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Recall: How does the Processor Talk to the Device?

• CPU interacts with a Controller
– Contains a set of registers that can be read and written
– May contain memory for request queues, etc.

• Processor accesses registers in two ways: 
– Port-Mapped I/O: in/out instructions

» Example from the Intel architecture: out 0x21,AL
– Memory-mapped I/O: load/store instructions

» Registers/memory appear in physical address space
» I/O accomplished with load and store instructions
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Recall: Example Memory-Mapped Display Controller
• Memory-Mapped:

– Hardware maps control registers and display memory into 
physical address space

» Addresses set by HW jumpers or at boot time
– Simply writing to display memory (also called the “frame 

buffer”) changes image on screen
» Addr: 0x8000F000 — 0x8000FFFF

– Writing graphics description to cmd queue
» Say enter a set of triangles describing some scene
» Addr: 0x80010000 — 0x8001FFFF

– Writing to the command register may cause on-board graphics 
hardware to do something

» Say render the above scene
» Addr: 0x0007F004

• Can protect with address translation
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• Programmed I/O:
– Each byte transferred via processor in/out or load/store
– Pro: Simple hardware, easy to program
– Con: Consumes processor cycles proportional to data size

• Direct Memory Access:
– Give controller access to memory bus
– Ask it to transfer 

data blocks to/from 
memory directly

• Sample interaction with DMA controller
(from OSC book):

Transferring Data To/From Controller
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• Programmed I/O:
– Each byte transferred via processor in/out or load/store
– Pro: Simple hardware, easy to program
– Con: Consumes processor cycles proportional to data size

• Direct Memory Access:
– Give controller access to memory bus
– Ask it to transfer 

data blocks to/from 
memory directly

• Sample interaction with DMA controller
(from OSC book):
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I/O Device Notifying the OS
• The OS needs to know when:

– The I/O device has completed an operation
– The I/O operation has encountered an error

• I/O Interrupt:
– Device generates an interrupt whenever it needs service
– Pro: handles unpredictable events well
– Con: interrupts relatively high overhead 

• Polling:
– OS periodically checks a device-specific status register

» I/O device puts completion information in status register
– Pro: low overhead
– Con: may waste many cycles on polling if infrequent or unpredictable I/O operations

• Actual devices combine both polling and interrupts
– For instance – High-bandwidth network adapter: 

» Interrupt for first incoming packet
» Poll for following packets until hardware queues are empty
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Kernel Device Structure
The System Call Interface
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Recall: Device Drivers
• Device Driver: Device-specific code in the kernel that interacts directly with 

the device hardware
– Supports a standard, internal interface
– Same kernel I/O system can interact easily with different device drivers
– Special device-specific configuration supported with the ioctl() system call

• Device Drivers typically divided into two pieces:
– Top half: accessed in call path from system calls

» implements a set of standard, cross-device calls like open(), close(), read(),
write(), ioctl(), strategy()

» This is the kernel’s interface to the device driver
» Top half will start I/O to device, may put thread to sleep until finished

– Bottom half: run as interrupt routine
» Gets input or transfers next block of output
» May wake sleeping threads if I/O now complete
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Recall: Life Cycle of An I/O Request
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The Goal of the I/O Subsystem
• Provide Uniform Interfaces, Despite Wide Range of Different Devices

– This code works on many different devices:
FILE fd = fopen("/dev/something", "rw");
for (int i = 0; i < 10; i++) {

fprintf(fd, "Count %d\n", i);
}
close(fd);

– Why?  Because code that controls devices (“device driver”) implements 
standard interface

• We will try to get a flavor for what is involved in actually controlling 
devices in rest of lecture

– Can only scratch surface!
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Want Standard Interfaces to Devices
• Block Devices: e.g. disk drives, tape drives, DVD-ROM

– Access blocks of data
– Commands include open(), read(), write(), seek()
– Raw I/O or file-system access
– Memory-mapped file access possible

• Character Devices: e.g. keyboards, mice, serial ports, some USB devices
– Single characters at a time
– Commands include get(), put()
– Libraries layered on top allow line editing

• Network Devices: e.g. Ethernet, Wireless, Bluetooth
– Different enough from block/character to have own interface
– Unix and Windows include socket interface

» Separates network protocol from network operation
» Includes select() functionality

– Usage: pipes, FIFOs, streams, queues, mailboxes
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How Does User Deal with Timing?
• Blocking Interface: “Wait”

– When request data (e.g. read() system call), put process to sleep until 
data is ready

– When write data (e.g. write() system call), put process to sleep until 
device is ready for data

• Non-blocking Interface: “Don’t Wait”
– Returns quickly from read or write request with count of bytes successfully 

transferred
– Read may return nothing, write may write nothing

• Asynchronous Interface: “Tell Me Later”
– When request data, take pointer to user’s buffer, return immediately; later 

kernel fills buffer and notifies user
– When send data, take pointer to user’s buffer, return immediately; later 

kernel takes data and notifies user 
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Administrivia
• Sorry about infrastructure disaster yesterday!

– We extended the HW4 deadline
• HW 5 will have a Rust option!

– Choose one or the other
• Project 2 still due Friday
• Midterm 3 on April 25

– All topics up to previous Tuesday (4/23) are in scope 
– Closed book, 3 pages, double-sided handwritten notes.
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Lecture Attendance EC (4/4/2024)

https://tinyurl.com/yj3976p2
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Storage Devices
• Magnetic disks

– Storage that rarely becomes corrupted
– Large capacity at low cost
– Block level random access (except for SMR – later!)
– Slow performance for random access
– Better performance for sequential access

• Flash memory
– Storage that rarely becomes corrupted
– Capacity at intermediate cost (5-20x disk)
– Block level random access
– Good performance for reads; worse for random writes
– Erasure requirement in large blocks
– Wear patterns issue
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Hard Disk Drives (HDDs)

IBM/Hitachi Microdrive

Western Digital Drive
http://www.storagereview.com/guide/

Read/Write Head
Side View

IBM Personal Computer/AT (1986)
30 MB hard disk - $500 
30-40ms seek time
0.7-1 MB/s (est.)
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The Amazing Magnetic Disk

cylinder

• Unit of Transfer: Sector (512B or 4096B)
– Ring of sectors form a track
– Stack of tracks form a cylinder
– Heads position on cylinders

• Disk Tracks ~ 1µm (micron) wide
– Wavelength of light is ~ 0.5µm
– Resolution of human eye: 50µm
– 100K tracks on a typical 2.5” disk

• Separated by unused guard regions
– Reduces likelihood neighboring tracks are 

corrupted during writes (still a small non-
zero chance)
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The Amazing Magnetic Disk
• Track length varies across disk

– Outside: More sectors per track, higher 
bandwidth

– Disk is organized into 
regions of tracks with 
same # of sectors/track

– Only outer half of radius is used
» Most of the disk area in the outer regions of the 

disk
• OS Unit of Transfer: Block

– Typically more than one Sector
– Example: 4KB, 16KB

• Disks so big that some companies (like Google) 
reportedly only use part of disk for active data

– Rest is archival data
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Shingled Magnetic Recording (SMR)

• Overlapping tracks yields 
greater density, capacity

• Restrictions on writing, 
complex DSP for reading
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Magnetic Disk Performance

• Cylinders: all the tracks under the 
head at a given point on all surfaces

• Read/write data is a three-stage process:
– Seek time: position the head/arm over the proper cylinder
– Rotational latency: wait for desired sector to rotate under r/w head
– Transfer time: transfer a block of bits (sector) under r/w head
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Typical Numbers for Magnetic Disk
Parameter Info/Range

Space/Density Space: 18TB (Seagate), 9 platters, in 3½ inch form factor!
Areal Density: ≥ 1 Terabit/square inch! (PMR, Helium, …)

Average Seek Time Typically 4-6 milliseconds

Average Rotational Latency Most laptop/desktop disks rotate at 3600-7200 RPM 
(16-8 ms/rotation). Server disks up to 15,000 RPM.
Average latency is halfway around disk so 4-8 milliseconds

Controller Time Depends on controller hardware

Transfer Time Typically 50 to 270 MB/s. Depends on:
• Transfer size (usually a sector): 512B – 1KB per sector
• Rotation speed: 3600 RPM to 15000 RPM
• Recording density: bits per inch on a track
• Diameter: ranges from  1 in to 5.25 in

Cost Used to drop by a factor of two every 1.5 years (or faster), now slowing down
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Disk Performance Example
• Assumptions:

– Ignoring queuing and controller times for now
– Avg seek time of 5ms
– 7200RPM  Time for rotation: 60000 (ms/min) / 7200(rev/min) = 8ms

Avg time to find block = ½ × 8ms = 4ms
– Transfer rate of 50MByte/s, block size of 4Kbyte 

4096 bytes/50×106 (bytes/s) = 81.92 × 10-6 sec  0.082 ms for 1 sector
• Read block from random place on disk:

– Seek (5ms) + Rot. Delay (4ms) + Transfer (0.082ms) = 9.082ms
– Approx 9ms to fetch/put data: 4096 bytes/9.082×10-3 s  451KB/s

• Read block from random place in same cylinder:
– Rot. Delay (4ms) + Transfer (0.082ms) = 4.082ms 
– Approx 4ms to fetch/put data: 4096 bytes/4.082×10-3 s  1.03MB/s

• Read next block on same track:
– Transfer (0.082ms): 4096 bytes/0.082×10-3 s  50MB/sec 

• Key to using disk effectively is to minimize seek and rotational delays
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Lots of Intelligence in the Controller
• Sectors contain sophisticated error correcting codes

– Disk head magnet has a field wider than track
– Hide corruptions due to neighboring track writes

• Sector sparing
– Remap bad sectors transparently to spare sectors on the same surface

• Slip sparing
– Remap all sectors (when there is a bad sector) to preserve sequential 

behavior

• Track skewing
– Sector numbers offset from one track to the next, to allow for disk head 

movement for sequential ops
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When is Disk Performance Highest?
• When there are big sequential reads, or
• When there is so much work to do that they can be piggy 

backed (reordering queues—one moment)

• It is OK to be inefficient when things are mostly idle
• Bursts are both a threat and an opportunity
• <your idea for optimization goes here>

– Waste space for speed?

• Other techniques:
– Reduce overhead through user level drivers
– Reduce the impact of I/O delays by doing other useful work in the 

meantime
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Disk Scheduling (1/3)
• Disk can do only one request at a time; What order do you 

choose to do queued requests?

• FIFO Order
– Fair among requesters, but order of arrival may be 

to random spots on the disk  Very long seeks
• SSTF: Shortest seek time first

– Pick the request that’s closest on the disk
– Although called SSTF, today must include 

rotational delay in calculation, since 
rotation can be as long as seek

– Con: SSTF good at reducing seeks, but 
may lead to starvation

2,3
2,1
3,10
7,2
5,2
2,2 HeadUser

Requests

1
4

2

D
isk H

ead

3



Lec 20.264/4/2024 Kubiatowicz CS162 © UCB Spring 2024

Disk Scheduling (2/3)
• Disk can do only one request at a time; What order do you 

choose to do queued requests?

• SCAN: Implements an Elevator Algorithm: take the closest 
request in the direction of travel

– No starvation, but retains flavor of SSTF
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Disk Scheduling (3/3)
• Disk can do only one request at a time; What order do you 

choose to do queued requests?

• C-SCAN: Circular-Scan: only goes in one direction
– Skips any requests on the way back
– Fairer than SCAN, not biased towards pages in middle
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Example of Current HDDs
• Seagate Exos X24 (2023)

– 24 TB hard disk
» 10 platters, 20 heads
» 1.26 TB/in2

» Helium filled: reduce friction and power
– 4.16 ms average seek time
– 4096 byte physical sectors
– 7200 RPMs
– Dual 6 Gbps SATA /12Gbps SAS interface

» 285MB/s MAX transfer rate
» Cache size: 512MB 

– Price: $ 479 (~ $0.02/GB)

• IBM Personal Computer/AT (1986)
– 30 MB hard disk
– 30-40 ms average seek time
– 0.7-1 MB/s (est.)
– Price: $500 ($17K/GB)

800K x

10 x
385 x

850K x
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Solid State Disks (SSDs)
• 1995 – Replace rotating magnetic media with 

non-volatile memory (battery backed DRAM)
• 2009 – Use NAND Multi-Level Cell (2 or 3-

bit/cell) flash memory
– Sector (4 KB page) addressable, but stores 4-64 

“pages” per memory block
– Trapped electrons distinguish between 1 and 0

• No moving parts (no rotate/seek motors)
– Eliminates seek and rotational delay (0.1-0.2ms 

access time)
– Very low power and lightweight
– Limited “write cycles”

• Rapid advances in capacity and cost ever since!
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FLASH Memory

• Like a normal transistor but:
– Has a floating gate that can hold charge
– To write: raise or lower wordline high enough to cause charges to tunnel
– To read: turn on wordline as if normal transistor

» presence of charge changes threshold and thus measured current
• Two varieties: 

– NAND: denser, must be read and written in blocks
– NOR: much less dense, fast to read and write

• V-NAND: 3D stacking (Samsung claims 1TB possible in 1 chip)

Samsung 2015:
512GB, NAND Flash
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Flash Memory (Con’t)

• Data read and written in page-sized chunks (e.g. 4K)
– Cannot be addressed at byte level
– Random access at block level for reads (no locality advantage)
– Writing of new blocks handled in order (kinda like a log)

• Before writing, must be erased (256K block at a time)
– Requires free-list management
– CANNOT write over existing block (Copy-on-Write is normal case)
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SSD Architecture – Reads

Read 4 KB Page: ~25 usec
– No seek or rotational latency
– Transfer time: transfer a 4KB page

» SATA: 300-600MB/s => ~4 x103 b / 400 x 106 bps => 10 us
– Latency = Queuing Time + Controller time + Xfer Time
– Highest Bandwidth: Sequential OR Random reads
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SSD Architecture – Writes
• Writing data to NAND Flash is complex! 

– Can only write empty pages in a block (~ 200μs)
– Erasing a block takes ~1.5ms
– Controller maintains pool of empty blocks by 

coalescing used pages (read, erase, write), also 
reserves some % of capacity

– Rule of thumb: writes 10x reads, erasure 10x 
writes

• SSDs provide same interface as HDDs: read 
and write chunk (4KB) at a time

• Why not just erase and rewrite new version of 
entire 256KB block?

– Erasure is very slow (milliseconds)
– Each block has a finite lifetime, can only be 

erased and rewritten about 10K times
– Heavily used blocks likely to wear out quickly

https://en.wikipedia.org/wiki/Solid-state_drive
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Managing Writes: Flash Translation Layer
• Maintain Flash Translation Layer (FTL) in SSD

– Layer of Indirection between OS and FLASH
– Map virtual block numbers (which OS uses) to 

physical page numbers (which flash mem. 
controller uses)

– Can now freely relocate data w/o OS knowing
• FTL advantages/mechanism:

– Copy on Write: No need to immediately erase 
entire 256K block when modifying 4K page

» Don’t overwrite page when OS updates data
» Instead, write new version in a free page
» Update FTL mapping to point to new location

– Wear Levelling: Try to wear out NAND evenly
» SSD controller can assign mappings to spread 

workload across pages
– What to do with old versions of pages?

» Garbage Collection in background
» Erase blocks with old pages, add to free list
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Some “Current” (large) 3.5in SSDs
• Seagate Exos SSD: 15.36TB (2017)

– Dual 12Gb/s interface
– Seq reads 860MB/s
– Seq writes 920MB/s
– Random Reads (IOPS): 102K
– Random Writes (IOPS): 15K
– Price (Amazon): $5495 ($0.36/GB)

• Nimbus SSD: 100TB (2019)
– Dual port: 12Gb/s interface 
– Seq reads/writes: 500MB/s
– Random Read Ops (IOPS): 100K
– Unlimited writes for 5 years!
– Price: ~ $40K? ($0.4/GB)

» However, 50TB drive costs $12500 ($0.25/GB)
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HDD vs. SSD Comparison

SSD prices drop faster than HDD
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Amusing calculation: 
Is a full Kindle heavier than an empty one?

• Actually, “Yes”, but not by much
• Flash works by trapping electrons:

– So, erased state lower energy than written state
• Assuming that:

– Kindle has 4GB flash
– ½ of all bits in full Kindle are in high-energy state
– High-energy state about 10-15 joules higher
– Then: Full Kindle is 1 attogram (10-18gram) heavier 

(Using E = mc2)
• Of course, this is less than most sensitive scale can measure (it can 

measure 10-9 grams)
• Of course, this weight difference overwhelmed by battery discharge, weight 

from getting warm, ….
• Source: John Kubiatowicz (New York Times, Oct 24, 2011)
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SSD Summary
• Pros (vs. hard disk drives):

– Low latency, high throughput (eliminate seek/rotational delay)
– No moving parts: 

» Very light weight, low power, silent, very shock insensitive
– Read at memory speeds (limited by controller and I/O bus)

• Cons
– Small storage (0.1-0.5x disk), expensive (3-20x disk)

» Hybrid alternative: combine small SSD with large HDD



Lec 20.394/4/2024 Kubiatowicz CS162 © UCB Spring 2024

SSD Summary
• Pros (vs. hard disk drives):

– Low latency, high throughput (eliminate seek/rotational delay)
– No moving parts: 

» Very light weight, low power, silent, very shock insensitive
– Read at memory speeds (limited by controller and I/O bus)

• Cons
– Small storage (0.1-0.5x disk), expensive (3-20x disk)

» Hybrid alternative: combine small SSD with large HDD
– Asymmetric block write performance: read pg/erase/write pg

» Controller garbage collection (GC) algorithms have major effect on performance
– Limited drive lifetime 

» 1-10K writes/page for MLC NAND
» Avg failure rate is 6 years, life expectancy is 9–11 years

• These are changing rapidly!

No 
longer 
true!
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Nano-Tube Memory (NANTERO)

• Yet another possibility: Nanotube memory
– NanoTubes between two electrodes, slight conductivity difference between ones 

and zeros
– No wearout!

• Better than DRAM?
– Speed of DRAM, no wearout, non-volatile!
– Nantero promises 512Gb/dice for 8Tb/chip!  (with 16 die stacking)
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Conclusion (1/2)
• Notification mechanisms

– Interrupts
– Polling: Report results through status register that processor looks at 

periodically 
• Device drivers interface to I/O devices

– Provide clean Read/Write interface to OS above
– Manipulate devices through PIO, DMA & interrupt handling
– Three types: block, character, and network

• Direct Memory Access (DMA)
– Permit devices to directly access memory
– Free up processor from transferring every byte
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Conclusion (2/2)
• Disk Performance: 

– Queuing time + Controller + Seek + Rotational + Transfer
– Rotational latency: on average ½ rotation
– Transfer time: spec of disk depends on rotation speed and bit storage density

• Devices have complex interaction and performance characteristics
– Response time (Latency) = Queue + Overhead + Transfer

» Effective BW = BW * T/(S+T)
– HDD: Queuing time + controller + seek + rotation + transfer
– SSD: Queuing time + controller + transfer (erasure & wear)

• Systems (e.g., file system) designed to optimize performance and reliability
– Relative to performance characteristics of underlying device

• Next time: Bursts & High Utilization introduce queuing delays
• Next time: Queuing Latency:

– M/M/1 and M/G/1 queues: simplest to analyze
– As utilization approaches 100%, latency  

Tq = Tser x ½(1+C) x /(1 – ))


