CS 162 Project 3

Tasks / Testing

lesting

QUESTIONS
T Implementation details

2 Adding file system tests to Pintos

Pintos already contains a test suite for file system functionalities, but it does not cover the buffer

cache. For this project, you must implement two of the following test cases:

1 Test your buffer cache’s effectiveness by measuring its cache hit rate. First, reset the buffer cache.
Next, open a file and read it sequentially, to determine the cache hit rate for a cold cache. Then,
close it, re-open it, and read it sequentially again, to make sure that the cache hit rate improves.

2 Test your buffer cache’s ability to coalesce writes to the same sector. Each block device keeps a
read_cnt counter and a write_cnt counter. Write a large large file at least 64 KiB (i.e. twice the
maximum allowed buffer cache size) byte-by-byte. Then, read it in byte-by-byte. The total

number of device writes should be on the order of 128 since 64 KiB is 128 blocks.

3 Test your buffer cache’s ability to write full blocks to disk without reading them first. If you are,
for example, writing 100 KiB (200 blocks) to a file, your buffer cache should perform 200 calls to
block_write, but O calls to block_read since exactly 200 blocks worth of data are being written.
Read operations on inode metadata are still acceptable. As mentioned earlier, each block device
keeps a read_cnt counter and a write_cnt counter. You can use this to verify that your buffer
cache does not introduce unnecessary block reads. If your buffer cache does not have this

property, then implement the other two options listed above.

You should focus on writing tests for general buffer cache features, rather than writing tests for your
specific implementation of the buffer cache. You should write your test cases with a minimal set of
assumptions about the underlying buffer cache implementation, but you are permitted to make as
many basic assumptions about the buffer cache as you need to, since it is very difficult to write
buffer cache tests without doing so. Use your best judgement and create test cases that could
potentially be adapted to a different group’s project without rewriting the whole thing. Once you



finish writing your test cases, make sure that they get executed when you run make check in the

filesys/ directory.

Implementation details

You should add your two test cases to the filesys/extended test suite, which is included when you run
make check from the filesys directory. All of the filesys and userprog tests are “user program” tests,
which means that they are only allowed to interact with the kernel via system calls. Since buffer
cache information and block device statistics are NOT currently exposed to user programs,
you must create new system calls to support your two new buffer cache tests. You can create
new system calls by modifying these files (and their associated header files):

lib/syscall-nr.h

Defines the syscall numbers and symbolic constants. This file is used by both user programs and

the kernel.
" lib/user/syscall.c’
Syscall functions for user programs.
userprog/syscall.c
Syscall handler implementations.
Some things to keep in mind while writing your test cases:

« User programs have access to a limited subset of the C standard library. You can find the user

library in 1ib/.
« User programs cannot directly access variables in the kernel.

+ User programs do not have access to malloc, since brk and sbrk are not implemented. User
programs also have a limited stack size. If you need a large buffer, make it a static global

variable.

+ Pintos starts with 4MB of memory and the file system block device is 2MB by default. Don't use

data structures or files that exceed these sizes.

« Your tests should use msg() instead of printf() (they have the same function signature).

Adding file system tests to Pintos



You can add new test cases to the filesys/extended suite by modifying these files (all inside

tests/filesys/extended ):
Make.tests

Entry point for the filesys/extended test suite. You need to add the name of your test to the
raw_tests variable, in order for the test suite to find it.

my-test-1.c

This is the test code for your test (you are free to use whatever name you wish, “my-test-1" is just
an example). Your test should define a function called test_main, which contains a user-level
program. This is the main body of your test case, which should make syscalls and print output.
Use the msg() function instead of printf.

my-test-1.ck

Every test needs a .ck file, which is a Perl script that checks the output of the test program. If you
are not familiar with Perl, don't worry! You can probably get through this part with some educated
guessing. Your check script should use the subroutines that are defined in tests/tests.pm. At the
end, call pass to print out the "“PASS” message, which tells the Pintos test driver that your test

passed.
my-test-1-persistence.ck

Pintos expects a second .ck file for every filesys/extended test case. After each test case is run, the
kernel is rebooted using the same file system disk image, then Pintos saves the entire file system
to a tarball and exports it to the host machine. The *-persistence.ck script checks that the tarball
of the file system contains the correct structure and contents. You do not need to do any
checking in this file, if your test case does not require it. However, you should call pass in this

file anyway, to satisfy the Pintos testing framework.

Copyright © 2022 CS 162 staff.



