C3S162
Operating Systems and
Systems Programming

Lecture 21

Filesystems 1: Performance,
Queueing Theory, Filesystem Design

April 9th, 2024
Prof. John Kubiatowicz
http://cs162.eecs.Berkeley.edu

Recall: Magnetic Disks

« Cylinders: all the tracks under the

head at a given point on all surfaces
- Read/write data is a three-stage process:

Head | A~
-

— Seek time: position the head/arm over the proper track
— Rotational latency: wait for desired sector to rotate under r/w head
— Transfer time: transfer a block of bits (sector) under r/w head

Disk Latency = Queueing Time + Controller time +
Seek Time + Rotation Time + Xfer Time

1sanbay

4/9/2024

Software
Queue

(Device Driver)

Track
Sector

Cylinder

T~Platter

0T
=¥ Media Ti
:% edla Iime
© S (Seek+Rot+Xfer)
e

}nsay

Kubiatowicz CS162 © UCB Spring 2024

Lec 21.2

Recall: FLASH Memory

Individual ETOX™
Flash Memory Cell

BT R Ry

Wordline A W “Eme :

ONO Control Gate Bitine _

Tunnel Oxide
patin te
Source - Drain
n+ M=+ " =
Samsung 2015:
|_ P - Substrate

512GB, NAND Flash

» Like a normal transistor but:
— Has a floating gate that can hold charge
— To write: raise or lower wordline high enough to cause charges to tunnel
— To read: turn on wordline as if normal transistor
» presence of charge changes threshold and thus measured current
* Two varieties:
— NAND: denser, must be read and written in blocks
— NOR: much less dense, fast to read and write

* V-NAND: 3D stacking (Samsung claims 1TB possible in 1 chip)

4/9/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 21.3

Flash Memory (Con't)

L
L
L
L
L

|

I
I

Data written » m axe ||| axe oneblockl Ly 1L~ | [S =
in 4 KB Pages - — “

4 KB 4 KB 4 KB One page _| _| _I _|
*|
4|

— —
D.ata erased — —
In256 KB

Blocks —— “ # 4‘
64 writable Pages 4 KB A KB A KB rage
in 1 erasable Block ‘| | E 4| | |:I 4‘ | |:‘

Typical NAND Flash Pages and Blocks

A N I

l

- HC 40 -

« Data read and written in page-sized chunks (e.g. 4K)
— Cannot be addressed at byte level
— Random access at block level for reads (no locality advantage)
— Writing of new blocks handled in order (kinda like a log)
» Before writing, must be erased (256K block at a time)
— Requires free-list management
— CANNOT write over existing block (Copy-on-Write is normal case)

_{
4i
|
_<

SN [R B
S N VI i B

4/9/2024 Kubiatowicz CS162 © UCB Spring 2024

Lec21.4

SSD Architecture — Reads

NAND NAND

)) 4)

Buffer >

Manager S
Host |[€&—> Flles Memory

SATA | (software

Queus) Controller NAND NAND

\ y _ J

NAND

Read 4 KB Page: ~25 usec NAND
— No seek or rotational latency

— Transfer time: transfer a 4KB page
» SATA: 300-600MB/s => ~4 x103 b / 400 x 108 bps => 10 us AR

— Latency = Queuing Time + Controller time + Xfer Time
— Highest Bandwidth: Sequential OR Random reads

NAND

Sl 2l
iRl

4/9/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 21.5

SSD Architecture — Writes

» Writing data to NAND Flash is complex!
— Can only write empty pages in a block (~ 200us)
— Erasing a block takes ~1.5ms
— Controller maintains pool of empty blocks by :
coalescing used pages (read, erase, write), also iﬁi‘i;";’;‘;;’; = pinl || s
reserves some % of capacity

4 KB 4 KB 4 KB

— Rule of thumb: writes 10x reads, erasure 10x Data erased
writes in 256 KB ¢| —
. . Blocks e
 SSDs provide same interface as HDDs: read .
and write chunk (4KB) at a time 64 writable Pages ag ||| a8 ||| aks
in1 erasable Block

« Why not just erase and rewrite new version of
entire 256KB block?

— Erasure is very slow (milliseconds)

— Each block has a finite lifetime, can only be
erased and rewritten about 10K times

— Heavily used blocks likely to wear out quickly

Typical NAND Flash Pages and Blocks
https://en.wikipedia.org/wiki/Solid-state drive

4/9/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 21.6

Managing Writes: Flash Translation Layer

« Maintain Flash Translation Layer (FTL) in SSD
— Layer of Indirection between OS and FLASH

— Map virtual block numbers (which OS uses) to
physical page numbers (which flash mem.
controller uses)

— Can now freely relocate data w/o OS knowing

« FTL advantages/mechanism:

— Copy on Write: No need to immediately erase
entire 256K block when modifying 4K page

» Don’t overwrite page when OS updates data

» Instead, write new version in a free page

» Update FTL mapping to point to new location
— Wear Levelling: Try to wear out NAND evenly

» SSD controller can assign mappings to spread
workload across pages

— What to do with old versions of pages?
» Garbage Collection in background
» Erase blocks with old pages, add to free list

4/9/2024

Operating
System

=

(=g

(1]

=

2]

S
(| £
Low_-level g 9
driver e
[
File BV
System 2]
@
>
|
>
(7]
>
(7))

SSD .
Flash Translation
(Logical-physical ()
address translation
[Garbage collection]
= [Wear-leveling] (] ;
= S 7 >z
o I =L (72)
3 0 Bad block = o
9 @ management o< o) %
) =
@ [SSD concurrency] = g
[Page allocation]
[Error]
Y correction codes Y

Kubiatowicz CS162 © UCB Spring 2024

Lec 21.7

Some “Current” (large) 3.5in SSDs

« Seagate Exos SSD: 15.36TB (2017)

— Dual 12Gb/s interface

— Seq reads 860MB/s

— Seq writes 920MB/s

— Random Reads (IOPS): 102K

— Random Writes (IOPS): 15K

— Price (Amazon): $5495 ($0.36/GB)
« Nimbus SSD: 100TB (2019)

— Dual port: 12Gb/s interface

— Seq reads/writes: 500MB/s

— Random Read Ops (IOPS): 100K

. . ExaDrive
— Unlimited writes for 5 years! DC sevies

— Price: ~ $40K? ($0.4/GB) .
» However, 50TB drive costs $12500 ($0.25/GB) -x

4/9/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 21.8

Amusing calculation:
Is a full Kindle heavier than an empty one?

 Actually, “Yes”, but not by much
» Flash works by trapping electrons:
— S0, erased state lower energy than written state
« Assuming that:
— Kindle has 4GB flash
— Y2 of all bits in full Kindle are in high-energy state
— High-energy state about 10-'° joules higher

— Then: Full Kindle is 1 attogram (10-'8gram) heavier
(Using E = mc?)

« Of course, this is less than most sensitive scale can measure (it can
measure 10° grams)

« Of course, this weight difference overwhelmed by battery discharge, weight
from getting warm,

« Source: John Kubiatowicz (New York Times, Oct 24, 2011)

4/9/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 21.9

SSD Summary

* Pros (vs. hard disk drives):
— Low latency, high throughput (eliminate seek/rotational delay)
— No moving parts:
» Very light weight, low power, silent, very shock insensitive
— Read at memory speeds (limited by controller and 1/O bus)
« Cons

— Small storage (0.1-0.5x disk), expensive (3-20x disk)
» Hybrid alternative: combine small SSD with large HDD

4/9/2024 Kubiatowicz CS162 © UCB Spring 2024

Lec 21.10

SSD Summary

* Pros (vs. hard disk drives):
— Low latency, high throughput (eliminate seek/rotational delay)

— No moving parts:
» Very light weight, low power, silent, very shock insensitive

— Read at memory speeds (limited by controller and I/O bug No
* Cons longer
—Small-storage(0-1-0-5xdiskiexssororotocor—ror — truel

» Hybrid alternative: combine small SSD with large HDD

— Asymmetric block write performance: read pg/erase/write pg
» Controller garbage collection (GC) algorithms have major effect on performance
— Limited drive lifetime
» 1-10K writes/page for MLC NAND
» Avg failure rate is 6 years, life expectancy is 9—-11 years
« These are changing rapidly!

4/9/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 21.11

Administrivia (4/9/2024)

Midterm 3: Thursday April 25t
— All topics up to an including lecture on the 23™
— 3 sheets of notes, double-sided
Extra (fun!) lecture on Tuesday April 30th
— Topics TBA
Class attendance: No credit for people who use - |
the same photo!
Datad4All@Berkeley: This Friday!
— Friday 4/12, 12:00-1:00 in Soda 510

— Undergraduate or Masters students interested in
Systems broadly defined (DB, Arch, Sec,
Networking, Systems, etc.) who identify as an
URM in Computer Science

— Come by for free lunch to meet fellow interested
students

— Talk to relevant faculty, discuss possible classes, , ,
research opportunities in systems, as well as the https://tinyurl.com/3r3cj3ya

best pizza topping!

4/9/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 21.12

Ways of Measuring Performance: Times (s) and Rates (op/s)

« Latency — time to complete a task

4/9/2024

— Measured in units of time (s, ms, us, ..., hours, years)
Response Time - time to initiate and operation and get its response

— Able to issue one that depends on the result

— Know that it is done (anti-dependence, resource usage)
Throughput or Bandwidth — rate at which tasks are performed
— Measured in units of things per unit time (ops/s, GFLOP/s)
Start up or “Overhead” — time to initiate an operation

Most I/O operations are roughly linear in b bytes
— Latency(b) = Overhead + b/TransferCapacity

Performance???

— Operation time (4 mins to run a mile...)

— Rate (mph, mpg, ..

)

Kubiatowicz CS162 © UCB Spring 2024

Lec 21.13

Example: Overhead in Fast Network

* Considera 1 Gb/s link (B,, = 125 MB/s)

with Startup costS = 1 ms Performance of gbps link with 1 ms startup
x L000 120
« Latency: L(x) =S +—
BW 6,000
« Effective Bandwidth: R
- 3
E(x) b B, - x B, S amo -
X) = = = 2 -
X , B -S = =
S + = BW S + X w 5 %
. B
« Half-power Bandwidth: E(x) = TW y/
» For this example, half-power bandwidth .
OCCU rS at X — 125 KB ’ 0 50,000 100,000 150,000 200,000 250,000 300,000 350,000 400,000 450,000 SOD.OC(:J
Length (x)

4/9/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 21.14

Example: 10 ms Startup Cost (e.g., Disk)

) Half-power bandWIdth at x=125MB Performance of gbps link with 10 ms startup
» Large startup cost can degrade
effective bandwidth
3

12,000
/ - 30
10,000
/ - 25
8,000
/ - 20
6,000
/i/ 1

« Amortize it by performing I/O in larger
blocks

Latency (us)
Bandwidth (mB/s)

4,000
- 10
2,000 - —
Half-power x = 1,250,000 bytes! [°
0 T T T T T T T T T 0
0 50,000 100,000 150,000 200,000 250,000 300,000 350,000 400,000 450,000 500,000
Length (x)

4/9/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 21.15

What Determines Peak BW for |/O?

* Bus Speed
— PCI-X: 1064 MB/s = 133 MHz x 64 bit (per lane)
— ULTRA WIDE SCSI: 40 MB/s

— Serial Attached SCSI & Serial ATA & IEEE 1394 (firewire): 1.6 Gb/s full duplex
(200 MBY/s)

—USB 3.0-5Gb/s
— Thunderbolt 3 — 40 Gb/s

* Device Transfer Bandwidth

— Rotational speed of disk
— Write / Read rate of NAND flash
— Signaling rate of network link

« Whatever is the bottleneck in the path...

4/9/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 21.16

Sequential Server Performance

» time

« Single sequential “server” that can deliver a task in time L operates at
rate < % (on average, in steady state, ...)

- L=10ms — B =100 °P/q
-L=2yr—B=05 P/,

» Applies to a processor, a disk drive, a person, a TA, ...

4/9/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 21.17

Single Pipelined Server

L L
= -:, divided over distinct resources
logical operation —
L L LL L L L
1 |
I 1 1

» time

- Single pipelined server of k stages for tasks of length L (i.e., time L/, per
stage) delivers at rate < ¥/, .

~L=10ms, k=4 — B =400 P/
-L=2yrk=2-B=1%/,

4/9/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 21.18

Example Systems “Pipelines”

I/O Processing B o W
Lower &

File Upper
User Process =8:>System Driver Driver

©
>
7

Communication

« Anything with queues between operational process behaves roughly
“pipeline like”

« Important difference is that “initiations” are decoupled from processing
— May have to queue up a burst of operations
— Not synchronous and deterministic like in 61C

4/9/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 21.19

Multiple Servers

-

 k servers handling tasks of length L delivers at rate < %/,.
~L=10ms, k=4— B =400 P/
-L=2yrk=2-B=1°P/,

* In 61C you saw multiple processors (cores)
— Systems present lots of multiple parallel servers
— Often with lots of queues

4/9/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 21.20

Example Systems “Parallelism”

I/O Processing

syscall, File = ~——~ Upper Lower
U?Jesrel:;rlgﬁzoecsessf N~ >Systerh«j ~ _Driver Driver
User Process.~ N\

Communication

Parallel Computation, Databases, ...

4/9/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 21.21

/O Performance

Response
300
& Time (ms)
User = /0
Thread| —| S device 200
Queue Q
[OS Paths] 100
Response Time = Queue + |/O device service time
* Performance of /O subsystem 0 g9, 100%

_ o : Throughput (Utilization)
Metrics: Response Time, Throughput (% total BW)

— Effective BW per op = transfer size / response time
» EfBW(n)=n/(S+n/B)=B/(1+SB/n)

of ops

time per op

Fixed overhead

4/9/2024 Kubiatowicz CS162 © UCB Spring 2024

Lec 21.22

/O Performance

Response
300
& Time (ms)
User = /0
Thread| —| S device 200
Queue Q
[OS Paths] 100
Response Time = Queue + |/O device service time
* Performance of /O subsystem 0 g9, 100%

_ o : Throughput (Utilization)
Metrics: Response Time, Throughput (% total BW)

— Effective BW per op = transfer size / response time
» EfBW(n)=n/(S+n/B)=B/(1+SB/n)
— Contributing factors to latency:

» Software paths (can be loosely modeled by a queue)
» Hardware controller
» 1/O device service time

* Queuing behavior:

— Can lead to big increases of latency as utilization increases

— i ?
4/9/2024 SOIUtlonS : Kubiatowicz CS162 © UCB Spring 2024

Lec 21.23

A Simple Deterministic World

arrivals—> Queue —> departures
‘_ T A Tg—7

TA TA TA
T, Tg %|
Assume requests arrive at regular intervals, take a fixed
time to process, with plenty of time between ...
Service rate (u = 1/Tg) - operations per second
Arrival rate: (A = 1/T,) - requests per second

Utilization: U = My, where A< p

Average rate is the complete story
4/9/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 21.24

S

A ldeal Linear World

é_ §_ Saturation
< 1 = 1 >
(®)] (@)}
) >
o o
e e
— —
© ©
o o
())
= = mpty Queue [Unbounded
))
O 0 1 o 0 1
Offergd Load (T4/T,) Offered Load (T4/T,)

> >

© KL

))

© ©

))

> -]

) ()

-] >

e} > U >

time time

» \What does the queue wait time look like?
— Grows unbounded at a rate ~ (T/T,) till request rate subsides

4/9/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 21.25

A Bursty World

arrivals—> Queue —> departures

TQ>

Arrivals

v

Q depth I

* Requests arrive in a burst, must queue up till served

- Same average arrival time, but almost all of the requests
experience large queue delays

« Even though average utilization is low

4/9/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 21.26

So how do we model the burstiness of arrival?

« Elegant mathematical framework if you start with
exponential distribution

— Probability density function of a continuous random variable
with a mean of 1/A

— f(x) = Ae™
— “‘Memoryless” 1

Likelihood of an event \

occurring is independent Ofg/f\\; mean arrival interval (1/A)

how long we've been waitin |

Lots of short arrival o4 |
intervals (i.e., high 03 T\
. 1
instantaneous rate) ‘;21 AN
Few long gaps (i.e., low ol N S , ‘
7 4 6 8 10

instantaneous rate) % ()

4/9/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 21.27

Background:
General Use of Random Distributions

— Mean (Average) m = 2Zp(T)xT

— Variance (stddev?) 62 = Zp(T)x(T-m)? = Zp(T)xT2-m2 —+-

— Squared coefficient of variance: C = 6%/m? Df'St”bl.Jt'on.
Aggregate description of the distribution of service times

— No variance or deterministic = C=0

QTi
— “Memoryless” or exponential = C=1

» Past tells nothing about future Memoryless
» Poisson process — purely or completely random process

» Many complex systems (or aggregates)
are well described as memoryless

— Disk response times C ~ 1.5 (majority seeks < average)

« Server spends variable time (T) with customers - |

* Important values of C:

4/9/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 21.28

Introduction to Queuing Theory

@
®)
>
Arrivals | Guese |5 Departures
Queuing System

« What about queuing time??
— Let’s apply some queuing theory

— Queuing Theory applies to long term, steady state behavior =
Arrival rate = Departure rate

 Arrivals characterized by some probabilistic distribution

* Departures characterized by some probabilistic
distribution

4/9/2024 Kubiatowicz CS162 © UCB Spring 2024

Lec 21.29

Little’s Law

departures

arrivals—/-
A

| L |

* In any stable system
— Average arrival rate = Average departure rate

« The average number of jobs/tasks in the system (N) is equal to
arrival time / throughput (1) times the response time (L)

— N (jobs) = (jobs/s) x L (S)

* Regardless of structure, bursts of requests, variation in service
— Instantaneous variations, but it washes out in the average
— Overall, requests match departures

4/9/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 21.30

Example

= >
||
U]r—i

N
D
/

]
II N =5 jobs
1h

Jobs

0123458678 9 10111213 14 15 16
A:N=AxL
E.g,N=AxL=5

4/9/2024 Kubiatowicz CS162 © UCB Spring 2024

time

Lec 21.31

4/9/2024

Little’s Theorem: Proof Sketch

Job i‘

attime ¢

' L(i) = response time of job i k
N(t) = number of jobs in system

arrivalsﬁG departures
A

time

L(1)

Kubiatowicz CS162 © UCB Spring 2024

Lec 21.32

Little’s Theorem: Proof Sketch

arrivalsﬁG departures
A

Job il L() = response time of job i k— L —
N(t) = number of jobs in system
at time ¢

| time

[«

T

D What is the system occupancy, i.e., average
number of jobs in the system?
4/9/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 21.33

Little’s Theorem: Proof Sketch

arrivalsﬁG departures
A

Job il L(i) = response time of job i k—L —

N(t) = number of jobs in system
at time ¢

S(i)=L@1) * 1 =L(1)

| time

[«

=
S=S(1)+S@2)+...+Sk) =L(1)+L2)+... +L(k)

4/9/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 21.34

Little’s Theorem: Proof Sketch

arrivalsﬁG departures
A

Job il L(i) = response time of job i k—L —

N(t) = number of jobs in system
at time ¢

S(i)=L@1) * 1 =L(1)

| time

T

D Average occupancy (N,,,) = S/T

4/9/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 21.35

4/9/2024

Little’s Theorem: Proof Sketch

Job i‘

arrivalsﬁG departures
A

' L(i) = response time of job i k L I

N(t) = number of jobs in system
attime ¢

S(i)=L(@1) * 1 = L(1)

| time

.
Ny =S/T=(L(1)+ ... + LK))/T

Kubiatowicz CS162 © UCB Spring 2024

Lec 21.36

Little’s Theorem: Proof Sketch

arrivalsﬁG departures
A

Job il L(i) = response time of job i k—L —

N(t) = number of jobs in system
at time ¢

S(i)=L@1) * 1 =L(1)

| time

[«

-
Noyg = (LD ... + L))/ T = (N T)*(LAD) + ... + LK) Nigyy

4/9/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 21.37

4/9/2024

Little’s Theorem: Proof Sketch

arrivalsﬁG departures
A

Job il L(i) = response time of job i k—L —

N(t) = number of jobs in system
at time ¢

S(i)=L@1) * 1 =L(1)

| time

[«

T
Navg — (Ntotal/ T)*(L(l) T T L(k))/Ntotal - 7\'avg X L

avg

Kubiatowicz CS162 © UCB Spring 2024

Lec 21.38

4/9/2024

Little’s Theorem: Proof Sketch

Job i‘

arrivalsﬁG departures
A

' L(i) = response time of job i k

N(t) = number of jobs in system
attime ¢

S(i)=L(@1) * 1 = L(1)

| time

Kubiatowicz CS162 © UCB Spring 2024

Lec 21.39

4/9/2024

Little’s Law Applied to a Queue

* When Little’s Law applied to a queue, we get:

—

Average length of

‘ /Average Arrival Rate
L, = AT
7 ¢ Q‘\

the queue in queue

Kubiatowicz CS162 © UCB Spring 2024

Average time “waiting”

Lec 21.40

A Little Queuing Theory: Computing T,

* Assumptions: _
— System in equilibrium; No limit to the queue Why does response/queueing
delay grow unboundedly even

— Time between successive arrivals is random and e s Wz [< 1l 2

e 300 | Response
Arrival Rate Service Rate Time (ms)
A 1/T,

u_

ser 200
« Parameters that describe our system:
— A\ mean number of arrlvmg customers/secal 100
— T, mean time to service a customer (4
- C: squared coefficient of variancg 5 .
— service rate = 1/T_,, 0% o 100%
—u: server utilization (0< x T, Throughput (Utilization)
. Results: (% total BW)
—Memoryles 1): (an “M/M/1 queue”)
» Tg= Toer X
— General service erver (an “M/G/1 queue”)

4/9/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 21.41

System Performance In presence of a Queue

u
) Latency (1) * To~1pu= * tmax
Py # * Why does latency
T 3 | blow up as we
% 5 o) approach 100%
=2, = utilization?
% C g Queue builds up on
= each burst
Operation Time T e But very rare|y (or

Request Rate (1) - “offered load” never) gets a .
chance to drain

“Half-Power Point” : load at which system delivers half of peak performance
- Design and provision systems to operate roughly in this regime
- Latency low and predictable, utilization good: ~50%

4/9/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 21.42

Why unbounded response time?

« Assume deterministic arrival process and service time
— Possible to sustain utilization = 1 with bounded response time!

time

A

—

arrival service
time time

4/9/2024 Kubiatowicz CS162 © UCB Spring 2024

Lec 21.43

4/9/2024

Why unbounded response time?

« Assume stochastic arrival process 300

(and service time)

— No longer possible to achieve
utilization = 1 100

200

This wasted time can

Response
Time (ms)

0

So cannot achieve u = 1!

never be reclaimed! 0%

100%

Throughput (Utilization)

(% total BW)

time

L

.

Kubiatowicz CS162 © UCB Spring 2024

Lec 21.44

A Little Queuing Theory: An Example

« Example Usage Statistics:
— User requests 10 x 8KB disk 1/Os per second
— Requests & service exponentially distributed (C=1.0)
— Avg. service = 20 ms (From controller+seek+rot+trans)

* Questions:

— How utilized is the disk?
» Ans: server utilization, u = AT,

— What is the average time spent in the queue?
» Ans: T,

— What is the number of requests in the queue?
» Ans: L

— What is the avg response time for disk request?
» Ans: T = T + Tg,

. Computatlon
A (avg # arriving customers/s) = 10/s
T.., (avg time to service customer) = 20 ms (0.02s)
u (server utilization) = A x T¢,,= 10/s x .02s = 0.2
T, 8 time/customer in queue) = T, x u/(1 —u
x 0.2/(1-0.2) =20 x 0.25 =5 ms (0 .005s
L, (avg Iength of queue) A x T,=10/s x .005s = 0.05
Tqys (avg time/customer in system% =Tq+ Tge= 20 mMs

4/9/2024 Kubiatowicz CS162 © UCB Sprlng 2024

Lec 21.45

Queuing Theory Resources

» Resources page contains Queueing Theory Resources (under
Readings):
— Scanned pages from Patterson and Hennessy book that gives further

discussion and simple proof for general equation:
https://cs162.eecs.berkeley.edu/static/readings/patterson queue.pdf

— A complete website full of resources:
http://web2.uwindsor.ca/math/hlynka/gonline.html

* Some previous midterms with queueing theory questions

« Assume that Queueing Theory is fair game for Midterm Il!

4/9/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 21.46

Optimize I/O Performance

o 300 | Response
User = /O Time (ms)
Thread g 200
Queue L
[OS Paths]

Response Time = 100

Queue + /0 device service time

- 0 oo 100%
 How to improve performance? 0% °
P .p Throughput (Utilization)
— Make everything faster © (% total BW)

— More Decoupled (Parallelism) systems
» multiple independent buses or controllers

— Optimize the bottleneck to increase service rate
» Use the queue to optimize the service

— Do other useful work while waiting

* Queues absorb bursts and smooth the flow
« Admissions control (finite queues)

— Limits delays, but may introduce unfairness and livelock
4/9/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 21.47

Recall: /O and Storage Layers

Application / Service

High Level I/O Streams

'Low Level /O File Descriptors What we covered in Lecture 4

Syscall open(), read(), write(), close(), ...
Open File Descriptions

_ File Syste Files/Directories/Indexes What we will cover next. ..

What we just covered...

4/9/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 21.48

From Storage to File Systems

GBI - riable-Size Buffer Memory Address
syscalls

Logical Index,

File System Typically 4 KB
Hardware
Devices Phys. Block Phyi }I?Bdex.,
Physical Index,

HDD SSD

4/9/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 21.49

Building a File System

« File System: Layer of OS that transforms block interface of disks (or other
block devices) into Files, Directories, etc.

« Classic OS situation: Take limited hardware interface (array of blocks) and
provide a more convenient/useful interface with:

— Naming: Find file by name, not block numbers

— Organize file names with directories

— QOrganization: Map files to blocks

— Protection: Enforce access restrictions

— Reliability: Keep files intact despite crashes, hardware failures, etc.

4/9/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 21.50

Recall: User vs. System View of a File

« User's view:

— Durable Data Structures
« System’s view (system call interface):

— Collection of Bytes (UNIX)

— Doesn’t matter to system what kind of data structures you want to store on disk!
« System’s view (inside OS):

— Collection of blocks (a block is a logical transfer unit, while a sector is the physical
transfer unit)

— Block size > sector size; in UNIX, block size is 4KB

4/9/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 21.51

Translation from User to System View

2~3-Q-=

« What happens if user says: “give me bytes 2 — 127"
— Fetch block corresponding to those bytes
— Return just the correct portion of the block
« What about writing bytes 2 — 12?
— Fetch block, modify relevant portion, write out block
« Everything inside file system is in terms of whole-size blocks
— Actual disk I/O happens in blocks
— read/write smaller than block size needs to translate and buffer

4/9/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 21.52

Disk Management

 Basic entities on a disk:

— File: user-visible group of blocks arranged sequentially in logical space

— Directory: user-visible index mapping names to files

* The disk is accessed as linear array of sectors
* How to identify a sector?
—Physical position
» Sectors is a vector [cylinder, surface, sector]

» Not used anymore
» OS/BIOS must deal with bad sectors

—Logical Block Addressing (LBA)
» Every sector has integer address
» Controller translates from address = physical position
» Shields OS from structure of disk

4/9/2024 Kubiatowicz CS162 © UCB Spring 2024

Lec 21.53

What Does the File System Need?

 Track free disk blocks
— Need to know where to put newly written data

* Track which blocks contain data for which files
—Need to know where to read a file from

 Track files in a directory
— Find list of file's blocks given its name

* Where do we maintain all of this?
— Somewhere on disk

4/9/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 21.54

Data Structures on Disk

« Somewhat different from data structures in memory

* Access a block at a time
— Can't efficiently read/write a single word
— Have to read/write full block containing it
— |ldeally want sequential access patterns

* Durability

— ldeally, file system is in meaningful state upon shutdown
— This obviously isn't always the case...

4/9/2024 Kubiatowicz CS162 © UCB Spring 2024

Lec 21.55

Critical Factors in File System Design

(Hard) Disks Performance !l
— Maximize sequential access, minimize seeks
Open before Read/Write

— Can perform protection checks and look up where the actual file resource
are, in advance

Size is determined as they are used !!!

— Can write (or read zeros) to expand the file

— Start small and grow, need to make room
Organized into directories

— What data structure (on disk) for that?
Need to carefully allocate / free blocks

— Such that access remains efficient

4/9/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 21.56

Components of a File System

File path

Directory

Structure File
eee® One Block = multiple sectors

File number ELLETE Ex: 512 sector, 4K block

- Data blocks

“inumber’

“inode”

4/9/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 21.57

Conclusion

Devices have complex interaction and performance characteristics
— Response time (Latency) = Queue + Overhead + Transfer
» Effective BW =BW * T/(S+T)
— HDD: Queuing time + controller + seek + rotation + transfer
— SSD: Queuing time + controller + transfer (erasure & wear)

Bursts & High Utilization introduce queuing delays
Queuing Latency:

— M/M/1 and M/G/1 queues: simplest to analyze

— As utilization approaches 100%, latency — «

Ty = Teer X 72(1+C) x U/(1 = u))

File System:

— Transforms blocks into Files and Directories

— Optimize for access and usage patterns

— Maximize sequential access, allow efficient random access

4/9/2024 Kubiatowicz CS162 © UCB Spring 2024

Lec 21.58

