CS162
Operating Systems and
Systems Programming

Lecture 22

Filesystems 2: Filesystem Design (Con't),
Filesystem Case Studies

April 11th, 2024
Prof. John Kubiatowicz
http://cs162.eecs.Berkeley.edu

Recall: A Few Queuing Theory Results

* Assumptions: Why d / -
— System in equilibrium; No limit to the queue e cesliesnonseaiieteing
— Time between successive arrivals is random and memoryless | delay grow unboundedly even

though the utilizationis <1 ?
— ﬂ
Service Rate
A =1/T,

Arrival Rate 300 | Response

" Time (ms)
» Parameters that describe our system: 200
-\ mean number of arriving customers/second
— Teert mean time to service a customer (“m1”) 100
-C: squared coefficient of variance = 62/m12
- service rate = 1/T,,
—u: server utilization (0<u<1):u=Ap =1 x Ty, 0 0% 100%
* Parameters we wish to qompute: Throughput (Utilization)
=T Time spent in queue . (% total BW)
- Ly Length of queue =) x T (by L
* Results:

— Memoryless servi i : = queue”):

4/11/2024 Lec22.2

Recall: I1/0 and Storage Layers

Application / Service

High Level 1/0 Streams

Low Level I/ File Descriptors
open(), read(), write(), close(), ...
— 1 Open File Descriptions

_ File Syste Files/Directories/Indexes

| /O Driver | Commands and Data Transfers

T

Disks, Flash, Controllers, DMA

4/11/2024 Kubiatowicz CS162 © UCB Spring 2024

What we just covered...

What we covered in Lecture 4

What we will cover next...

Lec22.3

From Storage to File Systems

/O APl and Variable-Size Buffer
syscalls

Memory Address

Logical Index,

File System Typically 4 KB
Hardware
Devices Phys. Block Phyfl ;(n;ex.,
Physical Index,
HDD SSD

4/11/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec22.4

Building a File System

» File System: Layer of OS that transforms block interface of disks (or other
block devices) into Files, Directories, etc.

+ Classic OS situation: Take limited hardware interface (array of blocks) and
provide a more convenient/useful interface with:
— Naming: Find file by name, not block numbers
— Organize file names with directories
— Organization: Map files to blocks
— Protection: Enforce access restrictions
— Reliability: Keep files intact despite crashes, hardware failures, etc.

Recall: User vs. System View of a File

» User’s view:

— Durable Data Structures

» System’s view (system call interface):

— Collection of Bytes (UNIX)
— Doesn’t matter to system what kind of data structures you want to store on disk!

» System’s view (inside OS):

— Collection of blocks (a block is a logical transfer unit, while a sector is the physical
transfer unit)
— Block size > sector size; in UNIX, block size is 4KB

4/11/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 22.5 4/11/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 22.6
Translation from User to System View Disk Management
 Basic entities on a disk:
‘ File - F|.Ie: user-V|S|bIe'group' of blocks a_rranged sequgntlally in logical space
- - (Bytes) - - — Directory: user-visible index mapping names to files
» The disk is accessed as linear array of sectors
+ What happens if user says: “give me bytes 2 — 12?” * How to identify a sector?
— Fetch block corresponding to those bytes —Physical position
— Return just the correct portion of the block » Sectors is a vector [cylinder, surface, sector]
« What about writing bytes 2 — 12? » Not used anymore
— Fetch block, modify relevant portion, write out block » OS/BIOS must deal with bad sectors
T _p T) —Logical Block Addressing (LBA)
. Everythlng_ inside file syst_em is in terms of whole-size blocks » Every sector has integer address
— Actual disk I/O happens in blocks » Controller translates from address = physical position
— read/write smaller than block size needs to translate and buffer » Shields OS from structure of disk
Lec 22.7 4/11/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 22.8

4/11/2024

Kubiatowicz CS162 © UCB Spring 2024

4/11/2024

What Does the File System Need?

Track free disk blocks
— Need to know where to put newly written data
Track which blocks contain data for which files
— Need to know where to read a file from
Track files in a directory
— Find list of file's blocks given its name
Where do we maintain all of this?
— Somewhere on disk

Kubiatowicz CS162 © UCB Spring 2024

Lec22.9

4/11/2024

Data Structures on Disk

« Different than data structures in memory

— Must load from disk into memory to manipulate

— Modifications to disk data are really expensive, so only change when needed
» Access a block at a time

— Can't efficiently read/write a single word

— Have to read/write full block containing it

— |deally want sequential access patterns
* Durability

— Ideally, file system is in meaningful state upon shutdown

— This obviously isn't always the case...

Kubiatowicz CS162 © UCB Spring 2024 Lec 22.10

4/11/2024

FILE SYSTEM DESIGN

Kubiatowicz CS162 © UCB Spring 2024

Lec 22.11

4/11/2024

Critical Factors in File System Design

(Hard) Disks Performance !!!
— Maximize sequential access, minimize seeks
* Open before Read/Write

— Can perform protection checks and look up where the actual file resource
are, in advance

+ Size is determined as they are used !!!
— Can write (or read zeros) to expand the file
— Start small and grow, need to make room
» Organized into directories
— What data structure (on disk) for that?
» Need to carefully allocate / free blocks
— Such that access remains efficient

Kubiatowicz CS162 © UCB Spring 2024 Lec 22.12

Components of a File System

File path

Directory
Structure

File
Header
File number [SEERELE

“inumber”
.

One Block = multiple sectors
Ex: 512 sector, 4K block

Data blocks

Recall: Abstract Representation of a Process

Process
Suppose that we execute
Thread’s
Regs || Address open(“foo.txt”)
Space and that the result is 3
(Memory)

User Space
- Next, suppose that we

execute
Open File Description

Kernel Space File Descriptors

3 read(3, buf, 100)
Not shown: \ File: foo.txt .
Initially contains] Plozitiz::: ’1(00 and that the result is 100
0,1,and 2
“‘inode” (stdin, stdout, \),
stderr)
]
4/11/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 22.13 4/11/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 22.14
Components of a File System Components of a File System
Process
Open file description is file name file number
, . —— > storage block
Theas || Address better described as offset girectory structure ~ OffS€t index structure g
Space remembering the inumber (“inode”)
(Memory) (file number) of the file,
User Space not its name « Open performs Name Resolution

Kernel Space File Descriptors

3 \
Not shown: Initially \ /

contains 0, 1, and 2
(stdin, stdout,
stderr)

Open File Description
—> inumber
Position: 100

4/11/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 22.15

— Translates path name into a “file number”
* Read and Write operate on the file number
— Use file number as an “index” to locate the blocks

* 4 components:
—directory, index structure, storage blocks, free space map

4/11/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec22.16

Administrivia

* Homework 5: RPC deadline this Thursday (4/12)
 Project 3: Design doc due Monday (4/15)
« Midterm 3: April 25t
— Everything fair game with focus on last 1/3 of class
— Three hand-written cheat-sheets, double sided
» Class attendance: No credit for people who use the
same photo!
» DatadAll@Berkeley: Tomorrow (Friday!)
— Friday 4/12, 12:00-1:00 in Wozniak lounge (MOVED!)

— Undergraduate or Masters students interested in
Systems broadly defined (DB, Arch, Sec, Networking,
Systems, etc.) who identify as an URM in Computer
Science

— Come by for free lunch to meet fellow students

» Sign up — look for link on Ed

— Talk to relevant faculty, discuss possible classes,
research opportunities in systems, as well as the best
pizza topping!

4/11/2024

Kubiatowicz CS162 © UCB Spring 2024

L

https://tinyurl.com/bdhx8hfc

Lec22.17

How to get the File Number?

Look up in directory structure

A directory is a file containing <file_name : file_number> mappings

— File number could be a file or another directory
— Operating system stores the mapping in the directory in a format it interprets
— Each <file_name : file_number> mapping is called a directory entry

Process isn’'t allowed to read the raw bytes of a directory

— The read function doesn’t work on a directory
— Instead, see readdir, which iterates over the map without revealing the raw bytes

4/11/2024

Why shouldn’t the OS let processes read/write the bytes of a directory?

Kubiatowicz CS162 © UCB Spring 2024 Lec 22.18

Directories

4/11/2024

Kubiatowicz CS162 © UCB Spring 2024

Lec22.19

Directory Abstraction

+ Directories are specialized files
— Contents: List of pairs <file name, file number> /usr

» System calls to access directories

- open/ creat / readdir traverse the structure
- mkdir / rmdir add/remove entries

/usr/lib
/usr/lib4.3
N

- link /unlink (rm) ‘

* libc support

- DIR * opendir (const char *dirname)
- struct dirent * readdir (DIR *dirstream)
- int readdir_r (DIR *dirstream, struct dirent *entry,

4/11/2024

. /usr/1ib4.3/foo
struct dirent **result)

Kubiatowicz CS162 © UCB Spring 2024 Lec 22.20

Directory Structure

* How many disk accesses to resolve “/my/book/count”?
— Read in file header for root (fixed spot on disk)
— Read in first data block for root
» Table of file name/index pairs.
» Search linearly — ok since directories typically very small
— Read in file header for “my”
— Read in first data block for “my”; search for “book”
— Read in file header for “book”
— Read in first data block for “book”; search for “count”
— Read in file header for “count”
» Current working directory: Per-address-space pointer to a directory used for
resolving file names

— Allows user to specify relative filename instead of absolute path (say
CWD="/my/book” can resolve “count”)

In-Memory File System Structures

S .
L1 [
r / data blocks
read(fd) \\l:l
per-process system-wide inode
open-file table open-file table
user space kernel memory secondary storage

* Open syscall: find inode on disk from pathname (traversing directories)

— Create “in-memory inode” in system-wide open file table
— One entry in this table no matter how many instances of the file are open

+ Read/write syscalls look up in-memory inode using the file handle

4/11/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 22.21 4/11/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 22.22
Characteristics of Files Observation #1: Most Files Are Small
12000 T T T T T T
2000 ——
5002
10000 |- 5008 1
. . E / 4 ’ N\ 2004 77777
A Five-Year Study of File-System Metadata § eooof / 1
o] |
NITIN AGRAWAL Published in FAST 2007 _E 6000 - i ;\\\ i
University of Wisconsin, Madison g / AN
and 8 4000 | 1
WILLIAM J. BOLOSKY, JOHN R. DOUCEUR, and JACOB R. LORCH [.
Microsoft Research
2000 - 1
0 P L L I L S
0 8 128 2K 32K 512K M 128M
File size (bytes, log scale, power-of-2 bins)
Fig. 2. Histograms of files by size.
4/11/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 22.23 4/11/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 22.24

Observation #2: Most Bytes are in Large Files

1800 T

1600 -
1400
1200 -
1000 [
800
600 -
400

Used space per file system (MB)

512 4K

Fig. 4. Histograms of bytes by containing file size.

i i i I
32K 256K 2M 16M 128M

h
1G

8G 64G

Containing file size (bytes, log scale, power-of-2 bins)

CASE STUDY:

FAT: FILE ALLOCATION TABLE

+ MS-DOS, 1977
« Still widely used!

4/11/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 22.25 4/11/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 22.26
FAT (File Allocation Table) FAT (File Allocation Table)
* Assume (for now) we have a FAT Disk Blocks « File is a collection of disk blocks FAT Disk Blocks
way to translate a path to 0: 0: L . . 0: 0:
a “file number” File number FAT is linked list 1-1 with blocks File number
— i.e., a directory structure \ 31 :E] File 31, Block 0 * File number is index of root of \ a1l File 31, Block 0
« Disk Storage is a collection of e File 31, Block 1 block list for the file File 31, Block 1
Blocks - File offset: block number and
— Just hold file data (offset o = < B, x >) offset within block
* Example: file_read 31, <2, x> « Follow list to get block number
— Index |n.to FAT with file number « Unused blocks marked free free
— Follow linked list to block .)
. L — Could require scan to find
— Read the block from disk File 31. Block 2 . File 31, Block 2
into memory — 2 — Or, could use a free list o J
N-1: N-1: N-1:] | N-1:
memory memory
4/11/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 22.27 4/11/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 22.28

FAT (File Allocation Table)

FAT (File Allocation Table)

File is a collection of disk blocks FAT Disk Blocks « File is a collection of disk blocks FAT Disk Blocks
- : ; 0: 0: . o . . 0:
FAT is linked list 1-1 with blocks File number ‘ FAT is linked list 1-1 with blocks File number
File number is index of root of \ 31 File 31, Block 0 * File number is index of root of \ 3l File 31, Block 0
block list for the file File 31, Block 1 block list for the file File 31, Block 1
File offset: block number and « File offset: block number and
offset within block offset within block
Follow list to get block number * Follow list to get block number Fio 31 Bloaks
Unused blocks marked free free * Unused blocks marked free free ‘
— Could require scan to find — Could require scan to find
— Or, could use a free list — Al 35, Eftoretc 2 — Or, could use a free list D 3, Elloel 2
» ” - * Ex: file_write(31, < 3,y >) » . “
e — Grab free block e
memory — Linking them into file memory
4/11/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 22.29 4/11/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 22.30
FAT (File Allocation Table) FAT: Directories
end
« Where is FAT stored? FAT Disk Blocks '}',ff,,fjﬁif,‘,’ fie
— On disk 0: 0: sic foo.txt | Free
. File #1 File Number jlﬁ&BBQ 8&02615B 35002320 852011119\ Space 66»212871l Space
+ How to format a disk? \ Next N o
— Zero the blocks, mark FAT entries “free” 31 Fila 31, Black 0
« How to quick format a disk? Sl « A directory is a file containing <file_name: file_number> mappings
— Mark FAT entries “free” » Free space for new/deleted entries
: * In FAT: file attributes are kept in directory (!!)
+ Simple: can implement in device oo hileE el 40 — Not directly associated with the file itself
firmware « Each directory a linked list of entries
File #2 File 31, Block 2 — Requires linear search of directory to find particular entry
- * Where do you find root directory (“/")?
N-1: N-1: — At well-defined place on disk
memory — For FAT, this is at block 2 (there are no blocks 0 or 1)
— Remaining directories
4/11/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 22.31 4/11/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 22.32

FAT Discussion

Suppose you start with the file number: FAT Disk Blocks
+ Time to find block? File #1 :
* Block layout for file? \\ 31 File 31, Block 0
» Sequential access? File 31, Block 1
* Random access?
» Fragmentation?
+ Small files? File 31, Block 3
« Big files? free
File #2 File 31, Block 2 CASE STU DY
memory
4/11/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 22.33 4/11/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 22.34
Inodes in Unix (Including Berkeley FFS) Inode Structure
« File Number is index into set of inode arrays Inode Array Triple ~ Double =
. . 1 Indirect Indirect Indirect Data
* Index structure is an array of inodes — Inode Blocks Blocks Blocks Blocks
— File Number (inumber) is an index into the array of inodes — e
— Each inode corresponds to a file and contains its metadata —l Metadata /
» So, things like read/write permissions are stored with file, not in directory —] ’ /
» Allows multiple names (directory entries) for a file] —
* Inode maintains a multi-level tree structure to find storage blocks for files = birect .
— Great for little and large files — Pointers |
— Asymmetric tree with fixed sized blocks — . e
L] - H H _— ndirect Pointer D
+ Original inode format appeared in BSD 4.1 (more following) — Dbl indireet i /ﬁim
— Berkeley Standard Distribution Unix! 1 et et NMES\D
— Part of your heritage! —] O
— Similar structure for Linux Ext 2/3 o =
4/11/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 22.35 4/11/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 22.36

File Atributes

Inode Array Triple Double
Indirect Indirect Indirect Data
laada Blocks Blocks Blocks Blocks

File
Metadatg

|

User
Group

9 basic access control bits
- UGO x RWX
SetUID bit
- execute at owner permissions
rather than user
SetGID bit

\

Small Files: 12 Pointers Direct to Data Blocks

Direct pointers

4kB blocks = sufficient
for files up to 48KB

Triple Double
Indirect Indirect
Blocks Blocks

e File

Inode

Direct
Pointers

Indirect Pointel
Dbl. Indirect Ptr.
Tripl. Indrect Ptr:

Indirect
Blocks

Data
Blocks

Files per fle system

o e |
[128 2 32K 51K & 1280

- execute at group’s permissions D—»D Fllsie s g, poner k-2 i)
Fig 2. Histograms of files by size.
4/11/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 22.37 4/11/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 22.38
Large Files: 1-, 2-, 3-level indirect pointers Putting it All Together: On-Disk Index
Indirect pointers Triple Double ° _Sample file in multilevel Inode Array Triple Double
- point to a disk block Indirect Indirect Indirect Data indexed format: = Indirect Indirect Indirect Data
containing only pointers Inode Blocks Blocks Blocks Blocks — 10 direct ptrs, 1K blocks = qhode, Blocks Blacks Blocks Blocks
_ . — File”
-4 kB blocks => 1024 ptrs | m _ How many accesses for — s /
=>4 MB @ level 2 = block #237 (assume file —
=>4 GB @ level 3 48 KB header accessed on open)? —
=>4TB @ level 4 » Two: One for indirect block, . Direct 0
— Drect +4 MB one for data — Pointers
e — ointers — How about block #57? — KD
g e) : — ndirect Pointer O
2w e - - O +4 GB » One: One for data — Ili)gl.\nt;:ec‘(;n. — m 0
n; e - — Block #3407 — Tripl. Indrect Ptr. W
B Indirect Pointe} —
iow Dbl. Indirect Pt 1 O » Three: double indirect block, - O
% - Tripl.Indrect Py u\%’\m indirect block, and data =
Oy +478B
4/11/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 22.39 4/11/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 22.40

Recall: Critical Factors in File System Design

(Hard) Disk Performance !!!
— Maximize sequential access, minimize seeks
* Open before Read/Write

— Can perform protection checks and look up where the actual file resource are,
in advance

+ Size is determined as they are used !!!
— Can write (or read zeros) to expand the file
— Start small and grow, need to make room
» Organized into directories
— What data structure (on disk) for that?
» Need to carefully allocate / free blocks
— Such that access remains efficient

4/11/2024 Kubiatowicz CS162 © UCB Spring 2024

Lec 22.41

Recall: Magnetic Disks

Track
Sector
* Cylinders: all the tracks under the
head at a given point on all surfaces Head
» Read/write data is a three-stage process: Cylinder
T~Platter

— Seek time: position the head/arm over the proper track
— Rotational latency: wait for desired sector to rotate under r/w head
— Transfer time: transfer a block of bits (sector) under r/w head

Disk Latency = Queueing Time + Controller time +
Seek Time + Rotation Time + Xfer Time

Software
— Queue
(Device Driver)

Media Time
(Seek+Rot+Xfer)

1sonbay

J8[j013U0D

alempieH
1nsay

4/11/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 22.42

Fast File System (BSD 4.2, 1984)

« Same inode structure as in BSD 4.1

— same file header and triply indirect blocks like we just studied

— Some changes to block sizes from 1024=4096 bytes for performance
» Paper on FFS: “A Fast File System for UNIX”

— Marshall McKusick, William Joy, Samuel Leffler and Robert Fabry

— Off the “resources” page of course website — Take a look!

+ Optimization for Performance and Reliability:
— Distribute inodes among different tracks to be closer to data
— Uses bitmap allocation in place of freelist
— Attempt to allocate files contiguously
—10% reserved disk space
— Skip-sector positioning (mentioned later)

4/11/2024 Kubiatowicz CS162 © UCB Spring 2024

Lec22.43

FFS Changes in Inode Placement: Motivation

* In early UNIX and DOS/Windows’ FAT file system, headers stored in special
array in outermost cylinders
— Fixed size, set when disk is formatted
» At formatting time, a fixed number of inodes are created
» Each is given a unique number, called an “inumber”

* Problem #1: Inodes all in one place (outer tracks)
— Head crash potentially destroys all files by destroying inodes
— Inodes not close to the data that the point to
» To read a small file, seek to get header, seek back to data

» Problem #2: When create a file, don’t know how big it will become (in UNIX,
most writes are by appending)

— How much contiguous space do you allocate for a file?
— Makes it hard to optimize for performance
Lec 22.44

4/11/2024 Kubiatowicz CS162 © UCB Spring 2024

FFS Locality: Block Groups FFS Locality: Block Groups (Con'’t)
* The UNIX BSD 4.2 (FFS) distributed the header information = - * First-Free allocation of new file blocks " sockcrowo
(inodes) closer to the data blocks s — To expand file, first try successive blocks in bitmap, then —
— Often, inode for file stored in same “cylinder group” BlockGroup 1 choose new range of blocks . pockrowe!
as parent directory of the file ey - Zﬁévcl)lgtéerohuoges at start, big sequential runs at ‘Blomwpz %,
— makes an “Is” of that directory run very fast ‘ I _ Avoids fragmentation / N
* File system volume divided into set of block group% L . “ c% — Sequential layout for big files “ L ¢
— Close set of tracks % a; ‘ ng | * Important: keep 10% or more free! ‘ ‘% |4
+ Data blocks, metadata, and free space 5 % & /5l — Reserve space in the Block Grou © % S
interleaved within block group P E N . 0 b B, N Fesaaiot”
. 2, /& * Summary: FFS Inode Layout Pros N
— Avoid huge seeks between user data and N B e /4 — For small directories, can fit all data, file headers /az,;s.m,r/d/q,” o
system structure R S etc. in same cylinder = no seeks! R y"
+ Put directory and its files in common block group) = — File headers much smaller than whole block =
(a few hundred bytes), so multiple headers fetched from dlsk at same time
— Reliability: whatever happens to the disk, you can find many of the files
(even if directories disconnected)
4/11/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 22.45 4/11/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 22.46
UNIX 4.2 BSD FFS First Fit Block Allocation Attack of the Rotational Delay
» Problem 3: Missing blocks due to rotational dela
9 y
- — Issue: Read one block, do processing, and read next block. In meantime, disk has
In-Use Free continued turning: missed r?ext blocngeed 1 revolution/block!
Start of Block Block Skip Sector
Block IO O T [O B T[T T e
Group Track Buffer
. . (Holds complete track)
Start of Write Two Block File — Solution1: Skip sector positioning (“interleaving”)
Block DR B TRl B T T T T T T TTT] e » g%%%ﬁg%t;ggﬁ;rom one file on every other block of a track: give time for processing
GI’OUD » Can be done by OS or in modern drives by the disk controller
Write L Fil -]:Soltitlon 2: Read ahead: read next block right after first, even if application hasn’t asked
rite Large rilie or it yet
Start Of 9 » This can be done either by OS (read ahead)
.o By disk itself (track buffers) - many disk controllers have internal RAM that allows them
Block EEEEEEEEEEEEET 7 toyrei’:ldzlacom(pletetrgck)- ve ve! w
Group * Modern disks + controllers do many things “under the covers
— Track buffers, elevator algorithms, bad block filtering
4/11/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 22.47 4/11/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 22.48

UNIX 4.2 BSD FFS

* Pros
— Efficient storage for both small and large files

— Locality for both small and large files
— Locality for metadata and data
— No defragmentation necessary!

» Cons
— Inefficient for tiny files (a 1 byte file requires both an inode and

a data block)
— Inefficient encoding when file is mostly contiguous on disk

— Need to reserve 10-20% of free space to prevent
fragmentation

Linux Example: Ext2/3 Disk Layout

« Disk divided into block groups Spor FeORD
Block] Inode Table Root Directo
. . — | Y
— Provides locality A Y E—— e v [
— Each group has two block-sized bitmaps et [| soma 16375 12008
(free blocks/inodes) o | —— \‘ Contents [12 (a1 | s0m
. . roup | / L]
— Block sizes settable at format time: Descriptor Ll Block 258
1K, 2K, 4K, 8K... O_,TQL'Q;" /
. . — /
» Actual inode structure similar to 4.2 BSD M S T
— with 12 direct pointers élockszé Inode Table ’,./ . ‘dirt’ contents
" | Len Name Inode
» Ext3: Ext2 with Journaling 5033 | Blooki 1831 R
- i X
— Several degrees of protection with 5,110 [_Block: 20.002 —[16__fletdat} 5110
Blocks 16,390 - |5,r>4|\ 16 |14jpg | 5088
comparable overhead ok noge \ Block 18.431
— We will talk about Journalling later Bitmap Bitmap N\ fiet dat contents
1. | I 1 |
. Bk;:sk i Blocg) Bloc.ks 20,002-20,003, 20.11;»20.1 17
16,385 16,386

* Example: create a filel.dat
under /dirl/ in Ext3

4/11/2024 Kubiatowicz CS162 © UCB Spring 2024

4/11/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 22.49 4/11/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 22.50
Recall: Directory Abstraction Hard Links
+ Directories are specialized files * Hard link
— Contents: List of pairs <file name, file number> — Mapping from name to file number in the directory structure
. Svstem Ca||.S to access directories ’ /usr — First hard link to a file is made when file created /usr
yo en/ creat traverse the structure — Create extra hard links to a file with the link() system call
P — Remove links with unlink() system call .
- mkdir /rmdir add/remove entries /usr/1lib /usr/1lib
/usr/1ib4.3 « When can file contents be deleted? /usr/1ib4.3
- link / unlink (rm) N o))
- libc support — When there are no more hard links to the file
_DIR * opendir (const char *dirname) — Inode maintains reference count for this purpose
- struct dirent * readdir (DIR *dirstream)
- int readdir_r (DIR *dirstream, struct dirent
*entry, usr/1lib4.3/foo usr/lib4.3/foo
struct dirent **result) fusr/ / fusr/ /
Lec 22.51 4/11/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 22.52

Soft Links (Symbolic Links)

Soft link or Symbolic Link or Shortcut
— Directory entry contains the path and name of the file
— Map one name to another name

Contrast these two different types of directory entries:
— Normal directory entry: <file name, file #>
— Symbolic link: <file name, dest. file name>

*+ OS looks up destination file name each time program accesses
source file name

— Lookup can fail (error result from open)

* Unix: Create soft links with symlink syscall

Directory Traversal

* What happens when we open /home/cs162/stuff.txt? inode
* “/" - inumber for root inode configured into kernel, say 2 R ==
— Read inode 2 from its position in inode array on disk _:\
— Extract the direct and indirect block pointers s — Dlock 12132
— Determine block that holds root directory (say block 49358) T e
— Read that block, scan it for “home” to get inumber for this L]
directory (say 8086) R
» Read inode 8086 for /home, extract its blocks, read block 8086| | [T] | block 7756
(say 7756), scan it for “cs162” to get its inumber (say 732) I/
* Read inode 732 for /home/cs162, extract its blocks, read :\

block (say 12132), scan it for “stuff.txt” to get its inumber,
say 9909

* Read inode 9909 for /home/cs162/stuff.txt

» Set up file description to refer to this inode so reads /
write can access the data blocks referenced by its direct
and indirect pointers

* Check permissions on the final inode and each
directory’s inode...

9909 D

Blocks of

I stuff.txt

2:[] 9e99: [l

32:

“home”: 8086 J

086 : [i] | “cs1627:732 |kstuff.txt”:9999

411112024 Kubiatowicz CS162 © UCB Spring 2024 Lec 22.53 411112024 Kubiatowicz CS162 © UCB Spring 2024 Memory Lec 22.54
Large Directories: B-Trees (dirhash) Conclusion

. * File System:

in FreeBSD, NetBSD, OpenBSD — Transforms blocks into Files and Directories
— Optimize for access and usage patterns

Search for hash(*out2”) = 0x0000c194 — Maximize sequential access, allow efficient random access
. I be+TréeRoot . * File (and directory) defined by header, called “inode”
B 00 0bf820 2 . . «
Child el 3711.-1-02} ; 1} }c e } » Naming: translating from user-visible names to actual sys resources
- ; — Directories used for naming for local file systems
B+Tree Node B+Tree Node B+Tree Node . . .
Before [000DET95[00018201] .| - Linked or tree structure stored in files
I I ‘ * File Allocation Table (FAT) Scheme
B+Treé Leaf- N B+Tree Leaf B+Tree Leaf - Lmked__“St approaCh .
Hash [000020d1 [0000b971] [0000c194] — Very widely used: Cameras, USB drives, SD cards
Entry Pointer I - — Simple to implement, but poor performance and no security
Name [T flei | flex | [He98AT] outl | ourz | o Touris3] + Look at actual file access patterns
File Number [36210429] 983211 | 239341 [231121 | 7243212 [841013 | 841014 | 1324114 | — Many small files, but large files take up all the space!
outzisfile 41014 « 4.2 BSD Fast File System: Multi-level inode header to describe files
— Inode contains ptrs to actual blocks, indirect blocks, double indirect blocks, etc.
— Optimizations for sequential access: start new files in open ranges of free blocks, rotational
optimization
411112024 Kubiatowicz CS162 © UCB Spring 2024 Lec 22.55 411112024

Kubiatowicz CS162 © UCB Spring 2024

Lec 22.56

