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Recall: Magnetic Disks

• Cylinders: all the tracks under the 
head at a given point on all surfaces

• Read/write data is a three-stage process:
– Seek time: position the head/arm over the proper track
– Rotational latency: wait for desired sector to rotate under r/w head
– Transfer time: transfer a block of bits (sector) under r/w head
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Recall: FLASH Memory

• Like a normal transistor but:
– Has a floating gate that can hold charge
– To write: raise or lower wordline high enough to cause charges to tunnel
– To read: turn on wordline as if normal transistor

» presence of charge changes threshold and thus measured current
• Two varieties: 

– NAND: denser, must be read and written in blocks
– NOR: much less dense, fast to read and write

• V-NAND: 3D stacking (Samsung claims 1TB possible in 1 chip)

Samsung 2015:
512GB, NAND Flash
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Flash Memory (Con’t)

• Data read and written in page-sized chunks (e.g. 4K)
– Cannot be addressed at byte level
– Random access at block level for reads (no locality advantage)
– Writing of new blocks handled in order (kinda like a log)

• Before writing, must be erased (256K block at a time)
– Requires free-list management
– CANNOT write over existing block (Copy-on-Write is normal case)
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SSD Architecture – Reads

Read 4 KB Page: ~25 usec
– No seek or rotational latency
– Transfer time: transfer a 4KB page

» SATA: 300-600MB/s => ~4 x103 b / 400 x 106 bps => 10 us
– Latency = Queuing Time + Controller time + Xfer Time
– Highest Bandwidth: Sequential OR Random reads
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SSD Architecture – Writes
• Writing data to NAND Flash is complex! 

– Can only write empty pages in a block (~ 200μs)
– Erasing a block takes ~1.5ms
– Controller maintains pool of empty blocks by 

coalescing used pages (read, erase, write), also 
reserves some % of capacity

– Rule of thumb: writes 10x reads, erasure 10x 
writes

• SSDs provide same interface as HDDs: read 
and write chunk (4KB) at a time

• Why not just erase and rewrite new version of 
entire 256KB block?

– Erasure is very slow (milliseconds)
– Each block has a finite lifetime, can only be 

erased and rewritten about 10K times
– Heavily used blocks likely to wear out quickly

https://en.wikipedia.org/wiki/Solid-state_drive
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Managing Writes: Flash Translation Layer
• Maintain Flash Translation Layer (FTL) in SSD

– Layer of Indirection between OS and FLASH
– Map virtual block numbers (which OS uses) to 

physical page numbers (which flash mem. 
controller uses)

– Can now freely relocate data w/o OS knowing
• FTL advantages/mechanism:

– Copy on Write: No need to immediately erase 
entire 256K block when modifying 4K page

» Don’t overwrite page when OS updates data
» Instead, write new version in a free page
» Update FTL mapping to point to new location

– Wear Levelling: Try to wear out NAND evenly
» SSD controller can assign mappings to spread 

workload across pages
– What to do with old versions of pages?

» Garbage Collection in background
» Erase blocks with old pages, add to free list
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Some “Current” (large) 3.5in SSDs
• Seagate Exos SSD: 15.36TB (2017)

– Dual 12Gb/s interface
– Seq reads 860MB/s
– Seq writes 920MB/s
– Random Reads (IOPS): 102K
– Random Writes (IOPS): 15K
– Price (Amazon): $5495 ($0.36/GB)

• Nimbus SSD: 100TB (2019)
– Dual port: 12Gb/s interface 
– Seq reads/writes: 500MB/s
– Random Read Ops (IOPS): 100K
– Unlimited writes for 5 years!
– Price: ~ $40K? ($0.4/GB)

» However, 50TB drive costs $12500 ($0.25/GB)
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Amusing calculation: 
Is a full Kindle heavier than an empty one?

• Actually, “Yes”, but not by much
• Flash works by trapping electrons:

– So, erased state lower energy than written state
• Assuming that:

– Kindle has 4GB flash
– ½ of all bits in full Kindle are in high-energy state
– High-energy state about 10-15 joules higher
– Then: Full Kindle is 1 attogram (10-18gram) heavier 

(Using E = mc2)
• Of course, this is less than most sensitive scale can measure (it can 

measure 10-9 grams)
• Of course, this weight difference overwhelmed by battery discharge, weight 

from getting warm, ….
• Source: John Kubiatowicz (New York Times, Oct 24, 2011)
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SSD Summary
• Pros (vs. hard disk drives):

– Low latency, high throughput (eliminate seek/rotational delay)
– No moving parts: 

» Very light weight, low power, silent, very shock insensitive
– Read at memory speeds (limited by controller and I/O bus)

• Cons
– Small storage (0.1-0.5x disk), expensive (3-20x disk)

» Hybrid alternative: combine small SSD with large HDD
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SSD Summary
• Pros (vs. hard disk drives):

– Low latency, high throughput (eliminate seek/rotational delay)
– No moving parts: 

» Very light weight, low power, silent, very shock insensitive
– Read at memory speeds (limited by controller and I/O bus)

• Cons
– Small storage (0.1-0.5x disk), expensive (3-20x disk)

» Hybrid alternative: combine small SSD with large HDD
– Asymmetric block write performance: read pg/erase/write pg

» Controller garbage collection (GC) algorithms have major effect on performance
– Limited drive lifetime 

» 1-10K writes/page for MLC NAND
» Avg failure rate is 6 years, life expectancy is 9–11 years

• These are changing rapidly!

No 
longer 
true!
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Administrivia (4/9/2024)
• Midterm 3: Thursday April 25th

– All topics up to an including lecture on the 23rd

– 3 sheets of notes, double-sided
• Extra (fun!) lecture on Tuesday April 30th

– Topics TBA
• Class attendance: No credit for people who use 

the same photo!
• Data4All@Berkeley: This Friday!

– Friday 4/12, 12:00-1:00 in Soda 510
– Undergraduate or Masters students interested in 

Systems broadly defined (DB, Arch, Sec, 
Networking, Systems, etc.) who identify as an 
URM in Computer Science

– Come by for free lunch to meet fellow interested 
students

– Talk to relevant faculty, discuss possible classes, 
research opportunities in systems, as well as the 
best pizza topping!

https://tinyurl.com/3r3cj3ya
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Ways of Measuring Performance: Times (s) and Rates (op/s)
• Latency – time to complete a task

– Measured in units of time (s, ms, us, …, hours, years)
• Response Time - time to initiate and operation and get its response

– Able to issue one that depends on the result
– Know that it is done (anti-dependence, resource usage)

• Throughput or Bandwidth – rate at which tasks are performed
– Measured in units of things per unit time (ops/s, GFLOP/s)

• Start up or “Overhead” – time to initiate an operation
• Most I/O operations are roughly linear in b bytes

– Latency(b) = Overhead + b/TransferCapacity
• Performance???

– Operation time (4 mins to run a mile…)
– Rate (mph, mpg, …) 
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Example: Overhead in Fast Network
• Consider a 1 Gb/s link (𝐵௪  ൌ  125 MB/s) 

with startup cost 𝑆 ൌ  1 ms

• Latency: 𝐿 𝑥 ൌ 𝑆 ൅ ௫
஻ೢ

• Effective Bandwidth:

𝐸 𝑥 ൌ
𝑥

𝑆 ൅ 𝑥
𝐵௪

ൌ
𝐵௪ ⋅ 𝑥

𝐵௪ ⋅ 𝑆 ൅ 𝑥 ൌ
𝐵௪

𝐵௪ ⋅ 𝑆
𝑥 ൅ 1

• Half-power Bandwidth: 𝐸 𝑥 ൌ ஻ೢ
ଶ

• For this example, half-power bandwidth 
occurs at x ൌ  125 KB

Length (x)
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Example: 10 ms Startup Cost (e.g., Disk)

• Half-power bandwidth at x ൌ 1.25 MB

• Large startup cost can degrade 
effective bandwidth

• Amortize it by performing I/O in larger 
blocks
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What Determines Peak BW for I/O?
• Bus Speed

– PCI-X: 1064 MB/s = 133 MHz x 64 bit (per lane)
– ULTRA WIDE SCSI: 40 MB/s
– Serial Attached SCSI & Serial ATA & IEEE 1394 (firewire): 1.6 Gb/s full duplex 

(200 MB/s)
– USB 3.0 – 5 Gb/s
– Thunderbolt 3 – 40 Gb/s 

• Device Transfer Bandwidth
– Rotational speed of disk
– Write / Read rate of NAND flash
– Signaling rate of network link

• Whatever is the bottleneck in the path…
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Sequential Server Performance

• Single sequential “server” that can deliver a task in time 𝐿 operates at 
rate ൑ ଵ

௅
(on average, in steady state, …)

– 𝐿 ൌ 10 ms → 𝐵 ൌ 100 op
sൗ

– 𝐿 ൌ 2 yr → 𝐵 ൌ 0.5 op
yrൗ

• Applies to a processor, a disk drive, a person, a TA, …

L L L L…
time

L
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Single Pipelined Server

• Single pipelined server of 𝑘 stages for tasks of length 𝐿 (i.e., time ௅ ௞⁄ per 
stage) delivers at rate ൑ ௞

௅⁄ .
– 𝐿 ൌ 10 ms, 𝑘 ൌ 4 → 𝐵 ൌ 400 op

sൗ

– 𝐿 ൌ 2 yr, 𝑘 ൌ 2 → 𝐵 ൌ 1 op
yrൗ

L

…

L

L L L L L L L

logical operation divided over distinct resources

time
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Example Systems “Pipelines”

• Anything with queues between operational process behaves roughly 
“pipeline like”

• Important difference is that “initiations” are decoupled from processing
– May have to queue up a burst of operations
– Not synchronous and deterministic like in 61C
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Multiple Servers

• 𝑘 servers handling tasks of length 𝐿 delivers at rate ൑ ௞
௅⁄ .

– 𝐿 ൌ 10 ms, 𝑘 ൌ 4 → 𝐵 ൌ 400 op
sൗ

– 𝐿 ൌ 2 yr, 𝑘 ൌ 2 → 𝐵 ൌ 1 op
yrൗ

• In 61C you saw multiple processors (cores)
– Systems present lots of multiple parallel servers
– Often with lots of queues

L

… k
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Example Systems “Parallelism”

User Process syscall File 
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I/O Performance

Response Time = Queue + I/O device service time

User
Thread
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[OS Paths]

C
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• Performance of I/O subsystem
– Metrics: Response Time, Throughput 
– Effective BW per op = transfer size / response time

» EffBW(n) = n / (S + n/B) = B / (1 + SB/n )
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I/O Performance

Response Time = Queue + I/O device service time

User
Thread

Queue
[OS Paths]

C
ontroller

I/O
device

• Performance of I/O subsystem
– Metrics: Response Time, Throughput 
– Effective BW per op = transfer size / response time

» EffBW(n) = n / (S + n/B) = B / (1 + SB/n )
– Contributing factors to latency:

» Software paths (can be loosely modeled by a queue)
» Hardware controller
» I/O device service time

• Queuing behavior:
– Can lead to big increases of latency as utilization increases
– Solutions?
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A Simple Deterministic World

• Assume requests arrive at regular intervals, take a fixed 
time to process, with plenty of time between …

• Service rate (μ = 1/TS)  - operations per second
• Arrival rate: (λ =  1/TA) - requests per second 
• Utilization: U = λ/μ , where λ < μ
• Average rate is the complete story

Queue Serverarrivals departures

TQ TS

TA TA TA

TSTq
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A Ideal Linear World

• What does the queue wait time look like?
– Grows unbounded at a rate ~ (Ts/TA) till request rate subsides
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A Bursty World

• Requests arrive in a burst, must queue up till served
• Same average arrival time, but almost all of the requests 

experience large queue delays
• Even though average utilization is low

Queue Serverarrivals departures

TQ TS

Q depth

Server

Arrivals
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• Elegant mathematical framework if you start with 
exponential distribution

– Probability density function of a continuous random variable 
with a mean of 1/λ

– f(x) = λe-λx

– “Memoryless”
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So how do we model the burstiness of arrival?

Lots of short arrival 
intervals (i.e., high 
instantaneous rate)

Few long gaps (i.e., low 
instantaneous rate)

x (λ)

mean arrival interval (1/λ)
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Background: 
General Use of Random Distributions

• Server spends variable time (T) with customers
– Mean (Average) m = p(T)T
– Variance (stddev2) 2 = p(T)(T-m)2 = p(T)T2-m2

– Squared coefficient of variance: C = 2/m2

Aggregate description of the distribution

• Important values of C:
– No variance or deterministic  C=0 
– “Memoryless” or exponential  C=1

» Past tells nothing about future
» Poisson process – purely or completely random process
» Many complex systems (or aggregates)

are well described as memoryless 
– Disk response times C  1.5 (majority seeks < average)

Mean 
(m)

mean

Memoryless

Distribution
of service times


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DeparturesArrivals
Queuing System

Introduction to Queuing Theory

• What about queuing time??
– Let’s apply some queuing theory
– Queuing Theory applies to long term, steady state behavior 

Arrival rate = Departure rate

• Arrivals characterized by some probabilistic distribution

• Departures characterized by some probabilistic 
distribution

Queue

C
ontroller

Disk
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Little’s Law

• In any stable system 
– Average arrival rate = Average departure rate 

• The average number of jobs/tasks in the system (N) is equal to 
arrival time / throughput (λ) times the response time (L) 

– N (jobs) = λ (jobs/s) x L (s)
• Regardless of structure, bursts of requests, variation in service

– Instantaneous variations, but it washes out in the average
– Overall, requests match departures

arrivals departuresN
λ

L
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Example

λ = 1
L = 5

0 1 2 3 4 5 6 7 8 169 10 11 12 13 14 15 time

Jobs

L = 5

N = 5 jobs

A: N = λ x L
• E.g., N = λ x L = 5
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Little’s Theorem: Proof Sketch

time

T

arrivals departuresN
λ

L

N(t)

L(i) = response time of job i
N(t) = number of jobs in system

at time t

Job i

L(1)
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Little’s Theorem: Proof Sketch

time
T

arrivals departuresN
λ

L

N(t)

L(i) = response time of job i
N(t) = number of jobs in system

at time t

What is the system occupancy, i.e., average 
number of jobs in the system?

Job i
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Little’s Theorem: Proof Sketch

time
T

arrivals departuresN
λ

L

N(t)

L(i) = response time of job i
N(t) = number of jobs in system

at time t
S(i) = L(i) * 1 = L(i)

Job i

S(1)
S(2)

S =  S(1) + S(2) + … + S(k)  = L(1) + L(2) + … + L(k)

S(k)
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Little’s Theorem: Proof Sketch

time
T

arrivals departuresN
λ

L

N(t)

L(i) = response time of job i
N(t) = number of jobs in system

at time t
S(i) = L(i) * 1 = L(i)

Average occupancy (Navg) = S/T 

Job i

S= area
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Little’s Theorem: Proof Sketch

time
T

arrivals departuresN
λ

L

N(t)

L(i) = response time of job i
N(t) = number of jobs in system

at time t
S(i) = L(i) * 1 = L(i)

Job i

S(1)
S(2)

Navg = S/T = (L(1) + … + L(k))/T

S(k)
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Little’s Theorem: Proof Sketch

time
T

arrivals departuresN
λ

L

N(t)

L(i) = response time of job i
N(t) = number of jobs in system

at time t
S(i) = L(i) * 1 = L(i)

Job i

S(1)
S(2)

Navg = (L(1) + … + L(k))/T = (Ntotal/T)*(L(1) + … + L(k))/Ntotal

S(k)
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Little’s Theorem: Proof Sketch

time
T

arrivals departuresN
λ

L

N(t)

L(i) = response time of job i
N(t) = number of jobs in system

at time t
S(i) = L(i) * 1 = L(i)

Job i

S(1)
S(2)

Navg = (Ntotal/T)*(L(1) + … + L(k))/Ntotal = λavg × Lavg

S(k)
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Little’s Theorem: Proof Sketch

time
T

arrivals departuresN
λ

L

N(t)

L(i) = response time of job i
N(t) = number of jobs in system

at time t
S(i) = L(i) * 1 = L(i)

Job i

S(1)
S(2)

Navg = λavg × Lavg

S(k)
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Little’s Law Applied to a Queue

• When Little’s Law applied to a queue, we get:

Average length of 
the queue

Average Arrival Rate

Average time “waiting” 
in queue

ொ ொ
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A Little Queuing Theory: Computing TQ
• Assumptions:

– System in equilibrium; No limit to the queue
– Time between successive arrivals is random and memoryless

• Parameters that describe our system:
– : mean number of arriving customers/second
– Tser: mean time to service a customer (“m1”)
– C: squared coefficient of variance = 2/m12

– μ: service rate = 1/Tser
– u: server utilization (0u1): u = /μ =   Tser

• Results:
– Memoryless service distribution (C = 1): (an “M/M/1 queue”):

» Tq = Tser x u/(1 – u)
– General service distribution, 1 server (an “M/G/1 queue”):

» Tq = Tser x ½(1+C) x u/(1 – u)

Arrival Rate


Queue ServerService Rate
μ=1/Tser

Why does response/queueing 
delay grow unboundedly even 
though the utilization is < 1 ?

100%
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System Performance In presence of a Queue

Request Rate ( 𝜆 ) - “offered load”
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“Half-Power Point” : load at which system delivers half of peak performance
- Design and provision systems to operate roughly in this regime
- Latency low and predictable, utilization good: ~50%

• 𝑇ொ~ ௨
ଵି௨

, u ൌ ఒ ఓ೘ೌೣ⁄
• Why does latency 

blow up as we 
approach 100% 
utilization?

• Queue builds up on 
each burst

• But very rarely (or 
never) gets a 
chance to drain
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Why unbounded response time?
• Assume deterministic arrival process and service time

– Possible to sustain utilization = 1 with bounded response time!

time

arrival 
time

service
time
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Why unbounded response time?
• Assume stochastic arrival process

(and service time)
– No longer possible to achieve 

utilization = 1

100%
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This wasted time can 
never be reclaimed! 
So cannot achieve u = 1!
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A Little Queuing Theory: An Example
• Example Usage Statistics:

– User requests 10 x 8KB disk I/Os per second
– Requests & service exponentially distributed (C=1.0)
– Avg. service = 20 ms (From controller+seek+rot+trans)

• Questions: 
– How utilized is the disk? 

» Ans: server utilization, u = Tser
– What is the average time spent in the queue? 

» Ans: Tq
– What is the number of requests in the queue? 

» Ans: Lq
– What is the avg response time for disk request? 

» Ans: Tsys = Tq + Tser
• Computation:
 (avg # arriving customers/s) = 10/s
Tser (avg time to service customer) = 20 ms (0.02s)
u (server utilization) =  x Tser= 10/s x .02s = 0.2
Tq (avg time/customer in queue) = Tser x u/(1 – u) 

= 20 x 0.2/(1-0.2) = 20 x 0.25 = 5 ms (0 .005s)
Lq (avg length of queue) =  x Tq=10/s x .005s = 0.05
Tsys (avg time/customer in system) =Tq + Tser= 25 ms
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Queuing Theory Resources
• Resources page contains Queueing Theory Resources (under 

Readings):
– Scanned pages from Patterson and Hennessy book that gives further 

discussion and simple proof for general equation: 
https://cs162.eecs.berkeley.edu/static/readings/patterson_queue.pdf

– A complete website full of resources: 
http://web2.uwindsor.ca/math/hlynka/qonline.html

• Some previous midterms with queueing theory questions

• Assume that Queueing Theory is fair game for Midterm III!
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Optimize I/O Performance

• How to improve performance?
– Make everything faster 
– More Decoupled (Parallelism) systems

» multiple independent buses or controllers
– Optimize the bottleneck to increase service rate

» Use the queue to optimize the service
– Do other useful work while waiting

• Queues absorb bursts and smooth the flow
• Admissions control (finite queues)

– Limits delays, but may introduce unfairness and livelock

Response Time = 
Queue + I/O device service time

User
Thread

Queue
[OS Paths]

C
ontroller

I/O
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(% total BW)
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200
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Recall: I/O and Storage Layers

High Level I/O 
Low Level I/O 

Syscall

File System

I/O Driver

Application / Service

Streams

File Descriptors
open(), read(), write(), close(), …

Files/Directories/Indexes

Commands and Data Transfers

Disks, Flash, Controllers, DMA

What we covered in Lecture 4

Open File Descriptions

What we just covered…

What we will cover next…
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From Storage to File Systems

I/O API and
syscalls Variable-Size Buffer

File System Block
Logical Index,
Typically 4 KB

Hardware 
Devices

Memory Address

HDD

Sector(s)

Physical Index,
512B or 4KB

SSD

Flash Trans. Layer

Phys. Block Phys Index., 
4KB

Sector(s)Sector(s)

Erasure Page
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Building a File System
• File System: Layer of OS that transforms block interface of disks (or other 

block devices) into Files, Directories, etc.
• Classic OS situation: Take limited hardware interface (array of blocks) and 

provide a more convenient/useful interface with:
– Naming: Find file by name, not block numbers
– Organize file names with directories
– Organization: Map files to blocks
– Protection: Enforce access restrictions
– Reliability: Keep files intact despite crashes, hardware failures, etc.
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Recall: User vs. System View of a File
• User’s view: 

– Durable Data Structures
• System’s view (system call interface):

– Collection of Bytes (UNIX)
– Doesn’t matter to system what kind of data structures you want to store on disk!

• System’s view (inside OS):
– Collection of blocks (a block is a logical transfer unit, while a sector is the physical 

transfer unit)
– Block size  sector size; in UNIX, block size is 4KB
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Translation from User to System View

• What happens if user says: “give me bytes 2 – 12?”
– Fetch block corresponding to those bytes
– Return just the correct portion of the block

• What about writing bytes 2 – 12?
– Fetch block, modify relevant portion, write out block

• Everything inside file system is in terms of whole-size blocks
– Actual disk I/O happens in blocks
– read/write smaller than block size needs to translate and buffer

File
System

File
(Bytes)
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Disk Management
• Basic entities on a disk:

– File: user-visible group of blocks arranged sequentially in logical space
– Directory: user-visible index mapping names to files

• The disk is accessed as linear array of sectors
• How to identify a sector?

–Physical position
» Sectors is a vector [cylinder, surface, sector]
» Not used anymore
» OS/BIOS must deal with bad sectors

–Logical Block Addressing (LBA)
» Every sector has integer address 
» Controller translates from address  physical position
» Shields OS from structure of disk
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What Does the File System Need?

• Track free disk blocks
– Need to know where to put newly written data

• Track which blocks contain data for which files
– Need to know where to read a file from

• Track files in a directory
– Find list of file's blocks given its name

• Where do we maintain all of this?
– Somewhere on disk
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Data Structures on Disk

• Somewhat different from data structures in memory
• Access a block at a time

– Can't efficiently read/write a single word
– Have to read/write full block containing it
– Ideally want sequential access patterns

• Durability
– Ideally, file system is in meaningful state upon shutdown
– This obviously isn't always the case…
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Critical Factors in File System Design
• (Hard) Disks Performance !!!

– Maximize sequential access, minimize seeks
• Open before Read/Write

– Can perform protection checks and look up where the actual file resource 
are, in advance

• Size is determined as they are used !!!
– Can write (or read zeros) to expand the file
– Start small and grow, need to make room

• Organized into directories
– What data structure (on disk) for that?

• Need to carefully allocate / free blocks 
– Such that access remains efficient
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Components of a File System

File path

Directory
Structure

File 
Header 
StructureFile number

“inumber”

…

Data blocks

“inode”

One Block = multiple sectors
Ex: 512 sector,  4K block
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Conclusion
• Devices have complex interaction and performance characteristics

– Response time (Latency) = Queue + Overhead + Transfer
» Effective BW = BW * T/(S+T)

– HDD: Queuing time + controller + seek + rotation + transfer
– SSD: Queuing time + controller + transfer (erasure & wear)

• Bursts & High Utilization introduce queuing delays
• Queuing Latency:

– M/M/1 and M/G/1 queues: simplest to analyze
– As utilization approaches 100%, latency  

Tq = Tser x ½(1+C) x u/(1 – u))
• File System:

– Transforms blocks into Files and Directories
– Optimize for access and usage patterns
– Maximize sequential access, allow efficient random access


