CS162
Operating Systems and

Systems Programming
Lecture 22

Filesystems 2: Filesystem Design (Con’t),
Filesystem Case Studies

April 11th, 2024
Prof. John Kubiatowicz
http://cs162.eecs.Berkeley.edu

Recall: A Few Queuing Theory Results

Assumptions: Why d / :
— System in equilibrium; No limit to the queue y does response/queueing

— Time between successive arrivals is random and memoryless | delay grow unboundedly even

though the utilizationis <1 ?
—
Arrival Rate m‘
A 1/T,

"‘|= ser

Response
300
Time (ms)

» Parameters that describe our system: 200
-\ mean number of arriving customers/second
— Teer mean time to service a customer (“m17) 100
- C: squared coefficient of variance = 62/m12
— service rate = 1/T,,
— u: server utilization (0<ug1):u=Ap =L x T, 0 5o 100%
 Parameters we wish to qompute: Throughput (Utilization)
- T4 Time spent in queue | (% total BW)
- Ly Length of queue = x T, (by L
* Results:
— Memoryless ' ' ; queue”):
» Tq= Teer
— General service lons), 1 server (an “M/G/1 queue”):

4/11/2024 Lec 22.2

Recall: /O and Storage Layers

Application / Service

High Level I/O Streams

'Low Level /O File Descriptors What we covered in Lecture 4

Syscall open(), read(), write(), close(), ...
Open File Descriptions

_ File Syste Files/Directories/Indexes What we will cover next. ..

What we just covered...

4/11/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 22.3

From Storage to File Systems

GBI - riable-Size Buffer Memory Address
syscalls

Logical Index,

File System Typically 4 KB
Hardware
Devices Phys. Block Phyi }I?Bdex.,
Physical Index,

HDD SSD

4/11/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 22.4

Building a File System

« File System: Layer of OS that transforms block interface of disks (or other
block devices) into Files, Directories, etc.

« Classic OS situation: Take limited hardware interface (array of blocks) and
provide a more convenient/useful interface with:

— Naming: Find file by name, not block numbers

— Organize file names with directories

— QOrganization: Map files to blocks

— Protection: Enforce access restrictions

— Reliability: Keep files intact despite crashes, hardware failures, etc.

4/11/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 22.5

Recall: User vs. System View of a File

« User's view:

— Durable Data Structures
« System’s view (system call interface):

— Collection of Bytes (UNIX)

— Doesn’t matter to system what kind of data structures you want to store on disk!
« System’s view (inside OS):

— Collection of blocks (a block is a logical transfer unit, while a sector is the physical
transfer unit)

— Block size > sector size; in UNIX, block size is 4KB

4/11/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 22.6

Translation from User to System View

2~3-Q-=

« What happens if user says: “give me bytes 2 — 127"
— Fetch block corresponding to those bytes
— Return just the correct portion of the block
« What about writing bytes 2 — 12?
— Fetch block, modify relevant portion, write out block
« Everything inside file system is in terms of whole-size blocks
— Actual disk I/O happens in blocks
— read/write smaller than block size needs to translate and buffer

4/11/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 22.7

Disk Management

« Basic entities on a disk:
— File: user-visible group of blocks arranged sequentially in logical space
— Directory: user-visible index mapping names to files

* The disk is accessed as linear array of sectors
* How to identify a sector?
—Physical position
» Sectors is a vector [cylinder, surface, sector]

» Not used anymore
» OS/BIOS must deal with bad sectors

—Logical Block Addressing (LBA)
» Every sector has integer address
» Controller translates from address = physical position
» Shields OS from structure of disk

4/11/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 22.8

What Does the File System Need?

Track free disk blocks
— Need to know where to put newly written data
Track which blocks contain data for which files
— Need to know where to read a file from
Track files in a directory
— Find list of file's blocks given its name
Where do we maintain all of this?
— Somewhere on disk

4/11/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 22.9

Data Structures on Disk

 Different than data structures in memory

— Must load from disk into memory to manipulate

— Modifications to disk data are really expensive, so only change when needed
« Access a block at a time

— Can't efficiently read/write a single word

— Have to read/write full block containing it

— ldeally want sequential access patterns
e Durability

— Ideally, file system is in meaningful state upon shutdown

— This obviously isn't always the case...

4/11/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 22.10

FILE SYSTEM DESIGN

4/11/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 22.11

Critical Factors in File System Design

(Hard) Disks Performance !l
— Maximize sequential access, minimize seeks
Open before Read/Write

— Can perform protection checks and look up where the actual file resource
are, in advance

Size is determined as they are used !!!

— Can write (or read zeros) to expand the file

— Start small and grow, need to make room
Organized into directories

— What data structure (on disk) for that?
Need to carefully allocate / free blocks

— Such that access remains efficient

4/11/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 22.12

Components of a File System

File path

Directory

Structure File
eee® One Block = multiple sectors

File number ELLETE Ex: 512 sector, 4K block

- Data blocks

“inumber’

“inode”

4/11/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 22.13

Recall: Abstract Representation of a Process

Process
Suppose that we execute
Thread’s
Regs Address open(“foo.txt”)
Space and that the result is 3
(Memory)
User Space
. s -F-———— - T———————— Next, suppose that we
ernel Space : : execute
File Descriptors Open File Description
. 3 read(3, buf, 100)
ot shown: File: foo.txt :
Initially contains Position: 100 and that the result is 100
0,1,and 2
(stdin, stdout, \ /
stderr)

4/11/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 22.14

Components of a File System

User Space
Kernel Space

Not shown: Initially
contains 0, 1, and 2
(stdin, stdout,
stderr)

4/11/2024

Process
Thread’s
Regs Address
Space
(Memory)

3

File Descriptors

Open File Description

inumber
Position: 100

/

Kubiatowicz CS162 © UCB Spring 2024

Open file description is
better described as

remembering the inumber

(file number) of the file,
not its name

Lec 22.15

Components of a File System

file name , file number > storage block
offset girectory structure ~ O7S€L index structure 9
(“inode”)

» Open performs Name Resolution
— Translates path name into a “file number”

» Read and Write operate on the file number
— Use file number as an “index” to locate the blocks

4 components:
—directory, index structure, storage blocks, free space map

4/11/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 22.16

Administrivia

 Homework 5: RPC deadline this Thursday (4/12)
* Project 3: Design doc due Monday (4/15)

« Midterm 3: April 25t
— Everything fair game with focus on last 1/3 of class
— Three hand-written cheat-sheets, double sided
» Class attendance: No credit for people who use the
same photo!
« Datad4All@Berkeley: Tomorrow (Friday!)
— Friday 4/12, 12:00-1:00 in Wozniak lounge (MOVED!)

— Undergraduate or Masters students interested in
Systems broadly defined (DB, Arch, Sec, Networking,
gy_stems, etc.) who identify as an URM in Computer

cience

— Come by for free lunch to meet fellow students
» Sign up — look for link on Ed

— Talk to relevant faculty, discuss possible classes,
research opportunities in systems, as well as the best
pizza topping!

4/11/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 22.17

L

https://tinyurl.com/bdhx8hfc

How to get the File Number?

Look up in directory structure

A directory is a file containing <file_name : file_number> mappings
— File number could be a file or another directory
— Operating system stores the mapping in the directory in a format it interprets
— Each <file_name : file_number> mapping is called a directory entry

Process isn’t allowed to read the raw bytes of a directory
— The read function doesn’t work on a directory
— Instead, see readdir, which iterates over the map without revealing the raw bytes

Why shouldn’t the OS let processes read/write the bytes of a directory?

4/11/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 22.18

4/11/2024

Directories

[N] 71 website
<> ::-u]J o MVl O © &
Favorites Name Date Modified Size Kind
¥ [static Féb 10, 2016, 12:45 PM = Folder
© Dropbox > B oss Jan 14, 2016, 11:51 AM ~ Folder
< iCloud Drive » I exams Mar 10, 2016, 9:03 PM - Folder
@ AirDrop » [fonts Jan 14, 2016, 11:51 AM - Folder
v [hw Mar 1, 2016, 7:29 PM Foldor
u Mm & hwo.pat Jan 20, 2016, 3:19 PM 175 KB POF Document
2 adj & hwi.pdf Feb 11, 2016, 9:42 AM 128KB PDF Document
¢ Applications o hwz.pdt Feb 16, 2016, 8:00 PM 180KB PDF Document
= hw3.pdt Mar 1, 2016, 7:29 PM 200KB PDF Document
[Decuments > M Jan 14, 2016, 11:51 AM - Foider
o Downloads » 1 lectures Apr 1, 2016, 5:41 PM - Folder
H Movies » [pics Jan 18, 2016, 6:13 PM - Folder
» [profiles Jan 25, 2016, 3:32 PM Folder
[H 8ox sync » I projects Mar 26, 2016, 10:07 AM - Folder
51 Google Drive v [readings Jan 14, 2016, 11:51 AM - Folder
‘A endtoend.pdf Jan 14, 2016, 11:51 AM 38 KB POF Document
Devices « FFS84.pof Jan 14, 2016, 11:51 AM 1.3MB PDF Document
(@ Remote Disc 4 garman_bug_B1.pdr Jan 14, 2016, 11:51 AM 610KB PDF Document
= jacobson-congestion.paf Jan 14, 2016, 11:51 AM 1.2MB PDF Document
e '« Original_Byzantine.pdf Jan 14, 2016, 11:51 AM 1.2MB PDF Document
L adj-MBP ~ panerson_gueue.pdf Jan 14, 2016, 11:51 AM 1.3MB PDF Document
& adj-mini = TheracNew.pdt Jan 14, 2016, 11:51 AM 209KB PDF Document
v [B sections Mar 17, 2016, 10:03 AM - Folder
@@ fido ~ sectionl.pdf Jan 18, 2016, 6:13 PM 130KB POF Document
@ Al.. & soction2.pdf Jan 26, 2016, 7:13 PM 108KB PDF Document
' section2sol.pat Jan 28, 2016, 10:10 AM 127KB PDF Document
L = sectiond.pdf Feb 5, 2016, 10:15 AM 115KB PDF Document
 sectiondsol.pdf Fob 5, 2016, 10:15 AM 134KB PDF Document
~ sectiond.pdf Feb 10, 2016, 12:45 PM 114KB POF Document
' saction4sol.pdf Fob 11, 2016, 9:42 AM 134KB PDF Document
it Eabh 16 2016 1:55 DAL AR KA PNE Dacumant
.mm- i Users » 4 adj » [l Documents » i GitHub » [l website
51 fems, 39.01 GB availabie

Kubiatowicz CS162 © UCB Spring 2024

Lec 22.19

Directory Abstraction

» Directories are specialized files
— Contents: List of pairs <file name, file number> /usr
« System calls to access directories
- open / creat / readdir traverse the structure /usr/lib
- mkdir / rmdir add/remove entries /usr/1ib4.3
— link / unlink (rm)
* libc support

- DIR * opendir (const char *dirname)

- struct dirent * readdir (DIR *dirstream)

- int readdir_r (DIR *dirstream, struct dirent *entry, /usr/1ib4.3/foo
struct dirent **result)

4/11/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 22.20

Directory Structure

 How many disk accesses to resolve “/my/book/count”?
— Read in file header for root (fixed spot on disk)
— Read in first data block for root
» Table of file name/index pairs.
» Search linearly — ok since directories typically very small
— Read in file header for “my”
— Read in first data block for “my”; search for “book”
— Read in file header for “book”
— Read in first data block for “book”; search for “count”
— Read in file header for “count”
» Current working directory: Per-address-space pointer to a directory used for
resolving file names

— Allows user to specify relative filename instead of absolute path (say
CWD="/my/book” can resolve “count”)

4/11/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 22.21

4/11/2024

In-Memory File System Structures

fd

N

el
‘ / data blocks
e
read (fd) —
per-process system-wide inode
open-file table open-file table
user space kernel memory secondary storage

* Open syscall: find inode on disk from pathname (traversing directories)

— Create “in-memory inode” in system-wide open file table

— One entry in this table no matter how many instances of the file are open
« Read/write syscalls look up in-memory inode using the file handle

Kubiatowicz CS162 © UCB Spring 2024

Lec 22.22

Characteristics of Files

A Five-Year Study of File-System Metadata

NITIN AGRAWAL Published in FAST 2007

University of Wisconsin, Madison
and

WILLIAM J. BOLOSKY, JOHN R. DOUCEUR, and JACOB R. LORCH
Microsoft Research

4/11/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 22.23

Observation #1: Most Files Are Small

12000 T T T T ! T

BOQ [o

Files per file system

: i s o 4 :
¢ £ ¢ ; , . £ % :

4000 i . LA — SRRIN e Wk 1. ; i =
H B / ~, L T ¥ :
: - s e LI :
3 B ; ~ .

2000

0 8 128 2K 32K 512K 8Mm 128M
File size (bytes, log scale, power-of-2 bins)

Fig. 2. Histograms of files by size.

4/11/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 22.24

Observation #2: Most Bytes are in Large Files

1600 | . it ; 2001 --------
1400 ke rerssressesssesssfesssssssssesrans ’ \‘ 5004 —-—-T:—.; -
1200 ; ROST: £ S _ i - ;. : e
1000 - N S S ey e —
600 L SR — AN W W S——
400 | fol W S il S 1

Used space per file system (MB)

- I 3 $ e 18 e 1 %
H ¥ .’ P H : Cmye” Y $. " B
A . . 2 -
200 s 5 3 -
-
P
~. - - ‘\

512 4K 32K 256K 2M 16M 128M 1G 8G 64G
Containing file size (bytes, log scale, power-of-2 bins)

Fig. 4. Histograms of bytes by containing file size.

4/11/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 22.25

CASE STUDY:
FAT: FILE ALLOCATION TABLE

« MS-DOS, 1977
« Still widely used!

4/11/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 22.26

FAT (File Allocation Table)

« Assume (for now) we have a FAT Disk Blocks
way to translate a path to 0: 0:
a “file number” File number
— i.e., a directory structure \ 31 *:I File 31, Block 0
» Disk Storage is a collection of g File 31, Block 1
Blocks

— Just hold file data (offseto = < B, x >)
 Example: file read 31, <2, x>

— Index into FAT with file number

— Follow linked list to block

— Read the block from disk - R
Into memory

N-1: N-1:

memory

4/11/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 22.27

FAT (File Allocation Table)

* File is a collection of disk blocks FAT Disk Blocks
ST . - 0: 0:
. FAT IS Imkec! I|§t 1-1 with blocks File number\
 File nu_mber IS mc_lex of root of 31/ -—:I File 31 Blook 0
block list for the file i File 31, Block 1

* File offset: block number and
offset within block

* Follow list to get block number

* Unused blocks marked free free G

— Could require scan to find ~
— Or, could use a free list

File 31, Block 2

N-1: N-1:

memory

4/11/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 22.28

FAT (File Allocation Table)

* File is a collection of disk blocks FAT Disk Blocks
ST . - 0: 0:
. FAT IS Imkec! I|§t 1-1 with blocks File number\
 File nu_mber IS mc_lex of root of 31/ -—:I File 31 Blook 0
block list for the file i File 31, Block 1

* File offset: block number and
offset within block

* Follow list to get block number

* Unused blocks marked free free G

— Could require scan to find ~
— Or, could use a free list

File 31, Block 2

N-1: N-1:

memory

4/11/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 22.29

FAT (File Allocation Table)

* File is a collection of disk blocks FAT Disk Blocks
. o) : 0: 0:
FAT is Imkec! I|§t 1-1 with blocks File number\
* File nu_mber is mc_lex of root of 31/ -—:l File 31. Block 0
block list for the file . File 31, Block 1

* File offset: block number and
offset within block

* Follow list to get block number
* Unused blocks marked free free G

= File 31, Block 3

— Could require scan to find ~

— Or, could use a free list : File 31, Block 2
« Ex: file_write(31, < 3,y >)

— Grab free block

— Linking them into file memory

N-1: N-1:

4/11/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 22.30

FAT (File Allocation Table)

 Where is FAT stored? FAT Disk Blocks
— On disk | 0: 0:
« How to format a disk? File #1 \ -
— Zero the blocks, mark FAT entries “free” 31| |File31,Blocko
. . o File 31, Block 1
* How to quick format a disk?
— Mark FAT entries “free”
« Simple: can implement in device 7| EElESIREIOtes
firmware free
File #2 o File 31, Block 2
N-1: N-1:
memory

4/11/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 22.31

FAT: Directories

file 5268830 egfd
| ”/homg/tom" file
Name - - Music Work | Free foo.txt | Free
File Number | 5268830 |88026158135002320/85200219 space 66212871, Space
Next | | [
|\ A NG A NG o

A directory is a file containing <file_name: file_number> mappings
Free space for new/deleted entries
In FAT: file attributes are kept in directory (I!)
— Not directly associated with the file itself
Each directory a linked list of entries
— Requires linear search of directory to find particular entry
Where do you find root directory (“/")?
— At well-defined place on disk

— For FAT, this is at block 2 (there are no blocks 0 or 1)

— Remaining directories
4/11/2024 Kubiatowicz CS162 © UCB Spring 2024

Lec 22.32

FAT Discussion

Suppose you start with the file number: FAT Disk Blocks
* Time to find block? File #1 0 | ©

« Block layout for file? N\ 21/ -:I o 31 Bloak o
» Sequential access? . File 31, Block 1

 Random access?
« Fragmentation?
« Small files? - File 31, Block 3
+ Big files? free

File #2 N File 31, Block 2

N-1: N-1:

memory

4/11/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 22.33

CASE STUDY:
UNIX FILE SYSTEM (BERKELEY FFS)

4/11/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 22.34

Inodes in Unix (Including Berkeley FFS)

File Number is index into set of inode arrays

Index structure is an array of inodes
— File Number (inumber) is an index into the array of inodes
— Each inode corresponds to a file and contains its metadata
» S0, things like read/write permissions are stored with file, not in directory
» Allows multiple names (directory entries) for a file
Inode maintains a multi-level tree structure to find storage blocks for files
— Great for little and large files
— Asymmetric tree with fixed sized blocks

Original inode format appeared in BSD 4.1 (more following)
— Berkeley Standard Distribution Unix!
— Part of your heritage!
— Similar structure for Linux Ext 2/3

4/11/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 22.35

Inode Structure

Inode Array Triple Double
Indirect Indirect Indirect Data
/ Inode Blocks Blocks Blocks Blocks

File”
Metadata /D

Direct \D

Pointers

Indirect Pointer /D\D—D
Dbl. Indirect Ptr. N , ‘D
Tripl. Indrect Ptr: w

4/11/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 22.36

File Atributes

Inode Array Triple Double
Indirect Indirect Indirect Data
Blocks Blocks Blocks Blocks

File”
Metadata
%/D
User ~_—1
Group —

[]

9 basic access control bits

- UGO x RWX "] >
SetUID bit /D\D_
- execute at owner permissions

rather than user
SetGID bit
- execute at group’s permissions D—D

I[N

;

4/11/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 22.37

Small Files: 12 Pointers Direct to Data Blocks

Direct pointers

4kB blocks = sufficient
for files up to 48KB

4/11/2024

Triple Double
Indirect Indirect
/ Inode Blocks Blocks

Indirect
Blocks

File
etadata /D

Data
Blocks

Direct
Pointers
E
:
&
" 1
Indirect Pointe 3
Dbl. Indirect Ptr. T
Tripl. Indrect Ptr:

Sl

1 L i
128 2K 3zK 512K =10 128M
File size (bytes, log scale, pawar-af-2 bins)

Fig, 2, Histograma of files by size.

Kubiatowicz CS162 © UCB Spring 2024

Lec 22.38

Large Files: -

-, 2-, 3-level indirect pointers

Indirect pointers

- point to a disk block
containing only pointers ,
- 4 kB blocks => 1024 ptrs |

Inode

Triple Double
Indirect Indirect Indirect Data
Blocks Blocks Blocks Blocks

=>4 MB @ level 2 ata
=>4 GB @ level 3
=>4 TB @ level 4
' .
A Fove-Yaar Study of File-System Metadat &4 DIreCt
o e ointers
TEOD | —
5 ‘EI]I]%' a,gi
R = |
[~ AN
g "™hr Indirect Pointe|
e Dbl. Indirect P4
% B Tripl. Indrect P
E .mné_ LA
. e o e
bi TR R m s
Gomairing fle slze (opten. log Bcals, power-f-2 bing)
Fig 4. Histograms of byles by conlaining file aizs.
4/11/2024

Kubiatowicz CS162 © UCB Spring 2024 Lec 22.39

Putting it All Together: On-Disk Index

« Sample file in multilevel
indexed format:

— 10 direct ptrs, 1K blocks

— How many accesses for
block #237 (assume file
header accessed on open)?

» Two: One for indirect block,
one for data

— How about block #57?
» One: One for data
— Block #3407

» Three: double indirect block,
indirect block, and data

4/11/2024 Kubiatowicz CS162 © UCB Spring 2024

Inode Array

File”
Metadata

Direct
Pointers

Indirect Pointer
Dbl. Indirect Ptr.

Tripl. Indrect Ptr:

Inode

Triple Double

Indirect Indirect Indirect Data
Blocks Blocks Blocks Blocks

Lec 22.40

Recall: Critical Factors in File System Design

(Hard) Disk Performance !!!
— Maximize sequential access, minimize seeks
Open before Read/Write

— Can perform protection checks and look up where the actual file resource are,
in advance

Size is determined as they are used !!!

— Can write (or read zeros) to expand the file

— Start small and grow, need to make room
Organized into directories

— What data structure (on disk) for that?
Need to carefully allocate / free blocks

— Such that access remains efficient

4/11/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 22.41

Recall: Magnetic Disks

« Cylinders: all the tracks under the

head at a given point on all surfaces
- Read/write data is a three-stage process:

Head | A~
-

— Seek time: position the head/arm over the proper track
— Rotational latency: wait for desired sector to rotate under r/w head
— Transfer time: transfer a block of bits (sector) under r/w head

Disk Latency = Queueing Time + Controller time +
Seek Time + Rotation Time + Xfer Time

1sanbay

4/11/2024

Software
Queue

(Device Driver)

Track
Sector

Cylinder

T~Platter

0T
=¥ Media Ti
:% edla Iime
© S (Seek+Rot+Xfer)
e

}nsay

Kubiatowicz CS162 © UCB Spring 2024

Lec 22.42

Fast File System (BSD 4.2, 1984)

« Same inode structure as in BSD 4.1

— same file header and triply indirect blocks like we just studied

— Some changes to block sizes from 1024=4096 bytes for performance
« Paperon FFS: “A Fast File System for UNIX"

— Marshall McKusick, William Joy, Samuel Leffler and Robert Fabry

— Off the “resources” page of course website — Take a look!

« Optimization for Performance and Reliability:
— Distribute inodes among different tracks to be closer to data
— Uses bitmap allocation in place of freelist
— Attempt to allocate files contiguously
— 10% reserved disk space
— Skip-sector positioning (mentioned later)

4/11/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 22.43

FFS Changes in Inode Placement: Motivation

* In early UNIX and DOS/Windows’ FAT file system, headers stored in special
array in outermost cylinders

— Fixed size, set when disk is formatted
» At formatting time, a fixed number of inodes are created
» Each is given a unique number, called an “inumber”

* Problem #1: Inodes all in one place (outer tracks)
— Head crash potentially destroys all files by destroying inodes

— Inodes not close to the data that the point to
» To read a small file, seek to get header, seek back to data

* Problem #2: When create a file, don’t know how big it will become (in UNIX,
most writes are by appending)

— How much contiguous space do you allocate for a file?
— Makes it hard to optimize for performance

4/11/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 22.44

FFS Locality: Block Groups

The UNIX BSD 4.2 (FFS) distributed the header |nform£:1t|onﬂn__....--v--B}-*kG S
(inodes) closer to the data blocks P

— Often, inode for file stored in same “cylinder group” " e Block Group 1
as parent directory of the file VAR A

Block Group 2 R

— makes an “Is” of that directory run very fast I A NN
* File system volume divided into set of block groups ‘ % g
— Close set of tracks | 52 /2 ? H
. Data blocks, metadata, and free space L oREN N G S
interleaved within block group R, N M /&S
— Avoid huge seeks between user data and NN, .\og‘f
system structure N g
. . . . ga‘&%\ g
« Put directory and its files in common block group R

4/11/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 22.45

FFS Locality: Block Groups (Con’ t)

« First-Free allocation of new file blocks P

Block Groupo
— To expand file, first try successive blocks in bitmap, then P N
choose new range of blocks /7 BlockGroup!
— Few little holes at start, big sequential runs at Ve
end of group /A ‘.’_ 52 |
— Avoids fragmentation Pl ' ANEAY
— Sequential layout for big files | Lg! | ol g |
« Important: keep 10% or more free! E:é‘i Voo) &5 3
— Reserve space in the Block Group %';, N — & T g
‘J//_) | 92 Blocks fot we? @:; \9‘3
« Summary: FFS Inode Layout Pros R & ~— S//
— For small directories, can fit all data, file headers, | , @,&;__{f/g..z \f‘ |
etc. in same cylinder = no seeks! N T oS
— File headers much smaller than whole block g

(a few hundred bytes), so multiple headers fetched from disk at same time

— Reliability: whatever happens to the disk, you can find many of the files
(even if directories disconnected)

4/11/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 22.46

UNIX 4.2 BSD FFS First Fit Block Allocation

In-Use Free
Start of Block Block
Block EEEEEEEEEEET
Group

Write Two Block File

Start of
Block &Iﬁulluuum

Group
Start of Write Largiz File

4/11/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 22.47

Attack of the Rotational Delay

* Problem 3: Missing blocks due to rotational delay

— Issue: Read one block, do processm and read next block. In meantime, disk has
continued turning: missed next block! Need 1 revolution/block!

Skip Sector

Track Buffer
(Holds complete track)

— Solution1: Skip sector positioning (“interleaving”)

» Place the blocks from one file on every other block of a track: give time for processing
to overlap rotation

» Can be done by OS or in modern drives by the disk controller

— fSO|l11:tIOI‘11: 2: Read ahead: read next block right after first, even if application hasn’t asked
oritye

» This can be done either by OS (read ahead)

» By disk itself (track buffers) - many disk controllers have internal RAM that allows them
to read a complete track

* Modern disks + controllers do many things “under the covers”
— Track buffers, elevator algorithms, bad block filtering

4/11/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 22.48

UNIX 4.2 BSD FFS

* Pros
— Efficient storage for both small and large files
— Locality for both small and large files
— Locality for metadata and data
— No defragmentation necessary!

« Cons

— Inefficient for tiny files (a 1 byte file requires both an inode and
a data block)

— Inefficient encoding when file is mostly contiguous on disk

— Need to reserve 10-20% of free space to prevent
fragmentation

4/11/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 22.49

Linux Example: Ext2/3 Disk Layout

. .. . Block G 0
« Disk divided into block groups Super | SO
. . Block | Inode Table Root Directory
- PrOVIdeS Iocallty ‘j"“) ool 255 »____..f-"".’ Len |Name | Inode
— Each group has two block-sized bitmaps oot [| o e loE ns
(free blocks/inodes) e W Coments [12Tdn_|503
. . Group | ‘ J | /
— Block sizes settable at format time: Descrptor Block 256
1K, 2K, 4K, 8K... . Tebe /
» Actual inode structure similar to 4.2 BSD || __ BlockGrow? /
— with 12 direct pointers Inode Table / "dir1’ contents
] . Blocks 2-3 ;‘f‘.‘_;" Len |Name | Inode
« Ext3: Ext2 with Journaling 5033 | Block 18431 |~ 2 [| 2
— 16 172.1;)9 5,086
— Several degrees of protection with 5110 | Blcki20002. |\ 16 |Meidal | 510
Blocks 16,390 - 16,641 \ 16 14.jpg 5,088
comparable overhead \ ey
_ _ Block Inode \
— We will talk about Journalling later Bitmap Bitmap __filet dat contents
EN =N L]]]
Block Block Blocks 20,002-20,003, 20,114-20,117
16,385 16,386

 Example: create a filel.dat
under /dirl/ in Ext3

4/11/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 22.50

Recall: Directory Abstraction

» Directories are specialized files
— Contents: List of pairs <file name, file number>

» System calls to access directories /usr
- open / creat traverse the structure)
- mkdir /rmdir add/remove entries /usr/lib :
/usr/1ib4.3
- link / unlink (rm)
* libc support

- DIR * opendir (const char *dirname)
— struct dirent * readdir (DIR *dirstream)
— int readdir_r (DIR *dirstream, struct dirent

*entry, _ /usr/1lib4.3/foo
struct dirent **result)

4/11/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 22.51

Hard Links

« Hard link
— Mapping from name to file number in the directory structure
— First hard link to a file is made when file created /usr
— Create extra hard links to a file with the link() system call
— Remove links with unlink() system call Jusr/1ib
* When can file contents be deleted? /usr/1ib4.3
— When there are no more hard links to the file
— Inode maintains reference count for this purpose

/usr/lib4.3/foo0

4/11/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 22.52

Soft Links (Symbolic Links)

Soft link or Symbolic Link or Shortcut
— Directory entry contains the path and name of the file
— Map one name to another name

Contrast these two different types of directory entries:
— Normal directory entry: <file name, file #>
— Symbolic link: <file name, dest. file name>

OS looks up destination file name each time program accesses
source file name

— Lookup can fail (error result from open)

Unix: Create soft links with symlink syscall

4/11/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 22.53

Directory Traversal
* What happens when we open /home/cs162/stuff.txt? inode
« “/” - inumber for root inode configured into kernel, say 2 |7, block 49358

— Read inode 2 from its position in inode array on disk 2___ _:< i

— Extract the direct and indirect block pointers . L ok 13130

— Determine block that holds root directory (say block 49358) N e

— Read that block, scan it for “home” to get inumber for this 1 L L e 2

directory (say 8086)
8086 - block 7756

* Read inode 8086 for /lhome, extract its blocks, read block —. s
(say 7756), scan it for “cs162” to get its inumber (say 732) -

 Read inode 732 for /home/cs162, extract its blocks, read

“cs162”:732

L] sl

block (say 12132), scan it for “stuff.txt” to get its inumber, Blocks of
say 9909 9909 [l stuff.txt
 Read inode 9909 for /home/cs162/stuff.txt j—‘

S \]

» Set up file description to refer to this inode so reads / L
write can access the data blocks referenced by its direct

and indirect pointers 2: [] 9095: [P——
« Check permissions on the final inode and each 732:[]
directory’s inode... 8086: [| | “cs1627:732 |F'stuff.txt”:9909

4/11/2024 Kubiatowicz CS162 © UCB Spring 2024 Memory Lec 22.54

Large Directories: B-Trees (dirhash)

in FreeBSD, NetBSD, OpenBSD

Search for hash("out2”) = 0x0000c194

B+Tree Root

Before |[00ad 1102 [b0bf8201 cffla412
Child Pointer v S ; ;

B+Tree Node B+Tree Node B+Tree Node

Before ||0000c195 00018201
Child Pointer - g

SLRSARARRRAS

e LT
..........

e — T
BiTrea Taaf .. B+Tree Leaf B+Tree Leaf
Hash [[0000a0d 1 |0000b971 0000c194
Entry Pointer ; ! -
e P y‘i:-p ‘ S — Xy A
Name . . file1 file2 file9841 outl out2 out16341
File Number [36210429| 983211 239341 231121 243212 841013 841014 . 324114

“out2”is file 841014

4/11/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 22.55

Conclusion

* File System:
— Transforms blocks into Files and Directories
— Optimize for access and usage patterns
— Maximize sequential access, allow efficient random access
» File (and directory) defined by header, called “inode”
« Naming: translating from user-visible names to actual sys resources
— Directories used for naming for local file systems
— Linked or tree structure stored in files
» File Allocation Table (FAT) Scheme
— Linked-list approach
— Very widely used: Cameras, USB drives, SD cards
— Simple to implement, but poor performance and no security
* Look at actual file access patterns
— Many small files, but large files take up all the space!
« 4.2 BSD Fast File System: Multi-level inode header to describe files
— Inode contains ptrs to actual blocks, indirect blocks, double indirect blocks, etc.
— Optimizations for sequential access: start new files in open ranges of free blocks, rotational
optimization

4/11/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 22.56

