CS162
Operating Systems and
Systems Programming

Lecture 23

Filesystems 3: Filesystem Case Studies (Con’t),
Buffer Cache, Reliability

April 16t, 2024
Prof. John Kubiatowicz
http://cs162.eecs.Berkeley.edu

Recall: FAT Properties

* File is collection of disk blocks
(Microsoft calls them “clusters”) FAT

* FAT is array of integers mapped 1-1 . 0:
with disk blocks File number\
31

— Each integer is either:
» Pointer to next block in file; or
» End of file flag; or
» Free block flag

* File Number is index of root
of block list for the file

— Follow list to get block #

— Directory must map name to block
number at start of file

* But: Where is FAT stored?
— Beginning of disk, before the data blocks N-1:f [N-1:
— Usually 2 copies (to handle errors)

Disk Blocks

File 31, Block 0
File 31, Block 1

File 31, Block 3
free

File 31, Block 2

memory

4/16/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 23.2

CASE STUDY:
BERKELEY FAST FILE SYSTEM (FFS)

4/16/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 23.3

Recall: Multilevel Indexed Files (Original 4.1 BSD)

» Sample file in multilevel indexed format: it
— 10 direct ptrs, 1K blocks Lt
— How many accesses for block #237?
(assume file header accessed on open)?
» Two: One for indirect block, one for data -
— How about block #5? -
» One: One for data
— Block #3407
» Three: double indirect block,
indirect block, and data

« UNIX 4.1 Pros and cons

— Pros: Simple (more or less)
Files can easily expand (up to a point)
Small files particularly cheap and easy
— Cons: Lots of seeks
Very large files must read many indirect block (four 1/Os per block!)

timestamps (3)

data
size block count J

direct blocks .7

single indirect —

double indirect_|

triple indirect

4/16/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 23.4

Recall: FFS Changes in Inode Placement: Motivation
* In early UNIX and DOS/Windows’ FAT file system, headers stored in special

array in outermost cylinders
— Fixed size, set when disk is formatted

» At formatting time, a fixed number of inodes are created
» Each is given a unique number, called an “inumber”

* Problem #1: Inodes all in one place (outer tracks)

— Head crash potentially destroys all files by destroying inodes
— Inodes not close to the data that the point to

» To read a small file, seek to get header, seek back to data
* Problem #2: When create a file, don’t know how big it will become (in UNIX
most writes are by appending)

— How much contiguous space do you allocate for a file?
— Makes it hard to optimize for performance

4/16/2024 Kubiatowicz CS162 © UCB Spring 2024

Lec 23.5

FFS Locality: Block Groups

* The UNIX BSD 4.2 (FFS) distributed the header |nformat|on
(inodes) closer to the data blocks

— Often, inode for file stored in same “cylinder group”
as parent directory of the file

Block Group 0

Block Group 1

Block Gvoup %

— makes an “Is” of that directory run very fast — X

* File system volume divided into set of block group% | k
— Close set of tracks

“(\O"

pOI8 220
es asq, 1.2
Skace grmaP*

ST

» Data blocks, metadata, and free space
interleaved within block group

— Avoid huge seeks between user data and \ N ‘&
system structure h

)
oy,
<4
e

gy, -

S

¥

&

T a®
%

— T o
5
ot Blocks for &

W
N
2
%,
3 —
Oty -

+ Put directory and its files in common block group - =

4/16/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 23.6

FFS Locality: Block Groups (Con’ t)

 First-Free allocation of new file blocks

— To expand file, first try successive blocks in bitmap, then
choose new range of blocks

— Few little holes at start, big sequential runs at
end of group

— Avoids fragmentation r g
— Sequential layout for big files g
* Important: keep 10% or more free!
— Reserve space in the Block Group

Block Group 0

Block Group 1

Block Group 2 ™2,
o

ST T
018 230

% 67» — 063 jf
%‘?o %, %t et 1018
* Summary: FFS Inode Layout Pros N R g, S

— For small directories, can fit all data, file headers, 9 /a(,(:"’vfyq,,, %
etc. in same cylinder = no seeks! e R m@%@n

— File headers much smaller than whole block s
(a few hundred bytes), so multiple headers fetched from disk at same time

— Reliability: whatever happens to the disk, you can find many of the files
(even if directories disconnected)

4/16/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 23.7

UNIX 4.2 BSD FFS First Fit Block Allocation

In-Use

Start of Block
Block
Group

Free
Block

CETT O P 1T P LT T T T T T T T 0 e

Write Two Block File
I

Start of
Block
Group

Start of Write Large File
Block HEEEEEEEmEmm
Group

FTT [T T T T T T T T T DT eee

4/16/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 23.8

Attack of the Rotational Delay

* Problem 3: Missing blocks due to rotational delay

— Issue: Read one block, do processing and read next block. In meantime, disk has
continued turning: missed next block! Need 1 revolution/block!

Skip Sectort : :

— Solution1: Skip sector positioning (“interleaving”)

» Place the blocks from one file on every other block of a track: give time for processing
to overlap rotation

» Can be done by OS or in modern drives by the disk controller
-]%orlg.%ti%rg 2: Read ahead: read next block right after first, even if application hasn’t asked
Ity
» This can be done either by OS (read ahead)
» By disk itself (track buffers) - many disk controllers have internal RAM that allows them
to read a complete track
* Modern disks + controllers do many things “under the covers”
— Track buffers, elevator algorithms, bad block filtering

Track Buffer
(Holds complete track)

UNIX 4.2 BSD FFS

* Pros

— Efficient storage for both small and large files
— Locality for both small and large files

— Locality for metadata and data

— No defragmentation necessary!

* Cons

— Inefficient for tiny files (a 1 byte file requires both an inode and a data
block)

— Inefficient encoding when file is mostly contiguous on disk
— Need to reserve 10-20% of free space to prevent fragmentation

4/16/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec23.9 4/16/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 23.10
Linux Example: Ext2/3 Disk Layout Recall: Directory Abstraction
. . . . Sigér Block Group 0
Disk divided into block groups Bk f modeTae — + Directories are specialized files
— Provides locality 1/ i Tvame o] : : . .
Each group has two block-sized bitmaps beee) | S EER - 5 — Contents: List of pairs <file name, file number> ,
- a bkt 7 —— oumal [16__|dn23 | 2109 | . . usr
(free blocks/inodes) [| \g i s son] + System calls to access directories
— Block sizes settable at format time: De?;:ztl‘éor‘;‘“‘ —/ Block 258 - open/ creat traverse the structure
A t1Ki ?K’;K’ fKt imilar to 4.2 BSD o;"'*“" / - mkdir /rmdir add/remove entries /usr‘/lif/ Jusr/1iba.3
 Actual inode structure similar to 4. sl BiockGrowp2 / 13 . .
o y - link / unlink (rm N
— with 12 direct pointers élocksz~; Inode Table ”J’ . ‘dirt” contents . ()
. . ¥~ "[ten TName Tinode | ¢ |libc su pport
« Ext3: Ext2 with Journaling 5053 | Block: 18491 |- I P K . s
— Several degrees of protection with P - T I - DIR * opendir (const char *dirname)
comparable overhead Blocks 16:300- 16641\ iy - struct dirent * readdir (DIR *dirstream)
n \ -
— We will talk about Journalling later il ol \, fiet.catcontens - int readdir_r (DIR *dirstream, struct dirent
L] (o] [entry, , Jusr/1ib4.3/f00
Bk Bodk Blocks 20,002-20,003, 20,114-20,117 struct dirent **result)

* Example: create a filel.dat
under /dirl/ in Ext3

Kubiatowicz CS162 © UCB Spring 2024 Lec 23.11

4/16/2024

4/16/2024

Kubiatowicz CS162 © UCB Spring 2024

Lec 23.12

Hard Links

* Hard link
— Mapping from name to file number in the directory structure
— First hard link to a file is made when file created
— Create extra hard links to a file with the link() system call
— Remove links with unlink() system call
* When can file contents be deleted?
— When there are no more hard links to the file
— Inode maintains reference count for this purpose

N

-

/usr‘/liAt/

/usr

&

/usr/lib4.3
N

Soft Links (Symbolic Links)

+ Soft link or Symbolic Link or Shortcut
— Directory entry contains the path and name of the file
— Map one name to another name

+ Contrast these two different types of directory entries:
— Normal directory entry: <file name, file #>
— Symbolic link: <file name, dest. file name>

+ OS looks up destination file name each time program accesses
source file name

— Lookup can fail (error result from open)

/usr/1ib4.3/foo
* Unix: Create soft links with symlink syscall
4/16/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 23.13 4/16/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 23.14
Directory Traversal Large Directories: B-Trees (dirhash)
* What happens when we open /home/cs162/stuff.txt? ~ lnode
» “/” - inumber for root inode configured into kernel, say 2 2_,/ _:/hiack :?358 in FreeBSD, NetBSD, OpenBSD
— Read inode 2 from its position in inode array on disk] _-\
— Extract the direct and indirect block pointers 32 = otock Search for hash(‘out2") = 0x0000¢194
T ock 12132
— Determine block that holds root directory (say block 49358) Tt e B+Tree Root
— Read that block, scan it for “home” to get inumber for this L it pcrore [00ad 192 [bObE20T] fcffiadiz]
directory (say 8086) | == =
+ Read inode 8086 for /home, extract its blocks, read block 8086| | "] ,plock 775 -, BiTree Node B+Tree Node B+Tree Node
(say 7756), scan it for “cs162” to get its inumber (say 732) =k I\ T v m
» Read inode 732 for /home/cs162, extract its blocks, read R -
block (say 12132), scan it for “stuff.txt” to get its inumber, - Blocks of X S BiTree Leaf B+Tree Leaf
say 9909 9909 [l stuff. txt Entry Py 220020 LRSI
* Read inode 9909 for /home/cs162/stuff.txt i D it Lo - ek
Name | . [. [filel | file2 | [file9841 | outl | out2 | [out16341]
» Set up file description to refer to this inode so reads / File Number (36210429] 983211 | 239341 [231121 | [243212 [841013 [841014 | [324114]
write can access the data blocks referenced by its direct "out2”is file 841014
and indirect pointers 2: [soss: [l
* Check permissions on the final inode and each 732:
directory’s inode... 086: [| “cs162”:732 ”"stuff.txt":sses
4/16/2024 Kubiatowicz CS162 © UCB Spring 2024 Memory Lec 23.15 4/16/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 23.16

Administrivia

« Homework 5: Due April 23
Project 3: Design reviews this week
Midterm 3: April 25t

— Everything fair game with focus on last 1/3 of
class

— Three hand-written cheat-sheets, double sided

Class attendance: No credit for people who use
the same photo!

+ Last chance to suggest topics for final lecture!

https://tinyurl.com/25ep5ep3

4/16/2024 Kubiatowicz CS162 © UCB Spring 2024

CASE STUDY:
WINDOWS NTFS

Kubiatowicz CS162 © UCB Spring 2024

Lec 23.18

New Technology File System (NTFS)

» Default on modern Windows systems
+ Variable length extents
— Rather than fixed blocks
* Instead of FAT or inode array: Master File Table
— Like a database, with max 1 KB size for each table entry
— Everything (almost) is a sequence of <attribute:value> pairs
» Meta-data and data
« Each entry in MFT contains metadata and:
— File’s data directly (for small files)
— A list of extents (start block, size) for file’s data
— For big files: pointers to other MFT entries with more extent lists

4/16/2024 Kubiatowicz CS162 © UCB Spring 2024

NTFS

» Master File Table

— Database with Flexible 1KB entries for metadata/data
— Variable-sized attribute records (data or metadata)
— Extend with variable depth tree (non-resident)

— Block pointers cover runs of blocks
— Similar approach in Linux (ext4)

— File create can provide hint as to
size of file

+ Journaling for reliability

— Discussed later

» Extents — variable length contiguous regions

Master File Table

Extent

MEFT

Extent

Log file record

Extent

Small file recoxrd

Extent 1

Extent 2

Large file record

small directory record

http://ntfs.com/ntfs-mft.htm

Kubiatowicz CS162 © UCB Spring 2024

Lec 23.20

NTFS Small File: Data stored with Metadata

MasterF_iIe Table

NTFS Medium File: Extents for File Data

Start
Master File Table
] Create time, modify time, access time,] g
— . . o .] £
[Owner id, security specifier, flags (RO, hidden, sys)] :
[- 8
— MFT Regord (small file) data attribute — MFT Record Start + Length
:/ -] Std. Infg{. ‘ File Name ‘ Data (reS/ident) ‘ (free) ‘] - _ ‘ Std. Info. ‘ File Name ‘ D‘ata (nonresident) ‘ (free) ‘
R 1 ‘ Start
\)] i
Y [Length
] Attribute list] g
[] ‘s
[— — a8
I T Start + Length
4/16/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 23.21 4/16/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 23.22
Master File Table
NTFS Large File: Pointers to Other MFT Records | iugat fragmented fie)
7] stdinfo. | At Listnonvesident) | |
i e !
H . — _ xtent with part of attribute list
MFTRecod NTFS Huge, Fragmented File: 5 1}, ?@‘ e
(big/fragmented file) = Dota omvesiden
T e Many MFT Records = E=E 5
= =] ‘i:.‘b T 1‘:. \
= L
1 = I || owaoesideny]
[vwvowem [] = e
| T B E
. @ Extent with part of attribute list
B] E } “ __ Data (nonresident) ‘ ‘
5 " | |I . Data (nonresident} .l | — —() —]
5 = ‘ j“ _ Data (nonresident) ‘ ‘
— [—] =)
»] =
------------- | l I 4 DA (nonesskients .| | E 4%@ Extent with part of attribute list
=] :I =] = ‘ “ __ Data (nonresident)) ‘ ‘
— — =
] 3
=] | Data (nonresident]
— = B
4/16/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 23.23 4/16/2024 Kubiatowicz CS162 © UCB Spring 2 i Lec 23.24

NTFS Directories

+ Directories implemented as B Trees
+ File's number identifies its entry in MFT
* MFT entry always has a file name attribute
— Human readable name, file number of parent dir
» Hard link? Multiple file name attributes in MFT entry

THE BUFFER CACHE

4/16/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 23.25 4/16/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 23.26
Recall: From Storage to File Systems Need for Cache Between FileSystem and Devices
Not block-sized
/O APl and Variable-Size Buffer Memory Address /O APl and Variable-Size Buffer Memory Address °b| °:_ |s e d
syscalls syscalls or block-aligne
___ access
. Logical Index, . = . Reuse of inodes,
File System Tvoi File System : Logical Index, .
ypically 4 KB Block Based : Tvnically 4 KB indirect blocks,
___ (Block Based) % ypically data blocks
Speed up access
Buffer Cache to file system
Hardyvare (Block Based) e path and data
Devices PhyS Block Phys Index., ——————————————————
4KB
Tiwne | I |
or = — Hardware and flexibility is
i Devices Phys | g greater because
HDD SSD Phys. Block y::;Kngex ’ of Buffer Cache
Physical Index,
4116/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 23.27 4116/2024 HDDKubiatowicz CS162 © UCB S 2024 Lec 23.28

Buffer Cache: Motivation File System Buffer Cache

coercons (T [W T [T [T TT oo o
(BlockBased) er—T—T—Teer—T T T T T T T T T T 1] State .. BodGawpt O\

. iReading / ~ T
: . » OS implements a PCB ! A N

» Kernel must copy disk blocks to memory (somewhere) to access their cache of disk iNodes ;
contents and write them back if modified blocks for efficient file —sidH-—~

— Could be data blocks, inodes, directory contents, etc. access to data, desc % iWriting
— Possibly dirty (modified and not yet written back) directories,) !
. inodes freemap Dir Data blocks !
» Key Idea: Exploit locality by caching disk data in memory ’ !
— Name translations: Mapping from paths—inodes Free bitmap i

— Disk blocks: Mapping from block address—disk content
» Buffer Cache: Memory used to cache kernel resources, including disk

blocks and name translations B'°°ksm || [[] |

file
— search for map desc

t 1Y

— Can contain “dirty” blocks (with modifications not on disk) State Mee T T Treel T T T T T T T T T T 1 '
4/16/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 23.29 4/16/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 23.30
File System Buffer Cache: open File System Buffer Cache: open
. Data blocks ' o . Data blocks \ o
« Directory lookup . e N\ + Directory lookup . ! e N\
repeat as needed: . Reading /) N repeat as needed: . | Reading /) e\
PCB / Block Group 2 ’.%% \ PCB : /D Block Group 2 ’.m)%,
— load block of iNodes o — load block of iNodes i |:| { D NG
directory directory : A e .1

Writing

file =
— search for map desc

+ Create reference !
via open file Dir Data blocks !

descriptor D D e>:inumber

1
1
Free bitmap H
1

| socks| T [IO [T T[] |

State [fee] [Tdr [T T T T T T T T e]]

Blocks
State [free T

4/16/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 23.31 4/16/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 23.32

File System Buffer Cache: Read?

Data blocks

« Read Process
iNodes H

— From inode,
traverse index
structure to find

Readi
pCB eading

/ |:| Block Group 2 ;-"%.»

——._Disk

Block Group 0

Block Group 1

File System Buffer Cache: Write?

Data blocks

* Process similar to
iNodes H

read, but may
allocate new
blocks (update

Readi
pCB eading

Block Group 1

D Block Group 2 ;-"%.»

Disk

data block) file [D free map), blocks g file [D
esc o~ H esc =
—load data block Writing need to be written Writing
I rt ' back to disk; |
- SOPV ad dortpa Dir Data blocks ! inode? Dir Data blocks !
o read data . ! J
Inamer:inumber Inamer:inumber
L] et [e
Free bitmap H Free bitmap H
State [ee T T Jor [T [T T 1 T T T Jnode]]] State [ee T T Jor [T T[T T T T T T Jnode]]]
4/16/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 23.33 4/16/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 23.34
File System Buffer Cache: Eviction? Buffer Cache Discussion
Disk . .
« Blocks being Data blocks ! , v ; + Implemented entirely in OS software
written back to . . ! Reading /o i W — Unlike memory caches and TLB
i PCB ! / Block Group 3 3% \ " .
disc go through a < _ : DD o ’ \ « Blocks go through transitional states between free and in-use
transient state iNodes ' = - : :
file ! { — Being read from disk, being written to disk
desc| o] D E — Other processes can run, etc.
'+ Writin .
! 9 + Blocks are used for a variety of purposes
Dir Data blocks ! . .)
D D e:>-inumber — inodes, data for dirs and files, freemap
i — OS maintains pointers into them
Free bitmap H
H « Termination — e.g., process exit — open, read, write
* Replacement — what to do when it fills up?
siocks|] N IO [T [[[] |
State [eeT T T Tor T T T oW T T T Jnode]]]
4/16/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 23.35 4/16/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 23.36

File System Caching

* Replacement policy? LRU
— Can afford overhead full LRU implementation
— Advantages:
» Works very well for name translation

» Works well in general as long as memory is big enough to accommodate a host’s
working set of files.

— Disadvantages:

» Fails when some application scans through file system, thereby flushing the cache
with data used only once

» Example: find . -exec grep foo {} \;
» Other Replacement Policies?
— Some systems allow applications to request other policies
— Example, ‘Use Once’:
» File system can discard blocks as soon as they are used

4/16/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 23.37

4/16/2024

File System Caching (con’t)

» Cache Size: How much memory should the OS allocate to the buffer cache
vs virtual memory?

— Too much memory to the file system cache = won’t be able to run many
applications

— Too little memory to file system cache = many applications may run slowly (disk
caching not effective)

— Solution: adjust boundary dynamically so that the disk access rates for paging
and file access are balanced

Kubiatowicz CS162 © UCB Spring 2024 Lec 23.38

File System Prefetching

* Read Ahead Prefetching: fetch sequential blocks early

— Key Idea: exploit fact that most common file access is sequential by prefetching
subsequent disk blocks ahead of current read request

— Elevator algorithm can efficiently interleave prefetches from concurrent
applications

* How much to prefetch?

— Too much prefetching imposes delays on requests by other applications

— Too little prefetching causes many seeks (and rotational delays) among
concurrent file requests

4/16/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 23.39

4/16/2024

Delayed Writes

Buffer cache is a writeback cache (writes are termed “Delayed Writes”)

write() copies data from user space to kernel buffer cache
— Quick return to user space

read() is fulfilled by the cache, so reads see the results of writes
— Even if the data has not reached disk

When does data from a write syscall finally reach disk?
— When the buffer cache is full (e.g., we need to evict something)
— When the buffer cache is flushed periodically (in case we crash)

Kubiatowicz CS162 © UCB Spring 2024 Lec 23.40

Delayed Writes (Advantages)

» Performance advantage: return to user quickly without writing to disk!

Disk scheduler can efficiently order lots of requests
— Elevator Algorithm can rearrange writes to avoid random seeks
Delay block allocation:
— May be able to allocate multiple blocks at same time for file, keep them contiguous
« Some files never actually make it all the way to disk
— Many short-lived files!

4/16/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 23.41

Buffer Caching vs. Demand Paging

* Replacement Policy?
— Demand Paging: LRU is infeasible; use approximation (like NRU/Clock)
— Buffer Cache: LRU is OK

« Eviction Policy?
— Demand Paging: evict not-recently-used pages when memory is close to full
— Buffer Cache: write back dirty blocks periodically, even if used recently
» Why? To minimize data loss in case of a crash

4/16/2024 Kubiatowicz CS162 © UCB Spring 2024

Lec 23.42

Dealing with Persistent State

» Buffer Cache: write back dirty blocks periodically, even if used recently
— Why? To minimize data loss in case of a crash
— Linux does periodic flush every 30 seconds

* Not foolproof! Can still crash with dirty blocks in the cache

— What if the dirty block was for a directory?
» Lose pointer to file’s inode (leak space)
» File system now in inconsistent state ®

Takeaway: File systems need
recovery mechanisms

4/16/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 23.43

QUICK ASIDE: MEMORY MAPPED FILES

4/16/2024 Kubiatowicz CS162 © UCB Spring 2024

Lec 23.44

Memory Mapped Files

» Traditional I/0O involves explicit transfers between buffers in process
address space to/from regions of a file

— This involves multiple copies into caches in memory, plus system calls

+ What if we could “map” the file directly into an empty region of our
address space

— Implicitly “page it in” when we read it
— Write it and “eventually” page it out

« Data in Buffer Cache already!

» Executable files are treated this way when we exec the process!!

Recall: Who Does What, When?

Process virtual address physical address
instycti MU (2%
instrdctio ot —fame#t

M
\\
fiset e
retry exceptionL/page faq t} 0 ;eme¥
Operating System . update PT entry offe

age Fault Ijl,aﬁdler

oad page from disk

scheduler
4/16/2024 Kubiatowicz C$162 © UCB Spring 2024 Lec 23.45 4/16/2024 Kubiatowicz C$162 © UCB Spring 2024 Lec 23.46
Using Paging to mmap () Files mmap () system call
MMAP(2) BSD System Calls Manual MMAP(2)
Process virtual address physical address NAME
—-- allocate memory, or map files or devices into memory
. v . pageg mmap a
instryctio MMU > PT frame# LIBRARY
Standard C Library (libc, -1lc)
offset (=5
retry ' SVNOP:ES lud / h
exce) // \\\ include <sys/mman.h>
Read File _ . void x
\ (void xaddr, size t len, int t, int flags, int fd,
Contents \\\ mmapo\fltzlt :?fsgt)?lze en int prot, 1in ags in
Operating Syste | * DESCRIPTION
from memory ate PT entrias The mmap() system call causes the pages starting at addr and continuing
age Fa v S— L for at most len bytes to be mapped from the object described by fd,
fOI‘ mapped reg|0h\ starting a'\t byte offset offsgt. If offset or len is not'a_multiple of
3} as "backed” by file |5 * May map a specific region or let the system find one for you
— Tricky to know where the holes are
+ Used both for manipulating files and for sharing between processes
hedul Fil
scheduler mmap() file to region of VAS
4/16/2024 Kub 2 © UCB Spring 2024 Lec 23.47 4/16/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 23.48

An mmap () Example

#include <sys/mman.h> /* also stdio.h

FLETNEN i ool L ieid L x

$./mmap test \

int something = 162;

Data at: 105d63058

inF main (int argc, char *argv[]) Heap at : 7f8a33c04b70
e s Stack at: 7Ff£59e9db10
mmap at : 105d97000

printf("Data at: %161x\n", (lon,
printf("Heap at : %161x\n", (lon
printf("Stack at: %161x\n", (lon,

This is line one
This is line two

This is line three
/* Open the file */

This is line four
[myfd = open(argv[1], O_RDWR | O_CA_
if (myfd < @) { perror("open failedYs

/* map the file */
mfile = mmap(@, 10600, PROT_READ|p”. ™
if (mfile == MAP_FAILED) {perror(] $ cat test

This is line one

printf("mmap at : %161x\n", (lon,

ThilLet's write over its line three
[puts(nfile); This is line four
| strcpy(mfile+20,"Let's write over
close(myfd); J
return @;

}

4/16/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 23.49

Sharing through Mapped Files

% 0x000... > L‘Q‘ZL 0x000...
nstructioJ nstructioJ
data data
File I
heap | — heap |
N Memory
S ol stack
\\ R
: - | s -
OxFFF... OxFFF...

» Also: anonymous memory between parents and children

— no file backing — just swap space
4/16/2024 Kubiatowicz CS162 © UCB Spring 2024

Lec 23.50

HOW TO MAKE FILE SYSTEMS MORE
DURABLE?

4/16/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 23.51

Important “ilities”

+ Availability: the probability that the system can accept and process requests
— Measured in “nines” of probability: e.g. 99.9% probability is “3-nines of availability”
— Key idea here is independence of failures

+ Durability: the ability of a system to recover data despite faults
— This idea is fault tolerance applied to data

— Doesn’t necessarily imply availability: information on pyramids was very durable,
but could not be accessed until discovery of Rosetta Stone

 Reliability: the ability of a system or component to perform its required
functions under stated conditions for a specified period of time (IEEE
definition)
— Usually stronger than simply availability: means that the system is not only “up”,
but also working correctly
— Includes availability, security, fault tolerance/durability
— Must make sure data survives system crashes, disk crashes, other problems

4/16/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 23.52

How to Make File Systems more Durable?

+ Disk blocks contain Reed-Solomon error correcting codes (ECC) to deal with
small defects in disk drive
— Can allow recovery of data from small media defects

* Make sure writes survive in short term
— Either abandon delayed writes or
— Use special, battery-backed RAM (called non-volatile RAM or NVRAM) for dirty blocks
in buffer cache

* Make sure that data survives in long term
— Need to replicate! More than one copy of data!
— Important element: independence of failure
» Could put copies on one disk, but if disk head fails...
» Could put copies on different disks, but if server fails...
» Could put copies on different servers, but if building is struck by lightning....
» Could put copies on servers in different continents...

4/16/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 23.53

Redundant Array of Inexpensive D

© 0 o (developed here at Berkeley!)

RAID 1: Disk Mirroring/Shadowing
«—_lecovery

o8 .. O8

Each disk is fully duplicated onto its “shadow”

— For high I/O rate, high availability environments

— Most expensive solution: 100% capacity overhead
Bandwidth sacrificed on write:

— Logical write = two physical writes

— Highest bandwidth when disk heads and rotation synchronized (challenging)
* Reads may be optimized

— Can have two independent reads to same data

* Recovery:
— Disk failure = replace disk and copy data to new disk

— Hot Spare: idle disk attached to system for immediate replacement
Kubiatowicz CS162 © UCB Spring 2024

4/16/2024 Lec 23.54

RAID 5+: High 1/0O Rate Parity

» Data stripped across multiple disks
P1

Stripe Unit

— Successive blocks stored on successive
(non-parity) disks
— Increased bandwidth over single disk

PO
Increasing
Logical

Disk
+ Parity block (in green) constructed D1 |D11| | Addresses
by XORing data blocks in stripe
~ PO=D0®D1®D26D3 D15
— Can destroy any one disk and still
reconstruct data p1d |D1g

» Suppose Disk 3 fails, then can reconstruct:
D2=D0®D1®D3®P0

9
%E
N
e
o

Disk 1 Disk 2 Disk 3

» Can spread information widely across internet for durability
— RAID algorithms work over geographic scale

4/16/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 23.55

RAID 6 and other Erasure Codes

In general: RAIDX is an “erasure code”
— Must have ability to know which disks are bad
— Treat missing disk as an “Erasure”
Today, disks so big that: RAID 5 not sufficient!
— Time to repair disk sooooo long, another disk might fail in process!
—“RAID 6” — allow 2 disks in replication stripe to fail
— Requires more complex erasure code, such as EVENODD code (see readings)
» More general option for general erasure code: Reed-Solomon codes
— Based on polynomials in GF(2X) (I.e. k-bit symbols)
- m data points define a degree m polynomial; encoding is n points on the polynomial
— Any m points can be used to recover the polynomial; n — m failures tolerated
+ Erasure codes not just for disk arrays. For example, geographic replication

— E.g., split data into m = 4 chunks, generate n = 16 fragments and distribute across
the Internet

— Any 4 fragments can be used to recover the original data --- very durable!

4/16/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 23.56

Use of Erasure Coding for High Durability/overhead ratio!

g y ///.4', . le-30
§ wor .~ Fraction Blocks Lost .«
3 Per Year (FBLPY) o

Repaic Time (months)

» Exploit law of large numbers for durability!

» 6 month repair, FBLPY with 4x increase in total size of data:
— Replication (4 copies): 0.03
— Fragmentation (16 of 64 fragments needed): 10-3

4/16/2024 Kubiatowicz CS162 © UCB Spring 2024

Lec 23.57

Higher Durability through Geographic Replication

* Highly durable — hard to destroy all copies
» Highly available for reads
— Simple replication: read any copy
— Erasure coded: read m of n
* Low availability for writes
— Can't write if any one replica is not up
— Or — need relaxed consistency model
» Reliability? — availability, security, durability, fault-tolerance

Replica/Frag #1

- p Replica/Frag #n
4/16/2024 Kubiatowicz CS162 © UCB Spring Lec 23.58

File System Summary (1/2)

File System:
— Transforms blocks into Files and Directories
— Optimize for size, access and usage patterns
— Maximize sequential access, allow efficient random access
— Projects the OS protection and security regime (UGO vs ACL)
File defined by header, called “inode”
« Naming: translating from user-visible names to actual sys resources
— Directories used for naming for local file systems
— Linked or tree structure stored in files
* 4.2 BSD Multilevel Indexed Scheme

— inode contains file info, direct pointers to blocks, indirect blocks, doubly
indirect, etc..

— NTFS: variable extents not fixed blocks, tiny files data is in header

4/16/2024 Kubiatowicz CS162 © UCB Spring 2024

Lec 23.59

File System Summary (2/2)

« File layout driven by freespace management

— Optimizations for sequential access: start new files in open ranges of free
blocks, rotational optimization

— Integrate freespace, inode table, file blocks and dirs into block group
» Deep interactions between mem management, file system, sharing
- mmap (): map file or anonymous segment to memory

+ Buffer Cache: Memory used to cache kernel resources, including disk
blocks and name translations

— Can contain “dirty” blocks (blocks yet on disk)

4/16/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 23.60

