
D.4

D.4 I/O Performance, Reliability Measures, and Benchmarks ■ D-15
they did get more accurate information than did Gray, who relied on a form that the
operator filled out and then sent up the management chain. The hardware/operating
system went from causing 70% of the failures in VAX systems in 1985 to 28% in
1993, and failures due to operators rose from 15% to 52% in that same period.Mur-
phy and Gent expected managing systems to be the primary dependability chal-
lenge in the future.

The final set of data comes from the government. The Federal Communications
Commission (FCC) requires that all telephone companies submit explanations
when they experience an outage that affects at least 30,000 people or lasts
30 minutes. These detailed disruption reports do not suffer from the self-reporting
problem of earlier figures, as investigators determine the cause of the outage rather
than operators of the equipment. Kuhn [1997] studied the causes of outages
between 1992 and 1994, and Enriquez [2001] did a follow-up study for the first
half of 2001. Although there was a significant improvement in failures due to over-
loading of the network over the years, failures due to humans increased, from about
one-third to two-thirds of the customer-outage minutes.

These four examples and others suggest that the primary cause of failures in
large systems today is faults by human operators. Hardware faults have declined
due to a decreasing number of chips in systems and fewer connectors. Hardware
dependability has improved through fault tolerance techniques such as memory
ECC and RAID. At least some operating systems are considering reliability impli-
cations before adding new features, so in 2011 the failures largely occurred
elsewhere.

Although failures may be initiated due to faults by operators, it is a poor reflec-
tion on the state of the art of systems that the processes of maintenance and upgrad-
ing are so error prone. Most storage vendors claim today that customers spend
much more on managing storage over its lifetime than they do on purchasing
the storage. Thus, the challenge for dependable storage systems of the future is
either to tolerate faults by operators or to avoid faults by simplifying the tasks
of system administration. Note that RAID 6 allows the storage system to survive
even if the operator mistakenly replaces a good disk.

We have now covered the bedrock issue of dependability, giving definitions,
case studies, and techniques to improve it. The next step in the storage tour is

performance.
I/O Performance, Reliability Measures, and Benchmarks

I/O performance has measures that have no counterparts in design. One of these is
diversity: Which I/O devices can connect to the computer system? Another is
capacity: How many I/O devices can connect to a computer system?

In addition to these unique measures, the traditional measures of performance
(namely, response time and throughput) also apply to I/O. (I/O throughput is some-
times called I/O bandwidth and response time is sometimes called latency.) The

next two figures offer insight into how response time and throughput trade off



revreSrecudorP

Queue

Figure D.8 The traditional producer-server model of response time and throughput.
Response time begins when a task is placed in the buffer and ends when it is completed
by the server. Throughput is the number of tasks completed by the server in unit time.

D-16 ■ Appendix D Storage Systems
against each other. Figure D.8 shows the simple producer-server model. The pro-
ducer creates tasks to be performed and places them in a buffer; the server takes
tasks from the first in, first out buffer and performs them.

Response time is defined as the time a task takes from themoment it is placed in
the buffer until the server finishes the task. Throughput is simply the average num-
ber of tasks completed by the server over a time period. To get the highest possible
throughput, the server should never be idle, thus the buffer should never be empty.
Response time, on the other hand, counts time spent in the buffer, so an empty
buffer shrinks it.

Another measure of I/O performance is the interference of I/O with processor
execution. Transferring data may interfere with the execution of another process.
There is also overhead due to handling I/O interrupts. Our concern here is how
much longer a process will take because of I/O for another process.

Throughput versus Response Time

Figure D.9 shows throughput versus response time (or latency) for a typical I/O
system. The knee of the curve is the area where a little more throughput results
in much longer response time or, conversely, a little shorter response time results
in much lower throughput.

How does the architect balance these conflicting demands? If the computer is
interacting with human beings, Figure D.10 suggests an answer. An interaction, or
transaction, with a computer is divided into three parts:

1. Entry time—The time for the user to enter the command.

2. System response time—The time between when the user enters the command
and the complete response is displayed.

3. Think time—The time from the reception of the response until the user begins to
enter the next command.

The sum of these three parts is called the transaction time. Several studies report
that user productivity is inversely proportional to transaction time. The results in
Figure D.10 show that cutting system response time by 0.7 seconds saves 4.9

seconds (34%) from the conventional transaction and 2.0 seconds (70%) from



300

0%

Percentage of maximum throughput (bandwidth)

R
es

po
ns

e 
tim

e 
(la

te
nc

y)
 (

m
s)

20% 40% 60% 80% 100%

200

100

0

Figure D.9 Throughput versus response time. Latency is normally reported as
response time. Note that the minimum response time achieves only 11% of the
throughput, while the response time for 100% throughput takes seven times the min-
imum response time. Note also that the independent variable in this curve is implicit; to
trace the curve, you typically vary load (concurrency). Chen et al. [1990] collected these
data for an array of magnetic disks.

0

Time (sec)

High-function graphics workload
(0.3 sec system response time)

5 10 15

High-function graphics workload
(1.0 sec system response time)

Conventional interactive workload
(0.3 sec system response time)

Conventional interactive workload
(1.0 sec system response time)

Workload

–70% total
(–81% think)

–34% total
(–70% think)

Entry time System response time Think time

Figure D.10 A user transaction with an interactive computer divided into entry time,
system response time, and user think time for a conventional system and graphics
system. The entry times are the same, independent of system response time. The entry
time was 4 seconds for the conventional system and 0.25 seconds for the graphics sys-
tem. Reduction in response time actually decreases transaction time by more than just
the response time reduction. (From Brady [1986].)

D.4 I/O Performance, Reliability Measures, and Benchmarks ■ D-17



Figure D.11 Response time restrictions for three I/O benchmarks.

D-18 ■ Appendix D Storage Systems
the graphics transaction. This implausible result is explained by human nature:
People need less time to think when given a faster response. Although this study
is 20 years old, response times are often still much slower than 1 second, even if
processors are 1000 times faster. Examples of long delays include starting an appli-
cation on a desktop PC due to many disk I/Os, or network delays when clicking on
Web links.

To reflect the importance of response time to user productivity, I/O bench-
marks also address the response time versus throughput trade-off. Figure D.11
shows the response time bounds for three I/O benchmarks. They report maximum
throughput given either that 90% of response times must be less than a limit or that
the average response time must be less than a limit.

Let’s next look at these benchmarks in more detail.

Transaction-Processing Benchmarks

Transaction processing (TP, or OLTP for online transaction processing) is chiefly
concerned with I/O rate (the number of disk accesses per second), as opposed to
data rate (measured as bytes of data per second). TP generally involves changes to
a large body of shared information from many terminals, with the TP system
guaranteeing proper behavior on a failure. Suppose, for example, that a bank’s
computer fails when a customer tries to withdraw money from an ATM. The
TP system would guarantee that the account is debited if the customer received
the money and that the account is unchanged if the money was not received. Air-
line reservations systems as well as banks are traditional customers for TP.

As mentioned in Chapter 1, two dozen members of the TP community con-
spired to form a benchmark for the industry and, to avoid the wrath of their legal
departments, published the report anonymously [Anon. et al. 1985]. This report led
to the Transaction Processing Council, which in turn has led to eight benchmarks
since its founding. Figure D.12 summarizes these benchmarks.

Let’s describe TPC-C to give a flavor of these benchmarks. TPC-C uses a data-

base to simulate an order-entry environment of a wholesale supplier, including



Figure D.12 Transaction Processing Council benchmarks. The summary results include both the performance met-
ric and the price-performance of that metric. TPC-A, TPC-B, TPC-D, and TPC-R were retired.

D.4 I/O Performance, Reliability Measures, and Benchmarks ■ D-19
entering and delivering orders, recording payments, checking the status of orders,
and monitoring the level of stock at the warehouses. It runs five concurrent trans-
actions of varying complexity, and the database includes nine tables with a scalable
range of records and customers. TPC-C is measured in transactions per minute
(tpmC) and in price of system, including hardware, software, and three years of
maintenance support. Figure 1.17 on page 42 in Chapter 1 describes the top sys-
tems in performance and cost-performance for TPC-C.

These TPC benchmarks were the first—and in some cases still the only ones—
that have these unusual characteristics:

■ Price is included with the benchmark results. The cost of hardware, software,
and maintenance agreements is included in a submission, which enables eval-
uations based on price-performance as well as high performance.

■ The dataset generally must scale in size as the throughput increases. The
benchmarks are trying to model real systems, in which the demand on the sys-
tem and the size of the data stored in it increase together. It makes no sense, for
example, to have thousands of people per minute access hundreds of bank
accounts.

■ The benchmark results are audited. Before results can be submitted, they must
be approved by a certified TPC auditor, who enforces the TPC rules that try to
make sure that only fair results are submitted. Results can be challenged and
disputes resolved by going before the TPC.

■ Throughput is the performance metric, but response times are limited. For
example, with TPC-C, 90% of the new order transaction response times must

be less than 5 seconds.



D-20 ■ Appendix D Storage Systems
■ An independent organization maintains the benchmarks. Dues collected by
TPC pay for an administrative structure including a chief operating office. This
organization settles disputes, conducts mail ballots on approval of changes to
benchmarks, holds board meetings, and so on.

SPEC System-Level File Server, Mail, and Web Benchmarks

The SPEC benchmarking effort is best known for its characterization of processor
performance, but it has created benchmarks for file servers, mail servers, and Web
servers.

Seven companies agreed on a synthetic benchmark, called SFS, to evaluate
systems running the Sun Microsystems network file service (NFS). This bench-
mark was upgraded to SFS 3.0 (also called SPEC SFS97_R1) to include support
for NFS version 3, using TCP in addition to UDP as the transport protocol, and
making the mix of operations more realistic. Measurements on NFS systems led
to a synthetic mix of reads, writes, and file operations. SFS supplies default param-
eters for comparative performance. For example, half of all writes are done in 8 KB
blocks and half are done in partial blocks of 1, 2, or 4 KB. For reads, the mix is 85%
full blocks and 15% partial blocks.

Like TPC-C, SFS scales the amount of data stored according to the reported
throughput: For every 100 NFS operations per second, the capacity must increase

by 1 GB. It also limits the average response time, in this case to 40 ms. Figure D.13

0

1

2

3

5

4

6

R
es

po
ns

e 
tim

e 
(m

s)

7

8

0 150,000125,000

34,089

2 Xeons

FAS3000

FAS6000

4 Xeons

8 Opterons

4 Opterons

47,927

100,295

136,048

100,00075,000
Operations/second

50,00025,000

Figure D.13 SPEC SFS97_R1 performance for the NetApp FAS3050c NFS servers in
two configurations. Two processors reached 34,089 operations per second and four
processors did 47,927. Reported in May 2005, these systems used the Data ONTAP
7.0.1R1 operating system, 2.8 GHz Pentium Xeon microprocessors, 2 GB of DRAM per
processor, 1 GB of nonvolatile memory per system, and 168 15 K RPM, 72 GB, Fibre
Channel disks. These disks were connected using two or four QLogic ISP-2322 FC disk
controllers.



D.4 I/O Performance, Reliability Measures, and Benchmarks ■ D-21
shows average response time versus throughput for two NetApp systems. Unfor-
tunately, unlike the TPC benchmarks, SFS does not normalize for different price
configurations.

SPECMail is a benchmark to help evaluate performance of mail servers at an
Internet service provider. SPECMail2001 is based on the standard Internet proto-
cols SMTP and POP3, and it measures throughput and user response time while
scaling the number of users from 10,000 to 1,000,000.

SPECWeb is a benchmark for evaluating the performance of World Wide Web
servers, measuring number of simultaneous user sessions. The SPECWeb2005
workload simulates accesses to a Web service provider, where the server supports
home pages for several organizations. It has three workloads: Banking (HTTPS),

E-commerce (HTTP and HTTPS), and Support (HTTP).
Examples of Benchmarks of Dependability

The TPC-C benchmark does in fact have a dependability requirement. The bench-
marked system must be able to handle a single disk failure, which means in
practice that all submitters are running some RAID organization in their storage
system.

Efforts that are more recent have focused on the effectiveness of fault tolerance
in systems. Brown and Patterson [2000] proposed that availability be measured by
examining the variations in system quality-of-service metrics over time as faults
are injected into the system. For aWeb server, the obvious metrics are performance
(measured as requests satisfied per second) and degree of fault tolerance (measured
as the number of faults that can be tolerated by the storage subsystem, network
connection topology, and so forth).

The initial experiment injected a single fault—such as a write error in disk sec-
tor—and recorded the system’s behavior as reflected in the quality-of-service met-
rics. The example compared software RAID implementations provided by Linux,
Solaris, and Windows 2000 Server. SPECWeb99 was used to provide a workload
and to measure performance. To inject faults, one of the SCSI disks in the software
RAID volume was replaced with an emulated disk. It was a PC running software
using a SCSI controller that appears to other devices on the SCSI bus as a disk. The
disk emulator allowed the injection of faults. The faults injected included a variety
of transient disk faults, such as correctable read errors, and permanent faults, such
as disk media failures on writes.

Figure D.14 shows the behavior of each system under different faults. The two
top graphs show Linux (on the left) and Solaris (on the right). As RAID systems
can lose data if a second disk fails before reconstruction completes, the longer the
reconstruction (MTTR), the lower the availability. Faster reconstruction implies
decreased application performance, however, as reconstruction steals I/O
resources from running applications. Thus, there is a policy choice between taking
a performance hit during reconstruction or lengthening the window of vulnerability

and thus lowering the predicted MTTF.



0 10 20 30 40 50 60 70 80 90 100 1100 10 20 30 40

Reconstruction

50 60 70 80 90 100 110

0 5 10 15 20 25 30 35 40 45

Time (minutes)

Reconstruction

H
its

 p
er

 s
ec

on
d

H
its

 p
er

 s
ec

on
d

H
its

 p
er

 s
ec

on
d

siraloSxuniL

Windows

Time (minutes)

Time (minutes)

Reconstruction

200

190

180

170

160

150

220

225

215

210

205

200

195

190 80

90

100

110

120

130

140

150

160

Figure D.14 Availability benchmark for software RAID systems on the same computer running Red Hat 6.0 Linux,
Solaris 7, and Windows 2000 operating systems. Note the difference in philosophy on speed of reconstruction of
Linux versus Windows and Solaris. The y-axis is behavior in hits per second running SPECWeb99. The arrow indicates
time of fault insertion. The lines at the top give the 99% confidence interval of performance before the fault is
inserted. A 99% confidence interval means that if the variable is outside of this range, the probability is only 1% that
this value would appear.

D-22 ■ Appendix D Storage Systems
Although none of the tested systems documented their reconstruction policies
outside of the source code, even a single fault injection was able to give insight into
those policies. The experiments revealed that both Linux and Solaris initiate auto-
matic reconstruction of the RAID volume onto a hot spare when an active disk is

taken out of service due to a failure. Although Windows supports RAID



D.5

D.5 A Little Queuing Theory ■ D-23
reconstruction, the reconstruction must be initiated manually. Thus, without
human intervention, a Windows system that did not rebuild after a first failure
remains susceptible to a second failure, which increases the window of vulnerabil-
ity. It does repair quickly once told to do so.

The fault injection experiments also provided insight into other availability
policies of Linux, Solaris, and Windows 2000 concerning automatic spare utiliza-
tion, reconstruction rates, transient errors, and so on. Again, no system documented
their policies.

In terms of managing transient faults, the fault injection experiments revealed
that Linux’s software RAID implementation takes an opposite approach than do
the RAID implementations in Solaris and Windows. The Linux implementation
is paranoid—it would rather shut down a disk in a controlled manner at the first
error, rather than wait to see if the error is transient. In contrast, Solaris and Win-
dows are more forgiving—they ignore most transient faults with the expectation
that they will not recur. Thus, these systems are substantially more robust to tran-
sients than the Linux system. Note that both Windows and Solaris do log the tran-
sient faults, ensuring that the errors are reported even if not acted upon. When

faults were permanent, the systems behaved similarly.
A Little Queuing Theory

In processor design, we have simple back-of-the-envelope calculations of perfor-
mance associated with the CPI formula in Chapter 1, or we can use full-scale sim-
ulation for greater accuracy at greater cost. In I/O systems, we also have a bestcase
analysis as a back-of-the-envelope calculation. Full-scale simulation is also much
more accurate and much more work to calculate expected performance.

With I/O systems, however, we also have a mathematical tool to guide I/O
design that is a little more work and much more accurate than best-case analysis,
but much less work than full-scale simulation. Because of the probabilistic nature
of I/O events and because of sharing of I/O resources, we can give a set of simple
theorems that will help calculate response time and throughput of an entire I/O sys-
tem. This helpful field is called queuing theory. Since there are many books and
courses on the subject, this section serves only as a first introduction to the topic.
However, even this small amount can lead to better design of I/O systems.

Let’s start with a black-box approach to I/O systems, as shown in Figure D.15.
In our example, the processor is making I/O requests that arrive at the I/O device,
and the requests “depart” when the I/O device fulfills them.

We are usually interested in the long term, or steady state, of a system rather
than in the initial start-up conditions. Suppose we weren’t. Although there is a
mathematics that helps (Markov chains), except for a few cases, the only way
to solve the resulting equations is simulation. Since the purpose of this section
is to show something a little harder than back-of-the-envelope calculations but less
than simulation, we won’t cover such analyses here. (See the references in Appen-

dix M for more details.)



Arrivals Departures

Figure D.15 Treating the I/O system as a black box. This leads to a simple but impor-
tant observation: If the system is in steady state, then the number of tasks entering the
system must equal the number of tasks leaving the system. This flow-balanced state is
necessary but not sufficient for steady state. If the system has been observed or mea-
sured for a sufficiently long time and mean waiting times stabilize, then we say that the
system has reached steady state.

D-24 ■ Appendix D Storage Systems
Hence, in this section we make the simplifying assumption that we are evalu-
ating systems with multiple independent requests for I/O service that are in equi-
librium: The input rate must be equal to the output rate. We also assume there is a
steady supply of tasks independent for how long they wait for service. In many real
systems, such as TPC-C, the task consumption rate is determined by other system
characteristics, such as memory capacity.

This leads us to Little’s law, which relates the average number of tasks in the
system, the average arrival rate of new tasks, and the average time to perform a
task:

Mean number of tasks in system¼Arrival rate�Mean response time

Little’s law applies to any system in equilibrium, as long as nothing inside the
black box is creating new tasks or destroying them. Note that the arrival rate
and the response time must use the same time unit; inconsistency in time units
is a common cause of errors.

Let’s try to derive Little’s law. Assume we observe a system for Timeobserve
minutes. During that observation, we record how long it took each task to
be serviced, and then sum those times. The number of tasks completed during
Timeobserve is Numbertask, and the sum of the times each task spends in the system
is Timeaccumulated. Note that the tasks can overlap in time, so Timeaccumulated�
Timeobserved. Then,

Mean number of tasks in system¼Timeaccumulated

Timeobserve

Mean response time¼Timeaccumulated

Numbertasks

Arrival rate¼Numbertasks
Timeobserve

Algebra lets us split the first formula:

Timeaccumulated ¼Timeaccumulated∞
Numbertasks
Timeobserve Numbertasks Timeobserve



Arrivals

Queue Server

I/O controller
and device

Figure D.16 The single-server model for this section. In this situation, an I/O request

D.5 A Little Queuing Theory ■ D-25
If we substitute the three definitions above into this formula, and swap the resulting
two terms on the right-hand side, we get Little’s law:

Mean number of tasks in system¼Arrival rate�Mean response time

This simple equation is surprisingly powerful, as we shall see.
If we open the black box, we see Figure D.16. The area where the tasks accu-

mulate, waiting to be serviced, is called the queue, or waiting line. The device per-
forming the requested service is called the server. Until we get to the last two pages
of this section, we assume a single server.

Little’s law and a series of definitions lead to several useful equations:

■ Timeserver—Average time to service a task; average service rate is 1/Timeserver,
traditionally represented by the symbol μ in many queuing texts.

■ Timequeue—Average time per task in the queue.

■ Timesystem—Average time/task in the system, or the response time, which is
the sum of Timequeue and Timeserver.

■ Arrival rate—Average number of arriving tasks/second, traditionally
represented by the symbol λ in many queuing texts.

■ Lengthserver—Average number of tasks in service.

■ Lengthqueue—Average length of queue.

■ Lengthsystem—Average number of tasks in system, which is the sum of
Lengthqueue and Lengthserver.

One common misunderstanding can be made clearer by these definitions: whether
the question is how long a task must wait in the queue before service starts (Time-
queue) or how long a task takes until it is completed (Timesystem). The latter term is
what we mean by response time, and the relationship between the terms is
Timesystem¼Timequeue+Timeserver.

The mean number of tasks in service (Lengthserver) is simply Arrival rate�
Timeserver, which is Little’s law. Server utilization is simply the mean number
of tasks being serviced divided by the service rate. For a single server, the service
rate is 1/Timeserver. Hence, server utilization (and, in this case, the mean number of
tasks per server) is simply:

“departs” by being completed by the server.
Server utilization¼Arrival rate�Timeserver



Example

Answer

D-26 ■ Appendix D Storage Systems
Service utilization must be between 0 and 1; otherwise, there would be more tasks
arriving than could be serviced, violating our assumption that the system is in equi-
librium. Note that this formula is just a restatement of Little’s law. Utilization is also
called traffic intensityand is representedby thesymbolρ inmanyqueuing theory texts.
Suppose an I/O system with a single disk gets on average 50 I/O requests per
second. Assume the average time for a disk to service an I/O request is 10 ms.What

is the utilization of the I/O system?

Using the equation above, with 10 ms represented as 0.01 seconds, we get: 50

Server utilization¼Arrival rate�Timeserver ¼ 50
sec

�0:01sec ¼ 0:50
Therefore, the I/O system utilization is 0.5.
How the queue delivers tasks to the server is called the queue discipline. The sim-
plest and most common discipline is first in, first out (FIFO). If we assume FIFO,
we can relate time waiting in the queue to the mean number of tasks in the queue:

Timequeue ¼Lengthqueue�Timeserver +Mean time to complete service of task when
new task arrives if server is busy

That is, the time in the queue is the number of tasks in the queue times the mean
service time plus the time it takes the server to complete whatever task is being
serviced when a new task arrives. (There is one more restriction about the arrival
of tasks, which we reveal on page D-28.)

The last component of the equation is not as simple as it first appears. A new
task can arrive at any instant, so we have no basis to know how long the existing
task has been in the server. Although such requests are random events, if we know
something about the distribution of events, we can predict performance.

Poisson Distribution of Random Variables

To estimate the last component of the formula we need to know a little about dis-
tributions of random variables. A variable is random if it takes one of a specified
set of values with a specified probability; that is, you cannot know exactly what its
next value will be, but you may know the probability of all possible values.

Requests for service from an I/O system can be modeled by a random variable
because the operating system is normally switching between several processes that
generate independent I/O requests. We also model I/O service times by a random
variable given the probabilistic nature of disks in terms of seek and rotational delays.

One way to characterize the distribution of values of a random variable with
discrete values is a histogram, which divides the range between the minimum
and maximum values into subranges called buckets. Histograms then plot the

number in each bucket as columns.



D.5 A Little Queuing Theory ■ D-27
Histograms work well for distributions that are discrete values—for example,
the number of I/O requests. For distributions that are not discrete values, such as
time waiting for an I/O request, we have two choices. Either we need a curve to plot
the values over the full range, so that we can estimate accurately the value, or we
need a very fine time unit so that we get a very large number of buckets to estimate
time accurately. For example, a histogram can be built of disk service times mea-
sured in intervals of 10 μs although disk service times are truly continuous.

Hence, to be able to solve the last part of the previous equation we need to char-
acterize the distribution of this random variable. The mean time and some measure
of the variance are sufficient for that characterization.

For the first term, we use the weighted arithmetic mean time. Let’s first assume
that after measuring the number of occurrences, say, ni, of tasks, you could
compute frequency of occurrence of task i:

fi ¼ niXn
i¼1

ni

 !

Then weighted arithmetic mean is

Weighted arithmetic mean time¼ f1�T1 + f2�T2 +…+ fn�Tn

where Ti is the time for task i and fi is the frequency of occurrence of task i.
To characterize variability about the mean, many people use the standard devi-

ation. Let’s use the variance instead, which is simply the square of the standard
deviation, as it will help us with characterizing the probability distribution. Given
the weighted arithmetic mean, the variance can be calculated as

Variance¼ f1�T2
1 + f2�T2

2 +…+ fn�T2
n

� ��Weighted arithmetic mean time2

It is important to remember the units when computing variance. Let’s assume the
distribution is of time. If time is about 100 milliseconds, then squaring it yields
10,000 square milliseconds. This unit is certainly unusual. It would be more
convenient if we had a unitless measure.

To avoid this unit problem, we use the squared coefficient of variance,
traditionally called C2:

C2 ¼ Variance

Weighted arithmetic mean time2

We can solve for C, the coefficient of variance, as

C¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Variance

p

Weighted arithmetic mean time
¼ Standard deviation
Weighted arithmetic mean time

Weare trying to characterize randomevents, but to be able to predict performance
we need a distribution of randomeventswhere themathematics is tractable. Themost
popular such distribution is the exponential distribution, which has a C value of 1.

Note that we are using a constant to characterize variability about the mean. The

invariance of C over time reflects the property that the history of events has no impact



Example

Answer

D-28 ■ Appendix D Storage Systems
on the probability of an event occurring now. This forgetful property is called mem-
oryless, and this property is an important assumption used to predict behavior using
these models. (Suppose this memoryless property did not exist; then, we would have
to worry about the exact arrival times of requests relative to each other, which would
make the mathematics considerably less tractable!)

One of the most widely used exponential distributions is called a Poisson dis-
tribution, named after the mathematician Sim�eon Poisson. It is used to characterize
random events in a given time interval and has several desirable mathematical
properties. The Poisson distribution is described by the following equation (called
the probability mass function):

Probability kð Þ¼ e�a�ak

k!

where a¼Rate of events�Elapsed time. If interarrival times are exponentially dis-
tributed and we use the arrival rate from above for rate of events, the number of
arrivals in a time interval t is a Poisson process, which has the Poisson distribution
with a¼Arrival rate� t. As mentioned on page D-26, the equation for Timeserver
has another restriction on task arrival: It holds only for Poisson processes.

Finally, we can answer the question about the length of time a new task must
wait for the server to complete a task, called the average residual service time,
which again assumes Poisson arrivals:

Average residual service time¼ 1=2�Arithemtic mean� 1 +C2
� �

Although we won’t derive this formula, we can appeal to intuition. When the dis-
tribution is not random and all possible values are equal to the average, the standard
deviation is 0 and so C is 0. The average residual service time is then just half the
average service time, as we would expect. If the distribution is random and it is
Poisson, then C is 1 and the average residual service time equals the weighted arith-
metic mean time.
Using the definitions and formulas above, derive the average time waiting in the
queue (Timequeue) in terms of the average service time (Timeserver) and server

utilization.

All tasks in the queue (Lengthqueue) ahead of the new task must be completed
before the task can be serviced; each takes on average Timeserver. If a task is at
the server, it takes average residual service time to complete. The chance the server
is busy is server utilization; hence, the expected time for service is Server utiliza-
tion�Average residual service time. This leads to our initial formula:

Timequeue ¼Lengthqueue�Timeserver

+ Server utilization�Average residual service time

Replacing the average residual service time by its definition and Lengthqueue by
Arrival rate�Timequeue yields



Example

Answer

D.5 A Little Queuing Theory ■ D-29
Timequeue ¼Server utilization� 1=2�Timeserver� 1 +C2
� �� �

+ Arrival rate�Timequeue
� ��Timeserver

Since this section is concerned with exponential distributions, C2 is 1. Thus

Timequeue ¼ Server utilization�Timeserver + Arrival rate�Timequeue
� ��Timeserver

Rearranging the last term, let us replace Arrival rate�Timeserver by Server
utilization:

Timequeue ¼ Server utilization�Timeserver + Arrival rate�Timeserverð Þ�Timequeue

¼ Server utilization�Timeserver + Server utilization�Timequeue

Rearranging terms and simplifying gives us the desired equation:

Timequeue ¼ Server utilization�Timeserver + Server utilization�Timequeue

Timequeue�Server utilization�Timequeue ¼ Server utilization�Timeserver

Timequeue� 1�Server utilizationð Þ¼ Server utilization�Timeserver

Timequeue ¼Timeserver� Server utilization
1�Server utilizationð Þ

Little’s law can be applied to the components of the black box as well, since they
must also be in equilibrium:

Lengthqueue ¼Arrival rate�Timequeue

If we substitute for Timequeue from above, we get:

Lengthqueue ¼Arrival rate�Timeserver� Server utilization
1�Server utilizationð Þ

Since Arrival rate�Timeserver¼Server utilization, we can simplify further:

Lengthqueue ¼ Server utilization� Server utilization
1�Server utilizationð Þ¼

Server utilization2

1�Server utilizationð Þ
This relates number of items in queue to service utilization.
For the system in the example on page D-26, which has a server utilization of 0.5,

what is the mean number of I/O requests in the queue?

Using the equation above,

Lengthqueue ¼
Server uti1ization2

1�Server uti1izationð Þ¼
0:52

1�0:5ð Þ¼
0:25
0:50

¼ 0:5

Therefore, there are 0.5 requests on average in the queue.

As mentioned earlier, these equations and this section are based on an area of

applied mathematics called queuing theory, which offers equations to predict



D-30 ■ Appendix D Storage Systems
behavior of such random variables. Real systems are too complex for queuing
theory to provide exact analysis, hence queuing theory works best when only
approximate answers are needed.

Queuing theory makes a sharp distinction between past events, which can be
characterized by measurements using simple arithmetic, and future events, which
are predictions requiring more sophisticated mathematics. In computer systems,
we commonly predict the future from the past; one example is least recently used
block replacement (see Chapter 2). Hence, the distinction between measurements
and predicted distributions is often blurred; we use measurements to verify the type
of distribution and then rely on the distribution thereafter.

Let’s review the assumptions about the queuing model:

■ The system is in equilibrium.

■ The times between two successive requests arriving, called the interarrival times,
are exponentially distributed, which characterizes the arrival rate mentioned
earlier.

■ The number of sources of requests is unlimited. (This is called an infinite
population model in queuing theory; finite population models are used when
arrival rates vary with the number of jobs already in the system.)

■ The server can start on the next job immediately after finishing the prior one.

■ There is no limit to the length of the queue, and it follows the first in, first out
order discipline, so all tasks in line must be completed.

■ There is one server.

Such a queue is called M/M/1:

M5exponentially random request arrival (C2¼1), with M standing for A. A.
Markov, the mathematician who defined and analyzed the memoryless
processes mentioned earlier

M5exponentially random service time (C2¼1), with M again for Markov

1¼ single server

The M/M/1 model is a simple and widely used model.
The assumption of exponential distribution is commonly used in queuing exam-

ples for three reasons—one good, one fair, and one bad. The good reason is that a
superpositionofmanyarbitrarydistributionsactsasanexponentialdistribution.Many
times in computer systems, a particular behavior is the result of many components
interacting, so an exponential distribution of interarrival times is the right model.
The fair reason is that when variability is unclear, an exponential distribution with
intermediate variability (C¼1) is a safer guess than low variability (C�0) or high
variability (large C). The bad reason is that the math is simpler if you assume expo-

nential distributions.



Example

Answer

Example

Answer

D.5 A Little Queuing Theory ■ D-31
Let’s put queuing theory to work in a few examples.
Suppose a processor sends 40 disk I/Os per second, these requests are exponen-
tially distributed, and the average service time of an older disk is 20 ms. Answer
the following questions:

1. On average, how utilized is the disk?

2. What is the average time spent in the queue?

3. What is the average response time for a disk request, including the queuing

time and disk service time?

Let’s restate these facts:

Average number of arriving tasks/second is 40.

Average disk time to service a task is 20 ms (0.02 sec).

The server utilization is then

Server utilization¼Arrival rate�Timeserver ¼ 40�0:02¼ 0:8

Since the service times are exponentially distributed, we can use the simplified for-
mula for the average time spent waiting in line:

Timequeue ¼ Timeserver� Server utilization
1�Server utilizationð Þ

¼ 20 ms� 0:8
1�0:8

¼ 20�0:8
0:2

¼ 20�4¼ 80 ms

The average response time is

Time system¼Timequeue + Timeserver ¼ 80 + 20 ms¼ 100 ms
Thus, on average we spend 80% of our time waiting in the queue!
Suppose we get a new, faster disk. Recalculate the answers to the questions above,

assuming the disk service time is 10 ms.

The disk utilization is then

Server utilization¼Arrival rate�Timeserver ¼ 40�0:01¼ 0:4

The formula for the average time spent waiting in line:

Timequeue ¼ Timeserver� Server utilization
1�Server utilizationð Þ

¼ 10 ms� 0:4
1�0:4

¼ 10�0:4
0:6

¼ 10�2
3
¼ 6:7 ms

The average response time is 10+6.7 ms or 16.7 ms, 6.0 times faster than the old

response time even though the new service time is only 2.0 times faster.



Arrivals

Queue
Server

I/O controller
and device

Server

I/O controller
and device

Server

I/O controller
and device

D-32 ■ Appendix D Storage Systems
Thus far, we have been assuming a single server, such as a single disk. Many real
systems have multiple disks and hence could use multiple servers, as in
Figure D.17. Such a system is called an M/M/m model in queuing theory.

Let’s give the same formulas for the M/M/m queue, using Nservers to represent
the number of servers. The first two formulas are easy:

Utilization ¼ Arrival rate�Timeserver
Nservers

Lengthqueue ¼ Arrival rate�Timequeue

The time waiting in the queue is

Timequeue ¼Timeserver� Ptasks�Nservers

Nservers� 1�Utilizationð Þ
This formula is related to the one for M/M/1, except we replace utilization of
a single server with the probability that a task will be queued as opposed to being
immediately serviced, and divide the time in queue by the number of servers.
Alas, calculating the probability of jobs being in the queue is much more compli-
cated when there are Nservers. First, the probability that there are no tasks in the
system is

Prob0 tasks ¼ 1 +
Nservers�Utilizationð ÞNservers

Nservers!� 1�Utilizationð Þ +
XNservers�1

n¼1

Nservers�Utilizationð Þn
n!

" #�1

Then the probability there are as many or more tasks than we have servers is

Probtasks�Nservers ¼
Nservers�UtilizationNservers

�Prob0 tasks

Figure D.17 The M/M/m multiple-server model.
Nservers!� 1�Utilizationð Þ



Example

Answer

D.5 A Little Queuing Theory ■ D-33
Note that if Nservers is 1, Probtask�Nservers simplifies back to Utilization, and we get the
same formula as for M/M/1. Let’s try an example.
Suppose instead of a new, faster disk, we add a second slow disk and duplicate the
data so that reads can be serviced by either disk. Let’s assume that the requests are
all reads. Recalculate the answers to the earlier questions, this time using an M/M/

m queue.

The average utilization of the two disks is then

Server utilization¼Arrival rate�Timeserver
Nservers

¼ 40�0:02
2

¼ 0:4

We first calculate the probability of no tasks in the queue:

Prob0 tasks ¼ 1 +
2�Utilizationð Þ2

2!� 1�Utilizationð Þ +
X1
n¼1

2�Utilizationð Þn
n!

" #�1

¼ 1 +
2�0:4ð Þ2

2� 1�0:4ð Þ + 2�0:4ð Þ
" #�1

¼ 1 +
0:640
1:2

+ 0:800

� ��1

¼ 1 + 0:533 + 0:800½ ��1 ¼ 2:333�1

We use this result to calculate the probability of tasks in the queue:

Probtasks�Nservers ¼
2�Utilization2

2!� 1�Utilizationð Þ�Prob0 tasks

¼ 2�0:4ð Þ2
2� 1�0:4ð Þ�2:333�1 ¼ 0:640

1:2
�2:333�1

¼ 0:533=2:333¼ 0:229

Finally, the time waiting in the queue:

Timequeue ¼ Timeserver� Probtasks�Nservers

Nservers� 1�Utilizationð Þ

¼ 0:020� 0:229
2� 1�0:4ð Þ¼ 0:020�0:229

1:2

¼ 0:020�0:190¼ 0:0038

The average response time is 20+3.8 ms or 23.8 ms. For this workload, two disks
cut the queue waiting time by a factor of 21 over a single slow disk and a factor of
1.75 versus a single fast disk. The mean service time of a system with a single fast
disk, however, is still 1.4 times faster than one with two disks since the disk service

time is 2.0 times faster.



D.6

D-34 ■ Appendix D Storage Systems
It would be wonderful if we could generalize the M/M/mmodel to multiple queues
andmultiple servers, as this step is muchmore realistic. Alas, these models are very

hard to solve and to use, and so we won’t cover them here.

Crosscutting Issues

Point-to-Point Links and Switches Replacing Buses

Point-to-point links and switches are increasing in popularity as Moore’s law con-
tinues to reduce the cost of components. Combined with the higher I/O bandwidth
demands from faster processors, faster disks, and faster local area networks, the
decreasing cost advantage of buses means the days of buses in desktop and server
computers are numbered. This trend started in high-performance computers in the
last edition of the book, and by 2011 has spread itself throughout storage.
Figure D.18 shows the old bus-based standards and their replacements.

The number of bits and bandwidth for the new generation is per direction, so
they double for both directions. Since these new designs use many fewer wires, a
commonway to increase bandwidth is to offer versions with several times the num-
ber of wires and bandwidth.

Block Servers versus Filers

Thus far, we have largely ignored the role of the operating system in storage. In a
manner analogous to the way compilers use an instruction set, operating systems
determine what I/O techniques implemented by the hardware will actually be used.
The operating system typically provides the file abstraction on top of blocks stored
on the disk. The terms logical units, logical volumes, and physical volumes are
related terms used in Microsoft and UNIX systems to refer to subset collections

of disk blocks.

Figure D.18 Parallel I/O buses and their point-to-point replacements. Note the
bandwidth and wires are per direction, so bandwidth doubles when sending both
directions.




