
CS162
Operating Systems and
Systems Programming

Lecture 20

Device Drivers, Storage Devices, Performance

April 4th, 2024
Prof. John Kubiatowicz

http://cs162.eecs.Berkeley.edu

Lec 20.24/4/2024 Kubiatowicz CS162 © UCB Spring 2024

Recall: How does the Processor Talk to the Device?

• CPU interacts with a Controller
– Contains a set of registers that can be read and written
– May contain memory for request queues, etc.

• Processor accesses registers in two ways:
– Port-Mapped I/O: in/out instructions

» Example from the Intel architecture: out 0x21,AL
– Memory-mapped I/O: load/store instructions

» Registers/memory appear in physical address space
» I/O accomplished with load and store instructions

Device
Controller

read
write

control
status

Addressable
Memory
and/or

QueuesRegisters
(port 0x20)

Hardware
Controller

Memory Mapped
Region: 0x8f008020

Bus
Interface

Address +
Data

Interrupt Request

Processor Memory Bus

CPU

Regular
Memory

Interrupt
Controller

Bus
Adaptor

Bus
Adaptor

Other Devices
or Buses

Lec 20.34/4/2024 Kubiatowicz CS162 © UCB Spring 2024

Recall: Example Memory-Mapped Display Controller
• Memory-Mapped:

– Hardware maps control registers and display memory into
physical address space

» Addresses set by HW jumpers or at boot time
– Simply writing to display memory (also called the “frame

buffer”) changes image on screen
» Addr: 0x8000F000 — 0x8000FFFF

– Writing graphics description to cmd queue
» Say enter a set of triangles describing some scene
» Addr: 0x80010000 — 0x8001FFFF

– Writing to the command register may cause on-board graphics
hardware to do something

» Say render the above scene
» Addr: 0x0007F004

• Can protect with address translation

Display
Memory

0x8000F000

0x80010000

Physical
Address
Space

Status0x0007F000
Command0x0007F004

Graphics
Command
Queue

0x80020000

Lec 20.44/4/2024 Kubiatowicz CS162 © UCB Spring 2024

• Programmed I/O:
– Each byte transferred via processor in/out or load/store
– Pro: Simple hardware, easy to program
– Con: Consumes processor cycles proportional to data size

• Direct Memory Access:
– Give controller access to memory bus
– Ask it to transfer

data blocks to/from
memory directly

• Sample interaction with DMA controller
(from OSC book):

Transferring Data To/From Controller

1

2

3

Lec 20.54/4/2024 Kubiatowicz CS162 © UCB Spring 2024

• Programmed I/O:
– Each byte transferred via processor in/out or load/store
– Pro: Simple hardware, easy to program
– Con: Consumes processor cycles proportional to data size

• Direct Memory Access:
– Give controller access to memory bus
– Ask it to transfer

data blocks to/from
memory directly

• Sample interaction with DMA controller
(from OSC book):

Transferring Data To/From Controller

4

5

6

Lec 20.64/4/2024 Kubiatowicz CS162 © UCB Spring 2024

I/O Device Notifying the OS
• The OS needs to know when:

– The I/O device has completed an operation
– The I/O operation has encountered an error

• I/O Interrupt:
– Device generates an interrupt whenever it needs service
– Pro: handles unpredictable events well
– Con: interrupts relatively high overhead

• Polling:
– OS periodically checks a device-specific status register

» I/O device puts completion information in status register
– Pro: low overhead
– Con: may waste many cycles on polling if infrequent or unpredictable I/O operations

• Actual devices combine both polling and interrupts
– For instance – High-bandwidth network adapter:

» Interrupt for first incoming packet
» Poll for following packets until hardware queues are empty

Lec 20.74/4/2024 Kubiatowicz CS162 © UCB Spring 2024

Kernel Device Structure
The System Call Interface

Process
Management

Memory
Management Filesystems Device

Control Networking

Architecture
Dependent

Code

Memory
Manager

Device
Control

Network
Subsystem

File System
Types

Block
Devices

IF drivers

Concurrency,
multitasking

Virtual
memory

Files and dirs:
the VFS

TTYs and
device access Connectivity

Lec 20.84/4/2024 Kubiatowicz CS162 © UCB Spring 2024

Recall: Device Drivers
• Device Driver: Device-specific code in the kernel that interacts directly with

the device hardware
– Supports a standard, internal interface
– Same kernel I/O system can interact easily with different device drivers
– Special device-specific configuration supported with the ioctl() system call

• Device Drivers typically divided into two pieces:
– Top half: accessed in call path from system calls

» implements a set of standard, cross-device calls like open(), close(), read(),
write(), ioctl(), strategy()

» This is the kernel’s interface to the device driver
» Top half will start I/O to device, may put thread to sleep until finished

– Bottom half: run as interrupt routine
» Gets input or transfers next block of output
» May wake sleeping threads if I/O now complete

Lec 20.94/4/2024 Kubiatowicz CS162 © UCB Spring 2024

Recall: Life Cycle of An I/O Request

Device Driver
Top Half

Device Driver
Bottom Half

Device
Hardware

Kernel I/O
Subsystem

User
Program

Lec 20.104/4/2024 Kubiatowicz CS162 © UCB Spring 2024

The Goal of the I/O Subsystem
• Provide Uniform Interfaces, Despite Wide Range of Different Devices

– This code works on many different devices:
FILE fd = fopen("/dev/something", "rw");
for (int i = 0; i < 10; i++) {

fprintf(fd, "Count %d\n", i);
}
close(fd);

– Why? Because code that controls devices (“device driver”) implements
standard interface

• We will try to get a flavor for what is involved in actually controlling
devices in rest of lecture

– Can only scratch surface!

Lec 20.114/4/2024 Kubiatowicz CS162 © UCB Spring 2024

Want Standard Interfaces to Devices
• Block Devices: e.g. disk drives, tape drives, DVD-ROM

– Access blocks of data
– Commands include open(), read(), write(), seek()
– Raw I/O or file-system access
– Memory-mapped file access possible

• Character Devices: e.g. keyboards, mice, serial ports, some USB devices
– Single characters at a time
– Commands include get(), put()
– Libraries layered on top allow line editing

• Network Devices: e.g. Ethernet, Wireless, Bluetooth
– Different enough from block/character to have own interface
– Unix and Windows include socket interface

» Separates network protocol from network operation
» Includes select() functionality

– Usage: pipes, FIFOs, streams, queues, mailboxes

Lec 20.124/4/2024 Kubiatowicz CS162 © UCB Spring 2024

How Does User Deal with Timing?
• Blocking Interface: “Wait”

– When request data (e.g. read() system call), put process to sleep until
data is ready

– When write data (e.g. write() system call), put process to sleep until
device is ready for data

• Non-blocking Interface: “Don’t Wait”
– Returns quickly from read or write request with count of bytes successfully

transferred
– Read may return nothing, write may write nothing

• Asynchronous Interface: “Tell Me Later”
– When request data, take pointer to user’s buffer, return immediately; later

kernel fills buffer and notifies user
– When send data, take pointer to user’s buffer, return immediately; later

kernel takes data and notifies user

Lec 20.134/4/2024 Kubiatowicz CS162 © UCB Spring 2024

Administrivia
• Sorry about infrastructure disaster yesterday!

– We extended the HW4 deadline
• HW 5 will have a Rust option!

– Choose one or the other
• Project 2 still due Friday
• Midterm 3 on April 25

– All topics up to previous Tuesday (4/23) are in scope
– Closed book, 3 pages, double-sided handwritten notes.

Lec 20.144/4/2024 Kubiatowicz CS162 © UCB Spring 2024

Lecture Attendance EC (4/4/2024)

https://tinyurl.com/yj3976p2

Lec 20.154/4/2024 Kubiatowicz CS162 © UCB Spring 2024

Storage Devices
• Magnetic disks

– Storage that rarely becomes corrupted
– Large capacity at low cost
– Block level random access (except for SMR – later!)
– Slow performance for random access
– Better performance for sequential access

• Flash memory
– Storage that rarely becomes corrupted
– Capacity at intermediate cost (5-20x disk)
– Block level random access
– Good performance for reads; worse for random writes
– Erasure requirement in large blocks
– Wear patterns issue

Lec 20.164/4/2024 Kubiatowicz CS162 © UCB Spring 2024

Hard Disk Drives (HDDs)

IBM/Hitachi Microdrive

Western Digital Drive
http://www.storagereview.com/guide/

Read/Write Head
Side View

IBM Personal Computer/AT (1986)
30 MB hard disk - $500
30-40ms seek time
0.7-1 MB/s (est.)

Lec 20.174/4/2024 Kubiatowicz CS162 © UCB Spring 2024

The Amazing Magnetic Disk

cylinder

• Unit of Transfer: Sector (512B or 4096B)
– Ring of sectors form a track
– Stack of tracks form a cylinder
– Heads position on cylinders

• Disk Tracks ~ 1µm (micron) wide
– Wavelength of light is ~ 0.5µm
– Resolution of human eye: 50µm
– 100K tracks on a typical 2.5” disk

• Separated by unused guard regions
– Reduces likelihood neighboring tracks are

corrupted during writes (still a small non-
zero chance)

Lec 20.184/4/2024 Kubiatowicz CS162 © UCB Spring 2024

The Amazing Magnetic Disk
• Track length varies across disk

– Outside: More sectors per track, higher
bandwidth

– Disk is organized into
regions of tracks with
same # of sectors/track

– Only outer half of radius is used
» Most of the disk area in the outer regions of the

disk
• OS Unit of Transfer: Block

– Typically more than one Sector
– Example: 4KB, 16KB

• Disks so big that some companies (like Google)
reportedly only use part of disk for active data

– Rest is archival data

Lec 20.194/4/2024 Kubiatowicz CS162 © UCB Spring 2024

Shingled Magnetic Recording (SMR)

• Overlapping tracks yields
greater density, capacity

• Restrictions on writing,
complex DSP for reading

Lec 20.204/4/2024 Kubiatowicz CS162 © UCB Spring 2024

Magnetic Disk Performance

• Cylinders: all the tracks under the
head at a given point on all surfaces

• Read/write data is a three-stage process:
– Seek time: position the head/arm over the proper cylinder
– Rotational latency: wait for desired sector to rotate under r/w head
– Transfer time: transfer a block of bits (sector) under r/w head

Sector
Track

Cylinder
Head

Platter

Software
Queue
(Device Driver)

H
ardw

are
C

ontroller
Media Time
(Seek+Rot+Xfer)

R
equest

R
esult

Disk Latency = Queueing Time + Controller time +
Seek Time + Rotation Time + Xfer Time

Lec 20.214/4/2024 Kubiatowicz CS162 © UCB Spring 2024

Typical Numbers for Magnetic Disk
Parameter Info/Range

Space/Density Space: 18TB (Seagate), 9 platters, in 3½ inch form factor!
Areal Density: ≥ 1 Terabit/square inch! (PMR, Helium, …)

Average Seek Time Typically 4-6 milliseconds

Average Rotational Latency Most laptop/desktop disks rotate at 3600-7200 RPM
(16-8 ms/rotation). Server disks up to 15,000 RPM.
Average latency is halfway around disk so 4-8 milliseconds

Controller Time Depends on controller hardware

Transfer Time Typically 50 to 270 MB/s. Depends on:
• Transfer size (usually a sector): 512B – 1KB per sector
• Rotation speed: 3600 RPM to 15000 RPM
• Recording density: bits per inch on a track
• Diameter: ranges from 1 in to 5.25 in

Cost Used to drop by a factor of two every 1.5 years (or faster), now slowing down

Lec 20.224/4/2024 Kubiatowicz CS162 © UCB Spring 2024

Disk Performance Example
• Assumptions:

– Ignoring queuing and controller times for now
– Avg seek time of 5ms
– 7200RPM  Time for rotation: 60000 (ms/min) / 7200(rev/min) = 8ms

Avg time to find block = ½ × 8ms = 4ms
– Transfer rate of 50MByte/s, block size of 4Kbyte 

4096 bytes/50×106 (bytes/s) = 81.92 × 10-6 sec  0.082 ms for 1 sector
• Read block from random place on disk:

– Seek (5ms) + Rot. Delay (4ms) + Transfer (0.082ms) = 9.082ms
– Approx 9ms to fetch/put data: 4096 bytes/9.082×10-3 s  451KB/s

• Read block from random place in same cylinder:
– Rot. Delay (4ms) + Transfer (0.082ms) = 4.082ms
– Approx 4ms to fetch/put data: 4096 bytes/4.082×10-3 s  1.03MB/s

• Read next block on same track:
– Transfer (0.082ms): 4096 bytes/0.082×10-3 s  50MB/sec

• Key to using disk effectively is to minimize seek and rotational delays

Lec 20.234/4/2024 Kubiatowicz CS162 © UCB Spring 2024

Lots of Intelligence in the Controller
• Sectors contain sophisticated error correcting codes

– Disk head magnet has a field wider than track
– Hide corruptions due to neighboring track writes

• Sector sparing
– Remap bad sectors transparently to spare sectors on the same surface

• Slip sparing
– Remap all sectors (when there is a bad sector) to preserve sequential

behavior

• Track skewing
– Sector numbers offset from one track to the next, to allow for disk head

movement for sequential ops

Lec 20.244/4/2024 Kubiatowicz CS162 © UCB Spring 2024

When is Disk Performance Highest?
• When there are big sequential reads, or
• When there is so much work to do that they can be piggy

backed (reordering queues—one moment)

• It is OK to be inefficient when things are mostly idle
• Bursts are both a threat and an opportunity
• <your idea for optimization goes here>

– Waste space for speed?

• Other techniques:
– Reduce overhead through user level drivers
– Reduce the impact of I/O delays by doing other useful work in the

meantime

Lec 20.254/4/2024 Kubiatowicz CS162 © UCB Spring 2024

Disk Scheduling (1/3)
• Disk can do only one request at a time; What order do you

choose to do queued requests?

• FIFO Order
– Fair among requesters, but order of arrival may be

to random spots on the disk  Very long seeks
• SSTF: Shortest seek time first

– Pick the request that’s closest on the disk
– Although called SSTF, today must include

rotational delay in calculation, since
rotation can be as long as seek

– Con: SSTF good at reducing seeks, but
may lead to starvation

2,3
2,1
3,10
7,2
5,2
2,2 HeadUser

Requests

1
4

2

D
isk H

ead

3

Lec 20.264/4/2024 Kubiatowicz CS162 © UCB Spring 2024

Disk Scheduling (2/3)
• Disk can do only one request at a time; What order do you

choose to do queued requests?

• SCAN: Implements an Elevator Algorithm: take the closest
request in the direction of travel

– No starvation, but retains flavor of SSTF

2,3
2,1
3,10
7,2
5,2
2,2 HeadUser

Requests

Lec 20.274/4/2024 Kubiatowicz CS162 © UCB Spring 2024

Disk Scheduling (3/3)
• Disk can do only one request at a time; What order do you

choose to do queued requests?

• C-SCAN: Circular-Scan: only goes in one direction
– Skips any requests on the way back
– Fairer than SCAN, not biased towards pages in middle

2,3
2,1
3,10
7,2
5,2
2,2 HeadUser

Requests

Lec 20.284/4/2024 Kubiatowicz CS162 © UCB Spring 2024

Example of Current HDDs
• Seagate Exos X24 (2023)

– 24 TB hard disk
» 10 platters, 20 heads
» 1.26 TB/in2

» Helium filled: reduce friction and power
– 4.16 ms average seek time
– 4096 byte physical sectors
– 7200 RPMs
– Dual 6 Gbps SATA /12Gbps SAS interface

» 285MB/s MAX transfer rate
» Cache size: 512MB

– Price: $ 479 (~ $0.02/GB)

• IBM Personal Computer/AT (1986)
– 30 MB hard disk
– 30-40 ms average seek time
– 0.7-1 MB/s (est.)
– Price: $500 ($17K/GB)

800K x

10 x
385 x

850K x

Lec 20.294/4/2024 Kubiatowicz CS162 © UCB Spring 2024

Solid State Disks (SSDs)
• 1995 – Replace rotating magnetic media with

non-volatile memory (battery backed DRAM)
• 2009 – Use NAND Multi-Level Cell (2 or 3-

bit/cell) flash memory
– Sector (4 KB page) addressable, but stores 4-64

“pages” per memory block
– Trapped electrons distinguish between 1 and 0

• No moving parts (no rotate/seek motors)
– Eliminates seek and rotational delay (0.1-0.2ms

access time)
– Very low power and lightweight
– Limited “write cycles”

• Rapid advances in capacity and cost ever since!

Lec 20.304/4/2024 Kubiatowicz CS162 © UCB Spring 2024

FLASH Memory

• Like a normal transistor but:
– Has a floating gate that can hold charge
– To write: raise or lower wordline high enough to cause charges to tunnel
– To read: turn on wordline as if normal transistor

» presence of charge changes threshold and thus measured current
• Two varieties:

– NAND: denser, must be read and written in blocks
– NOR: much less dense, fast to read and write

• V-NAND: 3D stacking (Samsung claims 1TB possible in 1 chip)

Samsung 2015:
512GB, NAND Flash

Lec 20.314/4/2024 Kubiatowicz CS162 © UCB Spring 2024

Flash Memory (Con’t)

• Data read and written in page-sized chunks (e.g. 4K)
– Cannot be addressed at byte level
– Random access at block level for reads (no locality advantage)
– Writing of new blocks handled in order (kinda like a log)

• Before writing, must be erased (256K block at a time)
– Requires free-list management
– CANNOT write over existing block (Copy-on-Write is normal case)

Lec 20.324/4/2024 Kubiatowicz CS162 © UCB Spring 2024

SSD Architecture – Reads

Read 4 KB Page: ~25 usec
– No seek or rotational latency
– Transfer time: transfer a 4KB page

» SATA: 300-600MB/s => ~4 x103 b / 400 x 106 bps => 10 us
– Latency = Queuing Time + Controller time + Xfer Time
– Highest Bandwidth: Sequential OR Random reads

Host

Buffer
Manager
(software
Queue)

Flash
Memory

Controller

DRAM

NAND
NAND

NAND
NAND

NAND
NAND

NAND
NAND

NAND
NAND

NAND
NAND

NAND
NAND

NAND
NAND

NAND
NAND

NAND
NAND

NAND
NAND

NAND
NAND

NAND
NAND

NAND
NAND

NAND
NAND

NAND
NAND

SATA

Lec 20.334/4/2024 Kubiatowicz CS162 © UCB Spring 2024

SSD Architecture – Writes
• Writing data to NAND Flash is complex!

– Can only write empty pages in a block (~ 200μs)
– Erasing a block takes ~1.5ms
– Controller maintains pool of empty blocks by

coalescing used pages (read, erase, write), also
reserves some % of capacity

– Rule of thumb: writes 10x reads, erasure 10x
writes

• SSDs provide same interface as HDDs: read
and write chunk (4KB) at a time

• Why not just erase and rewrite new version of
entire 256KB block?

– Erasure is very slow (milliseconds)
– Each block has a finite lifetime, can only be

erased and rewritten about 10K times
– Heavily used blocks likely to wear out quickly

https://en.wikipedia.org/wiki/Solid-state_drive

Lec 20.344/4/2024 Kubiatowicz CS162 © UCB Spring 2024

Managing Writes: Flash Translation Layer
• Maintain Flash Translation Layer (FTL) in SSD

– Layer of Indirection between OS and FLASH
– Map virtual block numbers (which OS uses) to

physical page numbers (which flash mem.
controller uses)

– Can now freely relocate data w/o OS knowing
• FTL advantages/mechanism:

– Copy on Write: No need to immediately erase
entire 256K block when modifying 4K page

» Don’t overwrite page when OS updates data
» Instead, write new version in a free page
» Update FTL mapping to point to new location

– Wear Levelling: Try to wear out NAND evenly
» SSD controller can assign mappings to spread

workload across pages
– What to do with old versions of pages?

» Garbage Collection in background
» Erase blocks with old pages, add to free list

SSD

H
ost

Interface

Flash
C

ontroller

N
A

N
D

FLA
SH

 C
hips

Logical-physical
address translation

Wear-leveling

Bad block
management

SSD concurrency

Page allocation

Error
correction codes

Garbage collection

Flash Translation
Operating

System

Low-level
driver

File
System

PC
Ie, SATA

, SA
S

H
ost

Interconnect

Lec 20.354/4/2024 Kubiatowicz CS162 © UCB Spring 2024

Some “Current” (large) 3.5in SSDs
• Seagate Exos SSD: 15.36TB (2017)

– Dual 12Gb/s interface
– Seq reads 860MB/s
– Seq writes 920MB/s
– Random Reads (IOPS): 102K
– Random Writes (IOPS): 15K
– Price (Amazon): $5495 ($0.36/GB)

• Nimbus SSD: 100TB (2019)
– Dual port: 12Gb/s interface
– Seq reads/writes: 500MB/s
– Random Read Ops (IOPS): 100K
– Unlimited writes for 5 years!
– Price: ~ $40K? ($0.4/GB)

» However, 50TB drive costs $12500 ($0.25/GB)

Lec 20.364/4/2024 Kubiatowicz CS162 © UCB Spring 2024

HDD vs. SSD Comparison

SSD prices drop faster than HDD

Lec 20.374/4/2024 Kubiatowicz CS162 © UCB Spring 2024

Amusing calculation:
Is a full Kindle heavier than an empty one?

• Actually, “Yes”, but not by much
• Flash works by trapping electrons:

– So, erased state lower energy than written state
• Assuming that:

– Kindle has 4GB flash
– ½ of all bits in full Kindle are in high-energy state
– High-energy state about 10-15 joules higher
– Then: Full Kindle is 1 attogram (10-18gram) heavier

(Using E = mc2)
• Of course, this is less than most sensitive scale can measure (it can

measure 10-9 grams)
• Of course, this weight difference overwhelmed by battery discharge, weight

from getting warm, ….
• Source: John Kubiatowicz (New York Times, Oct 24, 2011)

Lec 20.384/4/2024 Kubiatowicz CS162 © UCB Spring 2024

SSD Summary
• Pros (vs. hard disk drives):

– Low latency, high throughput (eliminate seek/rotational delay)
– No moving parts:

» Very light weight, low power, silent, very shock insensitive
– Read at memory speeds (limited by controller and I/O bus)

• Cons
– Small storage (0.1-0.5x disk), expensive (3-20x disk)

» Hybrid alternative: combine small SSD with large HDD

Lec 20.394/4/2024 Kubiatowicz CS162 © UCB Spring 2024

SSD Summary
• Pros (vs. hard disk drives):

– Low latency, high throughput (eliminate seek/rotational delay)
– No moving parts:

» Very light weight, low power, silent, very shock insensitive
– Read at memory speeds (limited by controller and I/O bus)

• Cons
– Small storage (0.1-0.5x disk), expensive (3-20x disk)

» Hybrid alternative: combine small SSD with large HDD
– Asymmetric block write performance: read pg/erase/write pg

» Controller garbage collection (GC) algorithms have major effect on performance
– Limited drive lifetime

» 1-10K writes/page for MLC NAND
» Avg failure rate is 6 years, life expectancy is 9–11 years

• These are changing rapidly!

No
longer
true!

Lec 20.404/4/2024 Kubiatowicz CS162 © UCB Spring 2024

Nano-Tube Memory (NANTERO)

• Yet another possibility: Nanotube memory
– NanoTubes between two electrodes, slight conductivity difference between ones

and zeros
– No wearout!

• Better than DRAM?
– Speed of DRAM, no wearout, non-volatile!
– Nantero promises 512Gb/dice for 8Tb/chip! (with 16 die stacking)

Lec 20.414/4/2024 Kubiatowicz CS162 © UCB Spring 2024

Conclusion (1/2)
• Notification mechanisms

– Interrupts
– Polling: Report results through status register that processor looks at

periodically
• Device drivers interface to I/O devices

– Provide clean Read/Write interface to OS above
– Manipulate devices through PIO, DMA & interrupt handling
– Three types: block, character, and network

• Direct Memory Access (DMA)
– Permit devices to directly access memory
– Free up processor from transferring every byte

Lec 20.424/4/2024 Kubiatowicz CS162 © UCB Spring 2024

Conclusion (2/2)
• Disk Performance:

– Queuing time + Controller + Seek + Rotational + Transfer
– Rotational latency: on average ½ rotation
– Transfer time: spec of disk depends on rotation speed and bit storage density

• Devices have complex interaction and performance characteristics
– Response time (Latency) = Queue + Overhead + Transfer

» Effective BW = BW * T/(S+T)
– HDD: Queuing time + controller + seek + rotation + transfer
– SSD: Queuing time + controller + transfer (erasure & wear)

• Systems (e.g., file system) designed to optimize performance and reliability
– Relative to performance characteristics of underlying device

• Next time: Bursts & High Utilization introduce queuing delays
• Next time: Queuing Latency:

– M/M/1 and M/G/1 queues: simplest to analyze
– As utilization approaches 100%, latency  

Tq = Tser x ½(1+C) x /(1 – ))

