CS 162 HW 5

Background / MapReduce cluster

MapReduce cluster

TABLE OF CONTENTS

1 Workflow

2 Fault tolerance

In this section, we will cover some of the important high-level concepts of how the system is

expected to work. It will be useful to familiarize yourself with the terminology below before diving

into the remainder of the spec.

Workflow

Our MapReduce cluster consists of one coordinator and several workers. The cluster can run

several different applications, each of which is defined by a map function and a reduce function.

The general flow for running a job on the MapReduce cluster looks like this:

1 A client can make an susmit_jos RPC request to the coordinator that specifies the following

parameters:

Input files: Files containing data to be processed
Output directory: Directory to write final outputs to
Desired application: Application to run on the given input files (e.g. word count)

Number of reduce tasks: Number of sets to divide mapped keys into

2 The coordinator will then assign map tasks to each worker. A map task involves running the

application’s map function on the data contained in a single input file. The results of these map

tasks are stored in temporary files on disk that can be read by other workers, though in

practice workers have separate disks and thus would need request data from other workers over

the network when needed. There should be one map task per input file, so the number of map

tasks is equal to the number of input files. Each map task is identified by a unique map task

number.



3 Once all map tasks are complete, the coordinator will assign a reduce task (i.e. a set of keys to
call the application’s reduce function on) to each worker. To retrieve the results of map tasks from
other workers, workers executing a reduce task must send RPCs to request the necessary data.
Each reduce task is identified by a unique reduce task number.

4 Finally, the reduce workers will write their results to disk, after which the client can do whatever

postprocessing it needs to on the MapReduce output files found in the output directory.

Fault tolerance

The MapReduce cluster should also be fault tolerant. This means it can tolerate worker crashes and
failures, reassigning tasks to alive workers as necessary.

Copyright © 2022 CS 162 staff.



