CS 162 RPC Lab

RPC Lab &

Machines in a distributed system must communicate with one another. One method of doing this is
using Remote Procedure Calls (RPCs), which make communication between machines look like
ordinary function calls. Effectively, RPCs abstract away the underlying serialization required for raw
messaging and allow for an interaction like this:

« Aclient calls remoteFileSystem->Read("rutabaga") .
« The underlying RPC library serializes this function call as a request and sends it to the server.

« The RPC library deserializes the request on the server and runs fileSys->Read("rutabaga"), which
returns a response.

« The RPC library serializes the response, sends it to the client, and deserializes it to give the client
the return value for its function call.

Effectively, this allows the client to call a function on an entirely different machine as if it was just
calling any other function.

SERIALIZATION

Serialization is the process of converting structures into bytes that can be sent via
communication protocols like TCP, while deserialization recovers the original structures from the
serialized bytes. Serialization formats specify how serialization and deserialization should take
place, and allow communicating processes to understand the bytes being received from one
another. For example, JSON and YAML are two common serialization formats that often find use

in configuration files.

In this lab, you will be familiarizing yourself with rpcgen, a protocol compiler that helps with writing
RPC applications in C. You will do so by implementing a very basic key/value (KV) store, which allows

clients to put keys in a server-side hash map and read them out later by making requests to the
server.

For a rundown of how rpcgen works, please read this guide. However, we will be covering all of the
content relevant to the upcoming MapReduce homework in this lab.

Getting started



To get started, log in to your development environment and get the starter code.

cd ~/code/personal
git pull staff main

cd lab-rpc
You will need to install rpcbind:

sudo apt-get install rpcbind

Usage
After you have installed rpcbind, you will need to run sudo service rpcbind start, this will allow the
Docker workspace to start running the rpcbind calls. You will need to run this command once

everytime you restart your Docker workspace.

To compile the code, run make . This will generate the necessary stubs using rpcgen as well as the

server and client binaries in the bin/ directory. To test the binaries, follow the steps below:

1 Start the server binary with no arguments by running ./bin/server from the root directory of the
homework.

2 In another terminal, run the client with the appropriate subcommand:

client subcommands:
example Make an EXAMPLE RPC
echo Make an ECHO RPC
put Make a PUT RPC

get Make a GET RPC

Currently, only the EXAMPLE RPC is implemented (it simply adds 1 to the provided input), but

usage details for all of the RPCs that you will be implementing are shown below:

client example [INPUT]
client echo [MSG]
client put [KEY] [VALUE]

client get [KEY]

For now, you can try running ./bin/client example 1. You should see an output of 2.



NOTE
We strongly recommend using tmux to multiplex a single terminal instead of opening separate

terminals for the client and server.

Copyright © 2022 CS 162 staff.



