
CS162
Operating Systems and
Systems Programming

Lecture 22

Filesystems 2: Filesystem Design (Con’t),
Filesystem Case Studies

April 11th, 2024
Prof. John Kubiatowicz

http://cs162.eecs.Berkeley.edu

Lec 22.24/11/2024 Kubiatowicz CS162 © UCB Spring 2024

Recall: A Few Queuing Theory Results
• Assumptions:

– System in equilibrium; No limit to the queue
– Time between successive arrivals is random and memoryless

• Parameters that describe our system:
– : mean number of arriving customers/second
– Tser: mean time to service a customer (“m1”)
– C: squared coefficient of variance = 2/m12

– μ: service rate = 1/Tser
– u: server utilization (0u1): u = /μ =   Tser

• Parameters we wish to compute:
– Tq: Time spent in queue
– Lq: Length of queue =   Tq (by Little’s law)

• Results:
– Memoryless service distribution (C = 1): (an “M/M/1 queue”):

» Tq = Tser x u/(1 – u)
– General service distribution (no restrictions), 1 server (an “M/G/1 queue”):

» Tq = Tser x ½(1+C) x u/(1 – u)

Arrival Rate


Queue ServerService Rate
μ=1/Tser

Why does response/queueing
delay grow unboundedly even
though the utilization is < 1 ?

100%

Response
Time (ms)

Throughput (Utilization)
(% total BW)

0

100

200

300

0%

Lec 22.34/11/2024 Kubiatowicz CS162 © UCB Spring 2024

Recall: I/O and Storage Layers

High Level I/O
Low Level I/O

Syscall

File System

I/O Driver

Application / Service

Streams

File Descriptors
open(), read(), write(), close(), …

Files/Directories/Indexes

Commands and Data Transfers

Disks, Flash, Controllers, DMA

What we covered in Lecture 4

Open File Descriptions

What we just covered…

What we will cover next…

Lec 22.44/11/2024 Kubiatowicz CS162 © UCB Spring 2024

From Storage to File Systems

I/O API and
syscalls Variable-Size Buffer

File System Block
Logical Index,
Typically 4 KB

Hardware
Devices

Memory Address

HDD

Sector(s)

Physical Index,
512B or 4KB

SSD

Flash Trans. Layer

Phys. Block Phys Index.,
4KB

Sector(s)Sector(s)

Erasure Page

Lec 22.54/11/2024 Kubiatowicz CS162 © UCB Spring 2024

Building a File System
• File System: Layer of OS that transforms block interface of disks (or other

block devices) into Files, Directories, etc.
• Classic OS situation: Take limited hardware interface (array of blocks) and

provide a more convenient/useful interface with:
– Naming: Find file by name, not block numbers
– Organize file names with directories
– Organization: Map files to blocks
– Protection: Enforce access restrictions
– Reliability: Keep files intact despite crashes, hardware failures, etc.

Lec 22.64/11/2024 Kubiatowicz CS162 © UCB Spring 2024

Recall: User vs. System View of a File
• User’s view:

– Durable Data Structures
• System’s view (system call interface):

– Collection of Bytes (UNIX)
– Doesn’t matter to system what kind of data structures you want to store on disk!

• System’s view (inside OS):
– Collection of blocks (a block is a logical transfer unit, while a sector is the physical

transfer unit)
– Block size  sector size; in UNIX, block size is 4KB

Lec 22.74/11/2024 Kubiatowicz CS162 © UCB Spring 2024

Translation from User to System View

• What happens if user says: “give me bytes 2 – 12?”
– Fetch block corresponding to those bytes
– Return just the correct portion of the block

• What about writing bytes 2 – 12?
– Fetch block, modify relevant portion, write out block

• Everything inside file system is in terms of whole-size blocks
– Actual disk I/O happens in blocks
– read/write smaller than block size needs to translate and buffer

File
System

File
(Bytes)

Lec 22.84/11/2024 Kubiatowicz CS162 © UCB Spring 2024

Disk Management
• Basic entities on a disk:

– File: user-visible group of blocks arranged sequentially in logical space
– Directory: user-visible index mapping names to files

• The disk is accessed as linear array of sectors
• How to identify a sector?

–Physical position
» Sectors is a vector [cylinder, surface, sector]
» Not used anymore
» OS/BIOS must deal with bad sectors

–Logical Block Addressing (LBA)
» Every sector has integer address
» Controller translates from address  physical position
» Shields OS from structure of disk

Lec 22.94/11/2024 Kubiatowicz CS162 © UCB Spring 2024

What Does the File System Need?
• Track free disk blocks

– Need to know where to put newly written data
• Track which blocks contain data for which files

– Need to know where to read a file from
• Track files in a directory

– Find list of file's blocks given its name
• Where do we maintain all of this?

– Somewhere on disk

Lec 22.104/11/2024 Kubiatowicz CS162 © UCB Spring 2024

Data Structures on Disk
• Different than data structures in memory

– Must load from disk into memory to manipulate
– Modifications to disk data are really expensive, so only change when needed

• Access a block at a time
– Can't efficiently read/write a single word
– Have to read/write full block containing it
– Ideally want sequential access patterns

• Durability
– Ideally, file system is in meaningful state upon shutdown
– This obviously isn't always the case…

Lec 22.114/11/2024 Kubiatowicz CS162 © UCB Spring 2024

FILE SYSTEM DESIGN

Lec 22.124/11/2024 Kubiatowicz CS162 © UCB Spring 2024

Critical Factors in File System Design
• (Hard) Disks Performance !!!

– Maximize sequential access, minimize seeks
• Open before Read/Write

– Can perform protection checks and look up where the actual file resource
are, in advance

• Size is determined as they are used !!!
– Can write (or read zeros) to expand the file
– Start small and grow, need to make room

• Organized into directories
– What data structure (on disk) for that?

• Need to carefully allocate / free blocks
– Such that access remains efficient

Lec 22.134/11/2024 Kubiatowicz CS162 © UCB Spring 2024

Components of a File System

File path

Directory
Structure

File
Header
StructureFile number

“inumber”

…

Data blocks

“inode”

One Block = multiple sectors
Ex: 512 sector, 4K block

Lec 22.144/11/2024 Kubiatowicz CS162 © UCB Spring 2024

Recall: Abstract Representation of a Process

Suppose that we execute
open(“foo.txt”)
and that the result is 3

Next, suppose that we
execute
read(3, buf, 100)
and that the result is 100

User Space
Kernel Space

Address
Space

(Memory)

Thread’s
Regs

File Descriptors

Not shown:
Initially contains
0, 1, and 2
(stdin, stdout,
stderr)

3
File: foo.txt
Position: 100

Open File Description

Process

…

Lec 22.154/11/2024 Kubiatowicz CS162 © UCB Spring 2024

Components of a File System

Open file description is
better described as
remembering the inumber
(file number) of the file,
not its nameUser Space

Kernel Space

Address
Space

(Memory)

Thread’s
Regs

File Descriptors

Not shown: Initially
contains 0, 1, and 2
(stdin, stdout,
stderr)

3 File: foo.txt
inumber
Position: 100

Open File Description

Process

…

Lec 22.164/11/2024 Kubiatowicz CS162 © UCB Spring 2024

Components of a File System

• Open performs Name Resolution
– Translates path name into a “file number”

• Read and Write operate on the file number
– Use file number as an “index” to locate the blocks

• 4 components:
– directory, index structure, storage blocks, free space map

file name
offset directory structure

file number
offset index structure

(“inode”)

storage block

Lec 22.174/11/2024 Kubiatowicz CS162 © UCB Spring 2024

Administrivia
• Homework 5: RPC deadline this Thursday (4/12)
• Project 3: Design doc due Monday (4/15)
• Midterm 3: April 25th

– Everything fair game with focus on last 1/3 of class
– Three hand-written cheat-sheets, double sided

• Class attendance: No credit for people who use the
same photo!

• Data4All@Berkeley: Tomorrow (Friday!)
– Friday 4/12, 12:00-1:00 in Wozniak lounge (MOVED!)
– Undergraduate or Masters students interested in

Systems broadly defined (DB, Arch, Sec, Networking,
Systems, etc.) who identify as an URM in Computer
Science

– Come by for free lunch to meet fellow students
» Sign up – look for link on Ed

– Talk to relevant faculty, discuss possible classes,
research opportunities in systems, as well as the best
pizza topping!

https://tinyurl.com/bdhx8hfc

Lec 22.184/11/2024 Kubiatowicz CS162 © UCB Spring 2024

How to get the File Number?
• Look up in directory structure

• A directory is a file containing <file_name : file_number> mappings
– File number could be a file or another directory
– Operating system stores the mapping in the directory in a format it interprets
– Each <file_name : file_number> mapping is called a directory entry

• Process isn’t allowed to read the raw bytes of a directory
– The read function doesn’t work on a directory
– Instead, see readdir, which iterates over the map without revealing the raw bytes

• Why shouldn’t the OS let processes read/write the bytes of a directory?

Lec 22.194/11/2024 Kubiatowicz CS162 © UCB Spring 2024

Directories

Lec 22.204/11/2024 Kubiatowicz CS162 © UCB Spring 2024

Directory Abstraction

• Directories are specialized files
– Contents: List of pairs <file name, file number>

• System calls to access directories
– open / creat / readdir traverse the structure
– mkdir / rmdir add/remove entries
– link / unlink (rm)

• libc support
– DIR * opendir (const char *dirname)
– struct dirent * readdir (DIR *dirstream)
– int readdir_r (DIR *dirstream, struct dirent *entry,

struct dirent **result)

/usr

/usr/lib4.3

/usr/lib4.3/foo

/usr/lib

Lec 22.214/11/2024 Kubiatowicz CS162 © UCB Spring 2024

Directory Structure
• How many disk accesses to resolve “/my/book/count”?

– Read in file header for root (fixed spot on disk)
– Read in first data block for root

» Table of file name/index pairs.
» Search linearly – ok since directories typically very small

– Read in file header for “my”
– Read in first data block for “my”; search for “book”
– Read in file header for “book”
– Read in first data block for “book”; search for “count”
– Read in file header for “count”

• Current working directory: Per-address-space pointer to a directory used for
resolving file names

– Allows user to specify relative filename instead of absolute path (say
CWD=“/my/book” can resolve “count”)

Lec 22.224/11/2024 Kubiatowicz CS162 © UCB Spring 2024

In-Memory File System Structures

• Open syscall: find inode on disk from pathname (traversing directories)
– Create “in-memory inode” in system-wide open file table
– One entry in this table no matter how many instances of the file are open

• Read/write syscalls look up in-memory inode using the file handle

(fd)

fd

inode

Lec 22.234/11/2024 Kubiatowicz CS162 © UCB Spring 2024

Characteristics of Files

Published in FAST 2007

Lec 22.244/11/2024 Kubiatowicz CS162 © UCB Spring 2024

Observation #1: Most Files Are Small

Lec 22.254/11/2024 Kubiatowicz CS162 © UCB Spring 2024

Observation #2: Most Bytes are in Large Files

Lec 22.264/11/2024 Kubiatowicz CS162 © UCB Spring 2024

CASE STUDY:
FAT: FILE ALLOCATION TABLE

• MS-DOS, 1977
• Still widely used!

Lec 22.274/11/2024 Kubiatowicz CS162 © UCB Spring 2024

File 31, Block 2File 31, Block 2

FAT (File Allocation Table)

• Assume (for now) we have a
way to translate a path to
a “file number”

– i.e., a directory structure
• Disk Storage is a collection of

Blocks
– Just hold file data (offset o = < B, x >)

• Example: file_read 31, < 2, x >
– Index into FAT with file number
– Follow linked list to block
– Read the block from disk

into memory

File 31, Block 0
File 31, Block 1

Disk BlocksFAT

N-1:

0:0:

N-1:

31:

File number

memory

Lec 22.284/11/2024 Kubiatowicz CS162 © UCB Spring 2024

FAT (File Allocation Table)

• File is a collection of disk blocks
• FAT is linked list 1-1 with blocks
• File number is index of root of

block list for the file
• File offset: block number and

offset within block
• Follow list to get block number
• Unused blocks marked free

– Could require scan to find
– Or, could use a free list

File 31, Block 0
File 31, Block 1

File 31, Block 2

Disk BlocksFAT

N-1:

0:0:

N-1:

31:

File number

memory

free

Lec 22.294/11/2024 Kubiatowicz CS162 © UCB Spring 2024

FAT (File Allocation Table)

• File is a collection of disk blocks
• FAT is linked list 1-1 with blocks
• File number is index of root of

block list for the file
• File offset: block number and

offset within block
• Follow list to get block number
• Unused blocks marked free

– Could require scan to find
– Or, could use a free list

File 31, Block 0
File 31, Block 1

File 31, Block 2

Disk BlocksFAT

N-1:

0:0:

N-1:

31:

File number

memory

free

Lec 22.304/11/2024 Kubiatowicz CS162 © UCB Spring 2024

FAT (File Allocation Table)

• File is a collection of disk blocks
• FAT is linked list 1-1 with blocks
• File number is index of root of

block list for the file
• File offset: block number and

offset within block
• Follow list to get block number
• Unused blocks marked free

– Could require scan to find
– Or, could use a free list

• Ex: file_write(31, < 3, y >)
– Grab free block
– Linking them into file

File 31, Block 0
File 31, Block 1

File 31, Block 2

Disk BlocksFAT

N-1:

0:0:

N-1:

31:

File number

memory

free
File 31, Block 3

Lec 22.314/11/2024 Kubiatowicz CS162 © UCB Spring 2024

File 31, Block 3

FAT (File Allocation Table)
• Where is FAT stored?

– On disk
• How to format a disk?

– Zero the blocks, mark FAT entries “free”
• How to quick format a disk?

– Mark FAT entries “free”

• Simple: can implement in device
firmware

File 31, Block 0
File 31, Block 1

File 31, Block 2

Disk BlocksFAT

N-1:

0:0:

N-1:

31:

File #1

memory

free

File #2

Lec 22.324/11/2024 Kubiatowicz CS162 © UCB Spring 2024

FAT: Directories

• A directory is a file containing <file_name: file_number> mappings
• Free space for new/deleted entries
• In FAT: file attributes are kept in directory (!!!)

– Not directly associated with the file itself
• Each directory a linked list of entries

– Requires linear search of directory to find particular entry
• Where do you find root directory (“/”)?

– At well-defined place on disk
– For FAT, this is at block 2 (there are no blocks 0 or 1)
– Remaining directories

Lec 22.334/11/2024 Kubiatowicz CS162 © UCB Spring 2024

File 31, Block 3

FAT Discussion

Suppose you start with the file number:
• Time to find block?
• Block layout for file?
• Sequential access?
• Random access?
• Fragmentation?
• Small files?
• Big files?

File 31, Block 0
File 31, Block 1

File 31, Block 2

Disk BlocksFAT

N-1:

0:0:

N-1:

31:

File #1

memory

free

File #2

Lec 22.344/11/2024 Kubiatowicz CS162 © UCB Spring 2024

CASE STUDY:
UNIX FILE SYSTEM (BERKELEY FFS)

Lec 22.354/11/2024 Kubiatowicz CS162 © UCB Spring 2024

Inodes in Unix (Including Berkeley FFS)

• File Number is index into set of inode arrays
• Index structure is an array of inodes

– File Number (inumber) is an index into the array of inodes
– Each inode corresponds to a file and contains its metadata

» So, things like read/write permissions are stored with file, not in directory
» Allows multiple names (directory entries) for a file

• Inode maintains a multi-level tree structure to find storage blocks for files
– Great for little and large files
– Asymmetric tree with fixed sized blocks

• Original inode format appeared in BSD 4.1 (more following)
– Berkeley Standard Distribution Unix!
– Part of your heritage!
– Similar structure for Linux Ext 2/3

Lec 22.364/11/2024 Kubiatowicz CS162 © UCB Spring 2024

Inode Structure

Lec 22.374/11/2024 Kubiatowicz CS162 © UCB Spring 2024

File Atributes

User
Group
9 basic access control bits

- UGO x RWX
SetUID bit

- execute at owner permissions
rather than user

SetGID bit
- execute at group’s permissions

Lec 22.384/11/2024 Kubiatowicz CS162 © UCB Spring 2024

Small Files: 12 Pointers Direct to Data Blocks
Direct pointers

4kB blocks  sufficient
for files up to 48KB

Lec 22.394/11/2024 Kubiatowicz CS162 © UCB Spring 2024

Large Files: 1-, 2-, 3-level indirect pointers
Indirect pointers
- point to a disk block

containing only pointers
- 4 kB blocks => 1024 ptrs

=> 4 MB @ level 2
=> 4 GB @ level 3
=> 4 TB @ level 4 48 KB

+4 MB

+4 GB

+4 TB

Lec 22.404/11/2024 Kubiatowicz CS162 © UCB Spring 2024

Putting it All Together: On-Disk Index
• Sample file in multilevel

indexed format:
– 10 direct ptrs, 1K blocks
– How many accesses for

block #23? (assume file
header accessed on open)?

» Two: One for indirect block,
one for data

– How about block #5?
» One: One for data

– Block #340?
» Three: double indirect block,

indirect block, and data

Lec 22.414/11/2024 Kubiatowicz CS162 © UCB Spring 2024

Recall: Critical Factors in File System Design
• (Hard) Disk Performance !!!

– Maximize sequential access, minimize seeks
• Open before Read/Write

– Can perform protection checks and look up where the actual file resource are,
in advance

• Size is determined as they are used !!!
– Can write (or read zeros) to expand the file
– Start small and grow, need to make room

• Organized into directories
– What data structure (on disk) for that?

• Need to carefully allocate / free blocks
– Such that access remains efficient

Lec 22.424/11/2024 Kubiatowicz CS162 © UCB Spring 2024

Recall: Magnetic Disks

• Cylinders: all the tracks under the
head at a given point on all surfaces

• Read/write data is a three-stage process:
– Seek time: position the head/arm over the proper track
– Rotational latency: wait for desired sector to rotate under r/w head
– Transfer time: transfer a block of bits (sector) under r/w head

Sector
Track

Cylinder
Head

Platter

Software
Queue
(Device Driver)

H
ardw

are
C

ontroller
Media Time
(Seek+Rot+Xfer)

R
equest

R
esult

Disk Latency = Queueing Time + Controller time +
Seek Time + Rotation Time + Xfer Time

Lec 22.434/11/2024 Kubiatowicz CS162 © UCB Spring 2024

Fast File System (BSD 4.2, 1984)
• Same inode structure as in BSD 4.1

– same file header and triply indirect blocks like we just studied
– Some changes to block sizes from 10244096 bytes for performance

• Paper on FFS: “A Fast File System for UNIX”
– Marshall McKusick, William Joy, Samuel Leffler and Robert Fabry
– Off the “resources” page of course website – Take a look!

• Optimization for Performance and Reliability:
– Distribute inodes among different tracks to be closer to data
– Uses bitmap allocation in place of freelist
– Attempt to allocate files contiguously
– 10% reserved disk space
– Skip-sector positioning (mentioned later)

Lec 22.444/11/2024 Kubiatowicz CS162 © UCB Spring 2024

FFS Changes in Inode Placement: Motivation
• In early UNIX and DOS/Windows’ FAT file system, headers stored in special

array in outermost cylinders
– Fixed size, set when disk is formatted

» At formatting time, a fixed number of inodes are created
» Each is given a unique number, called an “inumber”

• Problem #1: Inodes all in one place (outer tracks)
– Head crash potentially destroys all files by destroying inodes
– Inodes not close to the data that the point to

» To read a small file, seek to get header, seek back to data

• Problem #2: When create a file, don’t know how big it will become (in UNIX,
most writes are by appending)

– How much contiguous space do you allocate for a file?
– Makes it hard to optimize for performance

Lec 22.454/11/2024 Kubiatowicz CS162 © UCB Spring 2024

FFS Locality: Block Groups
• The UNIX BSD 4.2 (FFS) distributed the header information

(inodes) closer to the data blocks
– Often, inode for file stored in same “cylinder group”

as parent directory of the file
– makes an “ls” of that directory run very fast

• File system volume divided into set of block groups
– Close set of tracks

• Data blocks, metadata, and free space
interleaved within block group

– Avoid huge seeks between user data and
system structure

• Put directory and its files in common block group

Lec 22.464/11/2024 Kubiatowicz CS162 © UCB Spring 2024

FFS Locality: Block Groups (Con’t)
• First-Free allocation of new file blocks

– To expand file, first try successive blocks in bitmap, then
choose new range of blocks

– Few little holes at start, big sequential runs at
end of group

– Avoids fragmentation
– Sequential layout for big files

• Important: keep 10% or more free!
– Reserve space in the Block Group

• Summary: FFS Inode Layout Pros
– For small directories, can fit all data, file headers,

etc. in same cylinder  no seeks!
– File headers much smaller than whole block

(a few hundred bytes), so multiple headers fetched from disk at same time
– Reliability: whatever happens to the disk, you can find many of the files

(even if directories disconnected)

Lec 22.474/11/2024 Kubiatowicz CS162 © UCB Spring 2024

UNIX 4.2 BSD FFS First Fit Block Allocation

• Fills in the small holes at the start of block group
• Avoids fragmentation, leaves contiguous free space at

end

Lec 22.484/11/2024 Kubiatowicz CS162 © UCB Spring 2024

Attack of the Rotational Delay
• Problem 3: Missing blocks due to rotational delay

– Issue: Read one block, do processing, and read next block. In meantime, disk has
continued turning: missed next block! Need 1 revolution/block!

– Solution1: Skip sector positioning (“interleaving”)
» Place the blocks from one file on every other block of a track: give time for processing

to overlap rotation
» Can be done by OS or in modern drives by the disk controller

– Solution 2: Read ahead: read next block right after first, even if application hasn’t asked
for it yet

» This can be done either by OS (read ahead)
» By disk itself (track buffers) - many disk controllers have internal RAM that allows them

to read a complete track
• Modern disks + controllers do many things “under the covers”

– Track buffers, elevator algorithms, bad block filtering

Skip Sector

Track Buffer
(Holds complete track)

Lec 22.494/11/2024 Kubiatowicz CS162 © UCB Spring 2024

UNIX 4.2 BSD FFS
• Pros

– Efficient storage for both small and large files
– Locality for both small and large files
– Locality for metadata and data
– No defragmentation necessary!

• Cons
– Inefficient for tiny files (a 1 byte file requires both an inode and

a data block)
– Inefficient encoding when file is mostly contiguous on disk
– Need to reserve 10-20% of free space to prevent

fragmentation

Lec 22.504/11/2024 Kubiatowicz CS162 © UCB Spring 2024

Linux Example: Ext2/3 Disk Layout
• Disk divided into block groups

– Provides locality
– Each group has two block-sized bitmaps

(free blocks/inodes)
– Block sizes settable at format time:

1K, 2K, 4K, 8K…
• Actual inode structure similar to 4.2 BSD

– with 12 direct pointers
• Ext3: Ext2 with Journaling

– Several degrees of protection with
comparable overhead

– We will talk about Journalling later

• Example: create a file1.dat
under /dir1/ in Ext3

Lec 22.514/11/2024 Kubiatowicz CS162 © UCB Spring 2024

Recall: Directory Abstraction
• Directories are specialized files

– Contents: List of pairs <file name, file number>
• System calls to access directories

– open / creat traverse the structure
– mkdir /rmdir add/remove entries
– link / unlink (rm)

• libc support
– DIR * opendir (const char *dirname)
– struct dirent * readdir (DIR *dirstream)
– int readdir_r (DIR *dirstream, struct dirent
*entry,

struct dirent **result)

/usr

/usr/lib4.3

/usr/lib4.3/foo

/usr/lib

Lec 22.524/11/2024 Kubiatowicz CS162 © UCB Spring 2024

Hard Links
• Hard link

– Mapping from name to file number in the directory structure
– First hard link to a file is made when file created
– Create extra hard links to a file with the link() system call
– Remove links with unlink() system call

• When can file contents be deleted?
– When there are no more hard links to the file
– Inode maintains reference count for this purpose

/usr

/usr/lib4.3

/usr/lib4.3/foo

/usr/lib

Lec 22.534/11/2024 Kubiatowicz CS162 © UCB Spring 2024

Soft Links (Symbolic Links)
• Soft link or Symbolic Link or Shortcut

– Directory entry contains the path and name of the file
– Map one name to another name

• Contrast these two different types of directory entries:
– Normal directory entry: <file name, file #>
– Symbolic link: <file name, dest. file name>

• OS looks up destination file name each time program accesses
source file name

– Lookup can fail (error result from open)

• Unix: Create soft links with symlink syscall

Lec 22.544/11/2024 Kubiatowicz CS162 © UCB Spring 2024

Directory Traversal
• What happens when we open /home/cs162/stuff.txt?
• “/” - inumber for root inode configured into kernel, say 2

– Read inode 2 from its position in inode array on disk
– Extract the direct and indirect block pointers
– Determine block that holds root directory (say block 49358)
– Read that block, scan it for “home” to get inumber for this

directory (say 8086)
• Read inode 8086 for /home, extract its blocks, read block

(say 7756), scan it for “cs162” to get its inumber (say 732)
• Read inode 732 for /home/cs162, extract its blocks, read

block (say 12132), scan it for “stuff.txt” to get its inumber,
say 9909

• Read inode 9909 for /home/cs162/stuff.txt
• Set up file description to refer to this inode so reads /

write can access the data blocks referenced by its direct
and indirect pointers

• Check permissions on the final inode and each
directory’s inode…

“home”:8086

block 49358

2

8086 block 7756

“cs162”:732

732 block 12132

“stuff.txt”:9909

9909
Blocks of
stuff.txt

inode

2:
732:
8086:

9099: “home”:8086

“stuff.txt”:9909“cs162”:732

Memory

Lec 22.554/11/2024 Kubiatowicz CS162 © UCB Spring 2024

Large Directories: B-Trees (dirhash)

in FreeBSD, NetBSD, OpenBSD

Lec 22.564/11/2024 Kubiatowicz CS162 © UCB Spring 2024

Conclusion
• File System:

– Transforms blocks into Files and Directories
– Optimize for access and usage patterns
– Maximize sequential access, allow efficient random access

• File (and directory) defined by header, called “inode”
• Naming: translating from user-visible names to actual sys resources

– Directories used for naming for local file systems
– Linked or tree structure stored in files

• File Allocation Table (FAT) Scheme
– Linked-list approach
– Very widely used: Cameras, USB drives, SD cards
– Simple to implement, but poor performance and no security

• Look at actual file access patterns
– Many small files, but large files take up all the space!

• 4.2 BSD Fast File System: Multi-level inode header to describe files
– Inode contains ptrs to actual blocks, indirect blocks, double indirect blocks, etc.
– Optimizations for sequential access: start new files in open ranges of free blocks, rotational

optimization

