C3S162
Operating Systems and

Systems Programming
Lecture 20

Device Drivers, Storage Devices, Performance

April 4th 2024
Prof. John Kubiatowicz
http://cs162.eecs.Berkeley.edu

Recall: How does the Processor Talk to the Device?

— T
Processor Memory Bus Regular
Memory
@ Device >';\“
Adapto apto
Address + Controller ~——
Other Devices, Data Bus Hardware
Interrupt or Buses Interfac Controller
Controller Interrupt Request
read ddressable
write
, _ control Memory
« CPU interacts with a Controller status and/or
— Contains a set of registers that can be read and written (R(?rgt'éiezré) Queues
— May contain memory for request queues, etc. P RMemq%' l\él%%%%%
 Processor accesses registers in two ways: coon X q

— Port-Mapped I/O: in/out instructions
» Example from the Intel architecture: out 0x21,AL

— Memory-mapped I/O: load/store instructions
» Registers/memory appear in physical address space
» 1/O accomplished with load and store instructions

4/4/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 20.2

Recall: Example Memory-Mapped Display Controller

* Memory-Mapped:
— Hardware maps control registers and display memory into
physical address space
» Addresses set by HW jumpers or at boot time

— Simply writing to display memory (also called the “frame
buffer”’) changes image on screen

» Addr: 0x8000F000 — Ox8000FFFF

— Writing graphics description to cmd queue
» Say enter a set of triangles describing some scene
» Addr: 0x80010000 — 0x8001FFFF

— Writing to the command register may cause on-board graphics
hardware to do something

» Say render the above scene
» Addr: 0x0007F004

» Can protect with address translation

4/4/2024 Kubiatowicz CS162 © UCB Spring 2024

0x80020000

0x80010000

0x8000F000

0x0007F004
0x0007F000

a,

_
‘

Graphics

Queue

Commandj

Display
Memory

Command

Status

Physical
Address

&__—"'Space

Lec 20.3

Transferring Data To/From Controller

* Programmed |/O:

— Each byte transferred via processor in/out or load/store

— Pro: Simple hardware, easy to program

— Con: Consumes processor cycles proportional to data size

* Direct Memory Access:
— Give controller access to memory bus
— Ask it to transfer
data blocks to/from
memory directly

« Sample interaction with DMA controller
(from OSC book):

1. device driver is told
to transfer disk data @ CPU

to buffer at address X

5. DMA controller 2. device driver tells
transfers bytes to disk controller to
buffer X, increasing transfer C bytes
memory address from disk 1o buffer | cache |
and decreasing C at address X
untilC =0 DMAbUS/

6. when C = 0, DMA - = T X
interrupts CPU to signal Imetml'lpt 2)memory bus —| memory | buffer
transfer completion SR

[(3} -~ PCl bus

7/ 3. disk controller initiates
IDE disk DMA transfer
controller 4. disk controller sends

each byte to DMA

G;,Q Gisk
L S

A
.EISKJ @SI}.

controller

4/4/2024 Kubiatowicz CS162 © UCB Spring 2024

Lec 20.4

Transferring Data To/From Controller

* Programmed |/O:
— Each byte transferred via processor in/out or load/store
— Pro: Simple hardware, easy to program
— Con: Consumes processor cycles proportional to data size

1. device driver is told
: . fer disk d
* Direct Memory Access: t bufer af adchoss x| A O > ‘
— Give controller access to memory bus > ansfors byles to — diek controller 0]
— Ask it to transfer memory adcress from cisk 1 b R
data blocks to/from and decressing G e adgﬁzb ;
i 6. when C — 0, DMA - o~ X
memory dlrectly ;":t;rr‘ums CPU o signal mterrL'llptf')'ﬂ'PU'rm(‘Sj'UUE_— rTEToRy | buffer
transfer completion contro 7
. . . i 1) < PCl bus
« Sample interaction with DMA controller | (T~
3. disk controller initiates
(from OSC book): \OE disk DMA transfer
controller 4. disk controller sends
each byte to DMA
-G;Q disl:c\ controller
et S

A
.EISKJ @SI}.

4/4/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 20.5

I/O Device Notifying the OS

* The OS needs to know when:
—The |/O device has completed an operation
— The I/O operation has encountered an error

* |/O Interrupt:
— Device generates an interrupt whenever it needs service
— Pro: handles unpredictable events well
— Con: interrupts relatively high overhead
* Polling:
— OS periodically checks a device-specific status register
» 1/O device puts completion information in status register
— Pro: low overhead
— Con: may waste many cycles on polling if infrequent or unpredictable 1/0O operations

 Actual devices combine both polling and interrupts

— For instance — High-bandwidth network adapter:
» Interrupt for first incoming packet
» Poll for following packets until hardware queues are empty

4/4/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 20.6

4/4/2024

Kernel Device Structure

The System Call Interface

S S S S 3

Gl MY Filesystems LIS Networkin
Management | | Management y Control g
Concurrency, Virtual Files and dirs: TTYs and -
multitasking memory the VFS device access LemEelly

File Syst
! eTygesSem Network
i Subsystem
Architecture - B EEA Device
Dependent M Control
Code anager Block ontro IF drivers
Devices

-

Kubiatowicz CS162 © UCB Spring 2024

Recall: Device Drivers

« Device Driver: Device-specific code in the kernel that interacts directly with
the device hardware

— Supports a standard, internal interface
— Same kernel I/O system can interact easily with different device drivers
— Special device-specific configuration supported with the ioctl() system call

* Device Drivers typically divided into two pieces:

— Top half: accessed in call path from system calls

» implements a set of standard, cross-device calls like open(), close(), read(),
write(), ioctl(), strategy()

» This is the kernel’s interface to the device driver

» Top half will start I/O to device, may put thread to sleep until finished
— Bottom half: run as interrupt routine

» Gets input or transfers next block of output

» May wake sleeping threads if I/O now complete

4/4/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 20.8

Recall: Life Cycle of An I/O Request

user /O completed,
process input data available, or
output completed

request /O

User
Program

system call
y return from system call

kernel

.- transfer data

can already V'O subsystem (if appropriate) to process,
satisfy request? return completion

or efror code

Kernel I/0O
Subsystem

send request fo device
driver, block process if __ kemnel
appropriate I'0 subsystem

: H process request, issue : .
D eV | Ce D Il Ve r commands to controller, device co?n?grtrgclir,‘?ngillgtr:e”s?ate

configure controller to driver T s R

Top Half block until interrupted

i H . receive interrupt, store
DeVICe Drlver device-controller commands interrupt data in device-driver buffer

handler if input, signal to unblock

BOttom Half device driver

EEEEEEE NN NN NN NS NN NN NN EEEEEEEEED llllllllllllllllllllllllllllllinteuumlllllll

. device
maonitor device, controller
DeVI ce interrupt when 1/0 /O completed.

completed generate interrupt
Hardware

4/4/2024 Kubiatowicz CS162 © UCB Spring 2024

Lec 20.9

The Goal of the I/O Subsystem

« Provide Uniform Interfaces, Despite Wide Range of Different Devices
— This code works on many different devices:
FILE fd = fopen("/dev/something", "rw");
for (int 1 = 0; i < 10; i++) {
fprintf(fd, "Count %d\n", i);
}
close(fd);

—Why? Because code that controls devices (“device driver’) implements
standard interface

« We will try to get a flavor for what is involved in actually controlling
devices in rest of lecture

— Can only scratch surface!

4/4/2024 Kubiatowicz CS162 © UCB Spring 2024

Lec 20.10

Want Standard Interfaces to Devices

« Block Devices: e.g. disk drives, tape drives, DVD-ROM
— Access blocks of data
— Commands include open(), read(), write(), seek()
— Raw 1/O or file-system access
— Memory-mapped file access possible
« Character Devices: e.g. keyboards, mice, serial ports, some USB devices
— Single characters at a time
— Commands include get(), put()
— Libraries layered on top allow line editing
» Network Devices: e.q. Ethernet, Wireless, Bluetooth
— Different enough from block/character to have own interface

— Unix and Windows include socket interface
» Separates network protocol from network operation
» Includes select () functionality

— Usage: pipes, FIFOs, streams, queues, mailboxes

4/4/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 20.11

How Does User Deal with Timing?

 Blocking Interface: “Wait”

— When request data (e.g. read () system call), put process to sleep until
data is ready

— When write data (e.g. write() system call), put process to sleep until
device is ready for data

« Non-blocking Interface: “Don’t Wait”

— Returns quickly from read or write request with count of bytes successfully
transferred

— Read may return nothing, write may write nothing

« Asynchronous Interface: “Tell Me Later”

— When request data, take pointer to user’s buffer, return immediately; later
kernel fills buffer and notifies user

— When send data, take pointer to user’s buffer, return immediately; later
kernel takes data and notifies user

4/4/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 20.12

Administrivia

Sorry about infrastructure disaster yesterday!
— We extended the HW4 deadline
HW 5 will have a Rust option!
— Choose one or the other
Project 2 still due Friday
Midterm 3 on April 25
— All topics up to previous Tuesday (4/23) are in scope
— Closed book, 3 pages, double-sided handwritten notes.

4/4/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 20.13

Lecture Attendance EC (4/4/2024)

https://tinyurl.com/yj3976p2

4/4/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 20.14

Storage Devices

« Magnetic disks
— Storage that rarely becomes corrupted
— Large capacity at low cost
— Block level random access (except for SMR — later!)
— Slow performance for random access
— Better performance for sequential access

* Flash memory
— Storage that rarely becomes corrupted
— Capacity at intermediate cost (5-20x disk)
— Block level random access
— Good performance for reads; worse for random writes
— Erasure requirement in large blocks
— Wear patterns issue

4/4/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 20.15

Hard Disk Drives (HDDs)

Cover Mounting Holes

(Cover not shown)

Base Casting
Spindle
Slider (and Head)

Actuator Arm

Actuator Axis
Case

Mounting
Holes

Actuator

) Read/Write Head
= W, Side View

IBM/Hitachi Micr'odl;ive

Ribbon Cable

scsi ortac o Loge Board IBM Personal Computer/AT (1986)
Western Digital Drive 30 MB hard disk - $5OO
http://www.storagereview.com/guide/ 30-40ms seek time

0.7-1 MB/s (est.)

4/4/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 20.16

The Amazing Magnetic Disk

- Unit of Transfer: Sector (512B or 4096B) ndel
— Ring of sectors form a track 7‘%
— Stack of tracks form a cylinder surface L Sedtor

Platter—»

— Heads position on cylinders

 Disk Tracks ~ 1ym (micron) wide ¢ i Assembly
— Wavelength of light is ~ 0.5um] "
— Resolution of human eye: 50um =
— 100K tracks on a typical 2.5" disk ' = }

» Separated by unused guard regions

— Reduces likelihood neighboring tracks are
corrupted during writes (still a small non-
zero chance) Zl,

Motor Motor : U \

4/4/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 20.17

The Amazing Magnetic Disk

Spindle

« Track length varies across disk
— Qutside: More sectors per track, higher

bandwidth Surface
— Disk is organized into Platter—>
regions of tracks with Surface .4

same # of sectors/track

— Only outer half of radius is used

» Most of the disk area in the outer regions of the
disk

 OS Unit of Transfer: Block

— Typically more than one Sector
— Example: 4KB, 16KB

 Disks so big that some companies (like Google)
reportedly only use part of disk for active data

— Rest is archival data Motor

4/4/2024 Kubiatowicz CS162 © UCB Spring 2024

Arm Assembly
—

y

Lec 20.18

Shingled Magnetic Recording (SMR)

Conventional Writes
» Overlapping tracks yields

grector densiy, capacity | M| WES——————
* Restrictions on writing, Gurdspics pm

SMR Writes
if
]

Track N
Track N+1

Track N +...

4/4/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 20.19

Magnetic Disk Performance

« Cylinders: all the tracks under the

head at a given point on all surfaces
- Read/write data is a three-stage process: T

Head

O
C

— Seek time: position the head/arm over the proper cylinder
— Rotational latency: wait for desired sector to rotate under r/w head
— Transfer time: transfer a block of bits (sector) under r/w head

Disk Latency = Queueing Time + Controller time +

1sanbay

4/4/2024

Seek Time + Rotation Time + Xfer Time

Software
Queue

(Device Driver)

Media Time
(Seek+Rot+Xfer)

Ja|j0.uo)
aljemplieH

Kubiatowicz CS162 © UCB Spring 2024

JJNSOY

Track
Sector

Cylinder

T~Platter

Lec 20.20

Typical Numbers for Magnetic Disk

Space/Density Space: 18TB (Seagate), 9 platters, in 32 inch form factor!
Areal Density: 2 1 Terabit/square inch! (PMR, Helium, ...)

Average Seek Time Typically 4-6 milliseconds

Average Rotational Latency Most laptop/desktop disks rotate at 3600-7200 RPM
(16-8 ms/rotation). Server disks up to 15,000 RPM.
Average latency is halfway around disk so 4-8 milliseconds

Controller Time Depends on controller hardware

Transfer Time Typlcally 50 to 270 MB/s. Depends on:
Transfer size (usually a sector): 512B — 1KB per sector
* Rotation speed: 3600 RPM to 15000 RPM
* Recording density: bits per inch on a track
» Diameter: ranges from 1 into 5.25 in

Cost Used to drop by a factor of two every 1.5 years (or faster), now slowing down

4/4/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 20.21

Disk Performance Example

Assumptions:
— Ignoring queuing and controller times for now
— Avg seek time of 5ms

— 7200RPM = Time for rotation: 60000 (ms/min) / 7200(rev/min) = 8ms
Avg time to find block = 72 x 8ms = 4ms

— Transfer rate of 50MByte/s, block size of 4Kbyte =
4096 bytes/50x10° (bytes/s) = 81.92 x 106 sec =~ 0.082 ms for 1 sector

Read block from random place on disk:

— Seek (5ms) + Rot. Delay (4ms) + Transfer (0.082ms) = 9.082ms

— Approx 9ms to fetch/put data: 4096 bytes/9.082x103s = 451KB/s
Read block from random place in same cylinder:

— Rot. Delay (4ms) + Transfer (0.082ms) = 4.082ms

— Approx 4ms to fetch/put data: 4096 bytes/4.082x10-3s = 1.03MB/s
Read next block on same track:

— Transfer (0.082ms): 4096 bytes/0.082x10-3s = 50MB/sec

« Key to using disk effectively is to minimize seek and rotational delays
4/4/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 20.22

Lots of Intelligence in the Controller

Sectors contain sophisticated error correcting codes
— Disk head magnet has a field wider than track
— Hide corruptions due to neighboring track writes

Sector sparing
— Remap bad sectors transparently to spare sectors on the same surface

Slip sparing

— Remap all sectors (when there is a bad sector) to preserve sequential
behavior

Track skewing

— Sector numbers offset from one track to the next, to allow for disk head
movement for sequential ops

4/4/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 20.23

4/4/2024

When is Disk Performance Highest?

When there are big sequential reads, or

When there is so much work to do that they can be piggy
backed (reordering queues—one moment)

It is OK to be inefficient when things are mostly idle
Bursts are both a threat and an opportunity

<your idea for optimization goes here>
— Waste space for speed?

Other techniques:
— Reduce overhead through user level drivers

— Reduce the impact of I/O delays by doing other useful work in the
meantime

Kubiatowicz CS162 © UCB Spring 2024

Lec 20.24

Disk Scheduling (1/3)

» Disk can do only one request at a time; What order do you
choose to do queued requests?

User INJOTNIWIN N
=) PP = ™
Requests o

* FIFO Order
— Fair among requesters, but order of arrival may be
to random spots on the disk = Very long seeks
« SSTF: Shortest seek time first
— Pick the request that’s closest on the disk
— Although called SSTF, today must include
rotational delay in calculation, since
rotation can be as long as seek
— Con: SSTF good at reducing seeks, but
may lead to starvation

pesH X%sId

4/4/2024 Kubiatowicz CS162 © UCB Spring 2024

Lec 20.25

Disk Scheduling (2/3)

» Disk can do only one request at a time; What order do you
choose to do queued requests?

User ~N91N5»_'\>!\> Head ¢
NINvIN][= = w N
Requests o

« SCAN: Implements an Elevator Algorithm: take the closest
request in the direction of travel
— No starvation, but retains flavor of SSTF

14 37 53 65 67 98 122 124 183

|1 | [11 l L1 |
l |

4/4/2024 Kubiatowicz CS162 © UCB Spring 2024

Lec 20.26

Disk Scheduling (3/3)

» Disk can do only one request at a time; What order do you
choose to do queued requests?

User ‘ N[NNI Head ¢S
NINvIN][= = w i =
Requests o

« C-SCAN: Circular-Scan: only goes in one direction
— Skips any requests on the way back
— Fairer than SCAN, not biased towards pages in middle

0 14 37 53 65 67 98 122 124 183 199
} | | 11 | 11 | !

4/4/2024 Kubiatowicz CS162 © UCB Spring 2024

Lec 20.27

800K x

4/4/2024

Example of Current HDDs

« Seagate Exos X24 (2023)

» Ca
— Price:
385 x

 IBM Pers

— — 30 MB

— 30-40 nps averag
— 0.7-1 MB/s (est.){

— — 24 TB hard disk
» 10 platters, 20 heads
» 1.26 TB/in?
» Helium filled: reduce friction and power

— 4.16 ms average seek time «——

— 4096 byte physical sectors

— 7200 RPMs

— Dual 6 Gbps SATA /12Gbps SAS
» 285MB/s MAX transfer rate

e size: 512MB

479 (~ $Q.02/GB)

nal Conjputer/AT (1986)

ard disk

850K x
E seek time «—

— Price: $500 ($17K/GB)

nterface

10 x

\

Kubiatowicz CS162 © UCB Spring 2024

Lec 20.28

Solid State Disks (SSDs) |

« 1995 — Replace rotating magnetic media with
non-volatile memory (battery backed DRAM)

« 2009 — Use NAND Multi-Level Cell (2 or 3-

bit/cell) flash memory

— Sector (4 KB page) addressable, but stores 4-64
“pages” per memory block

— Trapped electrons distinguish between 1 and 0
« No moving parts (no rotate/seek motors)

— Eliminates seek and rotational delay (0.1-0.2ms
access time)
— Very low power and lightweight

— Limited “write cycles”
» Rapid advances in capacity and cost ever since!

4/4/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 20.29

FLASH Memory

Individual ETOX™
Flash Memory Cell

Wordline

ONO Control Gate Bitine _
Tunnel Oxide

patin te

Samsung 2015:
512GB, NAND Flash

Source -
n+ y

|_ P - Substrate

» Like a normal transistor but:
— Has a floating gate that can hold charge
— To write: raise or lower wordline high enough to cause charges to tunnel
— To read: turn on wordline as if normal transistor
» presence of charge changes threshold and thus measured current
* Two varieties:
— NAND: denser, must be read and written in blocks
— NOR: much less dense, fast to read and write

* V-NAND: 3D stacking (Samsung claims 1TB possible in 1 chip)

4/4/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 20.30

Flash Memory (Con't)

L
L
L
L
L

|

I
I

Data written » m axe ||| axe oneblockl Ly 1L~ | [S =
in 4 KB Pages - — “

4 KB 4 KB 4 KB One page _| _| _I _|
*|
4|

— —
D.ata erased — —
In256 KB

Blocks —— “ # 4‘
64 writable Pages 4 KB A KB A KB rage
in 1 erasable Block ‘| | E 4| | |:I 4‘ | |:‘

Typical NAND Flash Pages and Blocks

A N I

l

- HC 40 -

« Data read and written in page-sized chunks (e.g. 4K)
— Cannot be addressed at byte level
— Random access at block level for reads (no locality advantage)
— Writing of new blocks handled in order (kinda like a log)
» Before writing, must be erased (256K block at a time)
— Requires free-list management
— CANNOT write over existing block (Copy-on-Write is normal case)

_{
4i
|
_<

SN [R B
S N VI i B

4/4/2024 Kubiatowicz CS162 © UCB Spring 2024

Lec 20.31

SSD Architecture — Reads

NAND NAND

)) 4)

Buffer >

Manager S
Host |[€&—> Flles Memory

SATA | (software

Queus) Controller NAND NAND

\ y _ J

NAND

Read 4 KB Page: ~25 usec NAND
— No seek or rotational latency

— Transfer time: transfer a 4KB page
» SATA: 300-600MB/s => ~4 x103 b / 400 x 108 bps => 10 us AR

— Latency = Queuing Time + Controller time + Xfer Time
— Highest Bandwidth: Sequential OR Random reads

NAND

Sl 2l
iRl

4/4/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 20.32

SSD Architecture — Writes

» Writing data to NAND Flash is complex!
— Can only write empty pages in a block (~ 200us)
— Erasing a block takes ~1.5ms
— Controller maintains pool of empty blocks by :
coalescing used pages (read, erase, write), also iﬁi‘i;";’;‘;;’; = pinl || s
reserves some % of capacity

4 KB 4 KB 4 KB

— Rule of thumb: writes 10x reads, erasure 10x Data erased
writes in 256 KB ¢| —
. . Blocks e
 SSDs provide same interface as HDDs: read .
and write chunk (4KB) at a time 64 writable Pages ag ||| a8 ||| aks
in1 erasable Block

« Why not just erase and rewrite new version of
entire 256KB block?

— Erasure is very slow (milliseconds)

— Each block has a finite lifetime, can only be
erased and rewritten about 10K times

— Heavily used blocks likely to wear out quickly

Typical NAND Flash Pages and Blocks
https://en.wikipedia.org/wiki/Solid-state drive

4/4/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 20.33

Managing Writes: Flash Translation Layer

« Maintain Flash Translation Layer (FTL) in SSD
— Layer of Indirection between OS and FLASH

— Map virtual block numbers (which OS uses) to
physical page numbers (which flash mem.
controller uses)

— Can now freely relocate data w/o OS knowing

« FTL advantages/mechanism:

— Copy on Write: No need to immediately erase
entire 256K block when modifying 4K page

» Don’t overwrite page when OS updates data

» Instead, write new version in a free page

» Update FTL mapping to point to new location
— Wear Levelling: Try to wear out NAND evenly

» SSD controller can assign mappings to spread
workload across pages

— What to do with old versions of pages?
» Garbage Collection in background
» Erase blocks with old pages, add to free list

4/4/2024

Operating SSD .
System Flash Translation
§ (Logical-physical Y)
g address translation
S [Garbage collection]
= E_,I: -
‘ Lc:jw_-level .8..."-1 5 [Wear-leveling] 0 ;
river
i BARIR| - - so | g
- N 30 Bad block = Q I >
File o o @ management o9 0
System 9] Q o a > Y
o @ [SSD concurrency] = é
;’,’ [Page allocation]
ot
.> [Error]
(:g Y correction codes N)
(4]
Lec 20.34

Kubiatowicz CS162 © UCB Spring 2024

Some “Current” (large) 3.5in SSDs

« Seagate Exos SSD: 15.36TB (2017)

— Dual 12Gb/s interface

— Seq reads 860MB/s

— Seq writes 920MB/s

— Random Reads (IOPS): 102K

— Random Writes (IOPS): 15K

— Price (Amazon): $5495 ($0.36/GB)
« Nimbus SSD: 100TB (2019)

— Dual port: 12Gb/s interface

— Seq reads/writes: 500MB/s

— Random Read Ops (IOPS): 100K

. . ExaDrive
— Unlimited writes for 5 years! DC sevies

— Price: ~ $40K? ($0.4/GB) .
» However, 50TB drive costs $12500 ($0.25/GB) -x

4/4/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 20.35

4/4/2024

Price/Terabyte of SSD & HDD are Converging Rapidly

$10,000
(=]
o
2 k& $1,000
&5
o~
X
e 9
R $100
o wn
L9
Ex
o
23
@ 5 $10
o wvn
-
$1 2013
i SSD S/TB $2,220
an@es HDD S/TB S60

¢ @ Ratio SSD/HDD $/TB 37

«f= SSD 5/TB
Source: © Wikibon, 2021

2014
$1,293
$53
25

- 100

[y
o
Logorithmic Plot of SSD/HDD Pricing Ratio

1
2015 2016 2017 2018 2019 2020
$840 $538 $493 $378 $195 $128
$45 $35 $30 $26.8 $23.9 $22.2
19 15 16 14 8.1 5.8
=g= HDD $/TB ® @ o Ratio SSD/HDD $/T8

Usually 10 000 or 15 000 rpm SAS drives

0.7ms

5505 malhvad Al last

Access times 5 5 a n
S50 exhivk wirually po aocess Gme W U ms

nﬂ““m W 'arfumnm DD reaeh up b

En infg 550w ate et 15 hiress fuslen S HODs n in/s

S50y huws b Tuiere
ralA of s than

0.5

55Ds consume betwesn

2 & 5 watts

5805 nave an average
10 il of

1%

e arverags serce e o
a0 10 raiaal wihilh nanning
a backup remains bekow

S8 backups iake asnil

B hours

HEO s falure mule

'dllhilh‘ Thich sk Bawnan

This makes 220 4 - 10 Imes more redable z P 5%

Eﬂﬂﬂw Sa'lil'lgl HODs cansume betwesn

This mears thak on a large sereer ke ours, E 15
Appiomimately 100 wElla ara s & watts

HODE avarege W0 wai
CPU Power
Is abaut
Vil vl hawe an e B%
of GPL power for oher creralions ? L
Fre U0 fequeal lima wilh
|H|Ilwl-l!||“t HOOs diaring Backup risas up
request times o
EED: alow for much 4nn~ 5““
fasler daca access ms
nlﬂhl..] Rates HOD hackups Inka up by

S0 allows for 3- 5 limes e 2“ — 24 hours

Eackiips Tai your dals

SSD prices drop faster than HDD

Kubiatowicz CS162 © UCB Spring 2024

Lec 20.36

Amusing calculation:
Is a full Kindle heavier than an empty one?

 Actually, “Yes”, but not by much
» Flash works by trapping electrons:
— S0, erased state lower energy than written state
« Assuming that:
— Kindle has 4GB flash
— Y2 of all bits in full Kindle are in high-energy state
— High-energy state about 10-'° joules higher

— Then: Full Kindle is 1 attogram (10-'8gram) heavier
(Using E = mc?)

« Of course, this is less than most sensitive scale can measure (it can
measure 10° grams)

« Of course, this weight difference overwhelmed by battery discharge, weight
from getting warm,

« Source: John Kubiatowicz (New York Times, Oct 24, 2011)

4/4/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 20.37

SSD Summary

* Pros (vs. hard disk drives):
— Low latency, high throughput (eliminate seek/rotational delay)
— No moving parts:
» Very light weight, low power, silent, very shock insensitive
— Read at memory speeds (limited by controller and 1/O bus)
« Cons

— Small storage (0.1-0.5x disk), expensive (3-20x disk)
» Hybrid alternative: combine small SSD with large HDD

4/4/2024 Kubiatowicz CS162 © UCB Spring 2024

Lec 20.38

SSD Summary

* Pros (vs. hard disk drives):
— Low latency, high throughput (eliminate seek/rotational delay)

— No moving parts:
» Very light weight, low power, silent, very shock insensitive

— Read at memory speeds (limited by controller and I/O bug No
* Cons longer
—Small-storage(0-1-0-5xdiskiexssororotocor—ror — truel

» Hybrid alternative: combine small SSD with large HDD

— Asymmetric block write performance: read pg/erase/write pg
» Controller garbage collection (GC) algorithms have major effect on performance
— Limited drive lifetime
» 1-10K writes/page for MLC NAND
» Avg failure rate is 6 years, life expectancy is 9—-11 years
« These are changing rapidly!

4/4/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 20.39

Nano-Tube Memory (NANTERO)

BOTTOM ELECTRODE BOTTOM ELECTRODE
Crosspoint

* Yet another possibility: Nanotube memory

— NanoTubes between two electrodes, slight conductivity difference between ones
and zeros

— No wearout!
» Better than DRAM?
— Speed of DRAM, no wearout, non-volatile!
— Nantero promises 512Gb/dice for 8Tb/chip! (with 16 die stacking)

4/4/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 20.40

Conclusion (1/2)

* Notification mechanisms
— Interrupts

— Polling: Report results through status register that processor looks at
periodically

» Device drivers interface to I/O devices
— Provide clean Read/Write interface to OS above
— Manipulate devices through PIO, DMA & interrupt handling
— Three types: block, character, and network
 Direct Memory Access (DMA)
— Permit devices to directly access memory
— Free up processor from transferring every byte

4/4/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 20.41

Conclusion (2/2)

Disk Performance:
— Queuing time + Controller + Seek + Rotational + Transfer
— Rotational latency: on average 7% rotation
— Transfer time: spec of disk depends on rotation speed and bit storage density

Devices have complex interaction and performance characteristics
— Response time (Latency) = Queue + Overhead + Transfer
» Effective BW = BW * T/(S+T)
— HDD: Queuing time + controller + seek + rotation + transfer
— SSD: Queuing time + controller + transfer (erasure & wear)
Systems (e.g., file system) designed to optimize performance and reliability
— Relative to performance characteristics of underlying device

Next time: Bursts & High Utilization introduce queuing delays
Next time: Queuing Latency:
— M/M/1 and M/G/1 queues: simplest to analyze
— As utilization approaches 100%, latency — «
Tq = Tser X %(1+C) X p/(1 - P))

4/4/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 20.42

