 — e

» Program Memory Access Patterns have
temporal and spatial locality

— Group of Pages accessed along a given I . 7. |
time slice called the “Working Set” :

— Working Set defines minimum number I
of pages for process to behave well o

» Not enough memory for Working Set =
Thrashing

— Better to swap out process? e

execution time ——»

4/2/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 19.5 4/2/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 19.6
Working-Set Model What about Compulsory Misses?
f bi . . -
page ;e::eg(;e;i :5 1603410834448434441328344483444 * Recall that compulsory misses are misses that occur the first time that a
N N page is seen
* ’| * :l — Pages that are touched for the first time
Ws(t,) = (12‘5‘6,7;‘ WS(t,) = (3.4) & — Pages that are touched after process is swapped out/swapped back in
« A = working-set window = fixed number of page references * Clustering:
— Example: 10,000 instructions — On a page-fault, bring in multiple pages “around” the faulting page
+ WSi (working set of Process Pi) = total set of pages referenced in the — Since efficiency of disk reads increases with sequential reads, makes
most recent A (varies in time) sense to read several sequential pages
— if A too small will not encompass entire locality » Working Set Tracking:
~if Atoo large will encompass several localities — Use algorithm to try to track working set of application
—ifa= © = will encompass entire program — When swapping process back in, swap in working set
* D = Z|WSi| = total demand frames
* if D> m = Thrashing
— Policy: if D > m, then suspend/swap out processes
— This can improve overall system behavior by a lot!
4/2/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 19.7 4/2/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 19.8

Linux Memory Details?

Memory management in Linux considerably more complex than the
examples we have been discussing

Memory Zones: physical memory categories
— ZONE_DMA: < 16MB memory, DMAable on ISA bus
— ZONE_NORMAL: 16MB — 896MB (mapped at 0xC0000000)
— ZONE_HIGHMEM: Everything else (> 896MB)
Each zone has 1 freelist, 2 LRU lists (Active/Inactive)
Many different types of allocation
— SLAB allocators, per-page allocators, mapped/unmapped
Many different types of allocated memory:
— Anonymous memory (not backed by a file, heap/stack)
— Mapped memory (backed by a file)
Allocation priorities
— Is blocking allowed/etc

Linux Virtual memory map (Pre-Meltdown)

NXFFFFFFFF OxFFFFFFFFFFFFFFFF
Kernel = Kernel
896MB =)
9 Ph | Addresses K 64 TiB Addresses
\', ysica - Physical
0xC0000000
X 0xFFFF800000000000
“Canonical Hole” Empty
= Space
° User
[
@ Addresses 0x00007FFFFFFFFFFF
8 o
5 User
o Addresses
\/OXOOOOOOOO 0x0000000000000000

32-Bit Virtual Address Space 64-Bit Virtual Address Space

4/2/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 19.9 4/2/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 19.10
Pre-Meltdown Virtual Map (Details) Post Meltdown Memory Map
+ Kernel memory not generally visible to user * Meltdown flaw (2018, Intel x86, IBM Power, ARM)
. - — Exploit speculative execution to observe contents of kernel memory
— Exception: special VDSO (virtual dynamically linked shared objects) facility
that maps kernel code into user space to aid in system calls (and to provide 1: // Set up side chamnel (array flushed from cache)
certain actual SyStem calls such as gEttlmeo-Fday()) 3: giuglﬁ(:iizg) ; // Make sure array out of cache
L Every physical page described by a “page” structure é: try IE 1{/ ?at}sh an)dk igno:fe deIGSEGV//(i%legal access)
. N H uc ar resu = * (uchar *)kernel address; ry access!
— Collected together in lower physical memory 6: . uchar = array[result * 4096]; Teak info!
. . 7: } catch() { } // Could use signal() and setjmp/longjmp
- Can be accessed n kernel Vlrtual Space 8: // scan through 256 array slots to determine which loaded
— Linked together in various “LRU” lists
. g . . — Some details:
* For 32-bit virtual memory architectures: » Reason we skip 4096 for each value: avoid hardware cache prefetch
— When physical memory < 896MB » Note that value detected by fact that one cache line is loaded
» All physical memory mapped at 0xC0000000 » Catch and ignore page fault: set signal handler for SIGSEGV, can use setjump/longjmp....
Wh hvsical >= 896MB » Patch: Need different page tables for user and kernel
— Vvhen physical memory == _ _ — Without PCID tag in TLB, flush TLB twice on syscall (800% overhead!)
» Not all physical memory mapped in kernel space all the time — Need at least Linux v 4.14 which utilizes PCID tag in new hardware to avoid flushing
» Can be temporarily mapped with addresses > 0xCC000000 when change address space
+ For 64-bit virtual memory architectures: Fix: better hardware without timing side-channels
— All physical memory mapped above OxFFFF800000000000 — Mostly implemented, but related problem (Spectre) much harder to fix
4/2/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 19.11 422024 Kubiatowicz CS162 © UCB Spring 2024 Lec 19.12

Administrivia

87 92
74
35 39
26
I | —
0 30 40 50 60 70 80 90 100

o

0 10 2

* Welcome back from Spring Break
Midterm 2 is graded: Min: 19.3, Max: 91.5, Mean: 57.4, StdDev: 14.3
— Regrade requests closed
— Regrades finished by tomorrow (hopefully)
Midterm 3 on April 25
— All topics up to previous Tuesday (4/23) are in scope
— Closed book, 3 pages, double-sided handwritten notes.
Extensions:
— Homework 4 = Due Wednesday (4/3)

— Project 2 = Due Friday (4/5)
4/2/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 19.13

Lecture Attendance EC (4/2/2024)

https://tinyurl.com/mrn59s5e

4/2/12024 Kubiatowicz CS162 © UCB Spring 2024 Lec 19.14

What about 1/0?7??

Components of a Computer System

Computer

>—‘ Input/Output

e
Datapath

. Output

Processor Memory
Diagram from “Computer
Organization and Design” by
Patterson and Hennessy
4/12/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 19.15

Requirements of I/O

» Sofarin CS 162, we have studied:

— Abstractions: the APIs provided by the OS to applications running in a process
— Synchronization/Scheduling: How to manage the CPU

* What about I/0?

— Without I/0, computers are useless (disembodied brains?)
— But... thousands of devices, each slightly different
» How can we standardize the interfaces to these devices?
— Devices unreliable: media failures and transmission errors
» How can we make them reliable???
— Devices unpredictable and/or slow

» How can we manage them if we don’t know what they will do or how they will
perform?

4/2/12024 Kubiatowicz CS162 © UCB Spring 2024 Lec 19.16

Recall: Range of Timescales

Example: Device Transfer Rates in Mb/s (Sun Enterprise 6000)

* Device rates vary over 12

Ll cache reference 0.5 ns Orders Of magnltudelll system Bus |
Branch mispredict 5 ns HyperTransport (32-pair) [N
Jeff Dean: 12 cache. Leferancs 7 ns » System must be able to handle POl Bxpress 20 (<c2)
“N b Mutex lock/unlock 25 ns thls Wlde range Infiniband (DR 12x) [
um ers Main memory reference 100 ns Better not have high Serial ATA (SATA-300) [
Ever‘lyone Should Compress 1K bytes with Zippy 3,000 ns overhead/bvte for?‘ast devices gigabit ethernct |
" Send 2K bytes over 1 Gbps network 20,000 ns y scsibus [N
Know Read 1 MB sequentially from memory 250,000 ns — Better not waste time Waltlng for Firewire [N
Round trip within same datacenter 500,000 ns slow devices nard cisk [N
Disk seek 10,000,000 ns [moder
Read 1 MB sequentially from disk 20,000,000 ns | mouss
Send packet CA->Netherlands->CA 150,000,000 ns _
0.00001 0001 o1 10 1000 100000 1E-
4/2/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 19.17 4/2/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 19.18
In a Picture Example of I/O System
——
1
Read/_ _ ____ 1 1_@39 u<
Processor [Write :E O : E \ : -
Qre_ : 1 110 : monitor S . -
N N le——1 1 . —
SRR — Canrollers = | e !
= S o interrupts | graphics bridge/memory i v tialer
6 % g "ol Secondary controller controller /@
Z D \?V?’ﬁ: Storage Expansion through)———l—————__:_;b_— — ===} --;i v
ore — —~ . . ; RCLbus '
o= 5] (B Y (Disk) hierarchy of buses! e —— N
A - 3 A : oo
%- Q(? %(? g 8 ‘ IDE disk controller ‘ ex‘:ﬁ{‘éﬂzg:“s ‘ _\‘ﬁ‘ﬁi“iik‘“ S
g 12l BLICS

« 1/0O devices you recognize are supported by I/O Controllers

* Processors accesses them by reading and writing |0 registers as if they
were memory

— Write commands and arguments, read status and results

4/2/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 19.19

G

4/2/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 19.20

Recall: Recent Intel Chipset I/O Configuration

Direct-connect
High Speed PCle

|
Memory Channels
| (High BW DRAM)

I Intel* Core
Really High Speed | o
1/0 (e.g. graphics) =
r |'I /J Direct Media Interface

(8-16 GBytes/sec)

iii

High-Speed 1/0 | '

'_l
devices (PCle) I | | —m Integrated Ethernet |

[Disks (8 x SATA3.0) |_ L J—_
Intel* Rapid Storage
Slower I/O (USB) : 2

Series Chlpset
| Integrated 2.5G Ethernet

f_—"

I
Audie nel® WiFi7 (5 G Integrated WiFi 7

Technology 19:xorater
7 HD Audio
Integrated WiFi 6E

Intel Management Engine
(ME) and BIOS Support

What's a bus?
N

+ Common set of wires for communication among hardware devices plus
protocols for carrying out data transfer transactions

— Operations: e.g., Read, Write
— Control lines, Address lines, Data lines
— Typically multiple devices

» Protocol: initiator requests access, arbitration to grant, identification of
recipient, handshake to convey address, length, data

» Very high BW close to processor (wide, fast, and inflexible), low BW with

Lots of expansion through buses! p— [remote managemant] high flexibility out in I/O subsystem
Intel 700 Chipset I/O Configuration
4/2/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 19.21 4/2/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 19.22
Why a Bus?

* Buses let us connect n devices over a single set of wires, connections,
and protocols

- 0(n?) relationships with 1 set of wires (!)

» Downside: Only one transaction at a time
— The rest must wait
— “Arbitration” aspect of bus protocol ensures the rest wait

4/2/12024 Kubiatowicz CS162 © UCB Spring 2024 Lec 19.23

PCI Bus Evolution

» PCI started life out as a physical (parallel) bus
— Example: 32-bit system = 32 address wires, 32 data wires, power, control
» But a parallel bus has many limitations
— Multiplexing address/data for many requests
— Slowest devices must be able to tell what's happening (e.g., for arbitration)
— Capacitance increases with each device you attach =Slowing down bus accesses!
— Bus speed is set to that of the slowest device

4/2/12024 Kubiatowicz CS162 © UCB Spring 2024 Lec 19.24

PCI Express (PCle) “Bus”

* No longer a parallel bus
» Really a collection of fast serial channels or “lanes”

« Devices can use as many serial channels as they need to achieve a
desired bandwidth

—-1X, 2X, 4X, 8X, 16X
» Slow devices don’t have to share with fast ones

» One of the successes of device abstraction in Linux was the ability to
migrate from PCI to PCI Express

— The physical interconnect changed completely, but the old API still worked

4/2/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 19.25

Example: PCI Architecture

RAM |e Memory > cPU
Bus
r 3
{ Host Bridge
7y 'y PCI #0
ISA Bridge PCI Bridge
T | I < PCI #1
ISA
Controller PCI Slots USB SATA @
Controller | | Controller

Qevice DVD $

Keyboard

4/2/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 19.26

How does the Processor Talk to the Device?

-

Processor Memory Bus

Memo

Adapto dapt evice —Sl
Address + Controller

Other Devices Data Bus Hardware
I||nterfac Controller

Interrupt f——CorBuses

Controller Interrupt Request
Addressable
Memory
» CPU interacts with a Controller Sl gggl/gs

— Contains a set of registers that can be read and written

(port 0x20) \sriory Mapped
— May contain memory for request queues, etc. 8008

Region: 0x8f008020)

* Processor accesses registers in two ways:
— Port-Mapped I/O: infout instructions
» Example from the Intel architecture: out 0x21,AL
— Memory-mapped I/O: load/store instructions
» Registers/memory appear in physical address space
» 1/0 accomplished with load and store instructions

4/2/12024 Kubiatowicz CS162 © UCB Spring 2024 Lec 19.27

Port-Mapped I/O in Pintos Speaker Driver

Pintos: devices/speaker.c Pintos: threads/io.h

* Reads and returns a byte from PORT.

static inline uint8_t
eaker_on (int frequency) inb (uint16_t port)
if (frequency >= 20 & frequency <= 20000) ¢
N See [IA32-v2a] "IN". */
cted peaker t uint8_t data;
asm volatile ("inb %wl, %b@" : “=a" (data) : "Nd" (port));
return data;

¥

e timer ch th
num intr_level old_level = intr_disable ();
pit_configure_channel (2, 3, frequency);

(spt/\KkN»PuRv_w\vt,(svk/\KM_PuK!_ﬁ/\vt) | SPEAKER_GATE_ENABLE);

set_level (old_levelys
}

/* Writes byte DATA to PORT

¢

static inline void

outb (uint16_t port, uint8_t data)

speaker_off (); {
) /* See [1A32-v2b] "OUT"
asm volatile ("outb %bo, %wl" : : "a" (data), "Nd" (port));
}
tr_disable ();
SPEAKER_PORT_GATE) & ~SPEAKER_GATE_ENABLE) ;
et_level (old_level);
4/2/2024? Kubiatowicz CS162 © UCB Spring 2024 Lec 19.28

Example: Memory-Mapped Display Controller

Operational Parameters for I/O

) Me:]o(rjy—Mapped. | reai 4 disol) 0x50020000 + Data granularity: Byte vs. Block
— Hardware maps control registers and display memory into X Graphics _ : ; ; ;
physical address space Command Some devpes provide single byte at.a time (e.g., keyboard)
» Addresses set by HW jumpers or at boot time Queue — Others provide whole blocks (e.g., disks, networks, etc.)
. o : . 0x80010000 |
— Simply writing to display memory (also called the “frame Display)
buffer”) changes image on screen Memory » Access pattern: Sequential vs. Random
» Addr: 0x8000F000 — 0x8000FFFF 0x8000F000 — Some devices must be accessed sequentially (e.g., tape)
— Writing graphics description to cmd queue — Others can be accessed “randomly” (e.g., disk, cd, etc.)
» Say enter a set of triangles describing some scene 0x0007F004 | Command » Fixed overhead to start transfers
» Addr: 0x80010000 — 0x8001FFFF 0x0007F000 | Status — Some devices require continual monitoring
— Writing to the command register may cause on-board graphics — Others generate interrupts when they need service
hardware to do something -
» Say render the above scene .
; + Transfer Mechanism: Programmed IO and DMA
» Addr: 0x0007F004) " “»\ Physical g
» Can protect with address translation \,;L \ Address
&' Space
4/2/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 19.29 4/2/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 19.30
Transferring Data To/From Controller Transferring Data To/From Controller
* Programmed I/O: * Programmed |/O:
— Each byte transferred via processor in/out or load/store — Each byte transferred via processor in/out or load/store
— Pro: Simple hardware, easy to program — Pro: Simple hardware, easy to program
— Con: Consumes processor cycles proportional to data size — Con: Consumes processor cycles proportional to data size
. 1. device driver is told . 1. device driver is told
+ Direct Memory Access: to butter 3t acirsse x>, OPY + Direct Memory Access: 1o bufer a1 adoce X
— Give controller access to memory bus B ot a1y el der ok — Give controller access to memory bus B ot bea 1y aoce G e
— Ask it to transfer ermory adrese o Gkt per — Ask it to transfer memoyaddess . romaisk by (TaEeRE
data blocks to/from o docroasing G at address X data blocks to/from A Georeasing G at addresy
. when DMA/bus/ o . when DMA/bus! N m—
memery directly e o | S O memory directly " el ons | I/ 2 E
. . . 3 P . . .)ﬁ'—(
« Sample interaction with DMA controller ° 05 == « Sample interaction with DMA controller FRI= “rene
(from OSC book): DEdsk | Diavarser (from OSC book): BEdsk | Diavarser
controller 4. d\skhcgnttri\\eéie:ds controller 4. d\skhcgnttri\\eéae:ds
T T each byte to T T each byte to
@f@ @EB controller @f@ %B controller
(disk) (disk) (disk) @isk)

4/2/12024 Kubiatowicz CS162 © UCB Spring 2024

Lec 19.31

4/2/12024 Kubiatowicz CS162 © UCB Spring 2024

Lec 19.32

I/O Device Notifying the OS

» The OS needs to know when:
—The 1/O device has completed an operation
—The /O operation has encountered an error
* |/O Interrupt:
— Device generates an interrupt whenever it needs service
—Pro: handles unpredictable events well
— Con: interrupts relatively high overhead
* Polling:
— OS periodically checks a device-specific status register
» 1/O device puts completion information in status register
—Pro: low overhead
— Con: may waste many cycles on polling if infrequent or unpredictable 1/O operations
* Actual devices combine both polling and interrupts
— For instance — High-bandwidth network adapter:
» Interrupt for first incoming packet
» Poll for following packets until hardware queues are empty

4/2/12024 Kubiatowicz CS162 © UCB Spring 2024

Kernel Device Structure

The System Call Interface

+ 2 ¢ ¢ ¢t % ¢ ¢ 1t 1 t 1
A4 A4 v A4 A4 \ 4 \ 4 A AN 4 A4 \ 4 v
Process Memory . Device .
Management | | Management AR Control BB
Concurrency, Virtual Files and dirs: TTYs and L
multitasking _memory the VFS __ device access _oonnectivity
Flle_r‘Sg/es;em Network
f Subsystem
Architecture Memory EEEE Device
Dependent M Control =
Code anager Block ontro IF drivers
Devices
EEEE

Kubiatowicz CS162 © UCB Spring 2024 !

Lec 19.33 4/2/2024 Lec 19.34
Recall: Device Drivers Recall: Life Cycle of An I/0O Request
» Device Driver: Device-specific code in the kernel that interacts directly with User e s T
the device hardware Program . S
— Supports a standard, internal interfface b Y OO=) R
— Same kernel I/O system can interact easily with different device drivers oditen |t tes
— Special device-specific configuration supported with the ioct1() system call Kernel 1/O "W snoross
. . . “ . . . SUbSyStem send request to device
» Device Drivers typically divided into two pieces: amrhekprociet |t
—Top half: accessed in call path from systemcalls et CETTTTTTTTI TR RN R
» implements a set of standard, cross-device calls like open(), close(), read(), Device Driver friesien ol e sl 0
write(), ioctl(), strategy() Tob Half et CH I arver Change 0110 subsystem
» This is the kernel’s interface to the device driver p .. | U P
» Top half will start !/O to device, may put thread to sleep until finished Device Driver wnrommbrommss eret [N
— Bottom half: run as interrupt routine Bottom Half e
» Gets input or transfers next block of output e e LA .
» May wake sleeping threads if I/O now complete] .
Device Riiol R ECLLLE BT
Hardware e
‘ time
4/2/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 19.35 4/2/2024

Kubiatowicz CS162 © UCB Spring 2024

Lec 19.36

The Goal of the 1/0O Subsystem

* Provide Uniform Interfaces, Despite Wide Range of Different Devices
— This code works on many different devices:
FILE fd = fopen("/dev/something", "rw");
for (int 1 = 0; i < 10; i++) {
fprintf(fd, "Count %d\n", i);
close(fd);

— Why? Because code that controls devices (“device driver”) implements
standard interface

« We will try to get a flavor for what is involved in actually controlling
devices in rest of lecture

— Can only scratch surface!

Want Standard Interfaces to Devices

* Block Devices: e.g. disk drives, tape drives, DVD-ROM
— Access blocks of data
— Commands include open(), read(), write(), seek()
— Raw /O or file-system access
— Memory-mapped file access possible
+ Character Devices: e.g. keyboards, mice, serial ports, some USB
devices
— Single characters at a time
— Commands include get (), put()
— Libraries layered on top allow line editing
» Network Devices: e.g. Ethernet, Wireless, Bluetooth
— Different enough from block/character to have own interface
— Unix and Windows include socket interface
» Separates network protocol from network operation
» Includes select() functionality
— Usage: pipes, FIFOs, streams, queues, mailboxes

4/2/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 19.37 4/2/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 19.38
How Does User Deal with Timing? Conclusion
* Blocking Interface: “Wait” * /0 Devices Types:
— When request data (e.g. read() system call), put process to - M.any different speeds (0'_1 bytes/sec to GBytes/sec)
sleep until data is ready — Different Acc_ess Patterns: ‘ .
» Block Devices, Character Devices, Network Devices
— When write data (e.g. write() system call), put process to — Different Access Timing:
sleep until device is ready for data » Blocking, Non-blocking, Asynchronous
- Non-blocking Interface: “Don’t Wait” * 1/O Controllers: Hardware that controls actual device
. . . — Processor Accesses through 1/O instructions, load/store to special physical
— Returns quickly from read or write request with count of bytes memory
successfully transferred « Notification mechanisms
— Read may return nothing, write may write nothing — Interrupts
» Asynchronous Interface: “Tell Me Later” — Polling: Report results through status register that processor looks at
— When request data, take pointer to user’s buffer, return pgnodm;ally . .
immediately; later kernel fills buffer and notifies user + Device drivers interface to I/O devices
— When send data, take pointer to user’s buffer, return — Provide clean Read/Write interface to OS above
immediately; later kernel takes data and notifies user — Manipulate devices through PIO, DMA & interrupt handling
— Three types: block, character, and network
4/2/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 19.39 4/2/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 19.40

