CS162
Operating Systems and
Systems Programming

Lecture 25

Distributed 2: Distributed Decision Making (Con't),
RPC, and Distributed Storage

April 251, 2024
Prof. John Kubiatowicz
http://cs162.eecs.Berkeley.edu

4/25/24

Recall: Distributed Consensus Making

» Consensus problem
— All nodes propose a value
— Some nodes might crash and stop responding

— Eventually, all remaining nodes decide on the same value from set of proposed
values

« Distributed Decision Making
— Choose between “true” and “false”
— Or Choose between “commit” and “abort”
« Equally important (but often forgotten!): make it durable!
— How do we make sure that decisions cannot be forgotten?
» This is the “D” of “ACID” in a regular database
—In a global-scale system?
» What about erasure coding or massive replication?
» Like BlockChain applications!

Kubiatowicz CS162 © UCB Spring 2024 Lec 25.2

4/25/24

Recall: Two-Phase Commit Protocol (2PC)

* Prepare Phase:
— The global coordinator requests that all participants will promise to commit or
rollback the transaction
— Participants record promise in log, then acknowledge
— If anyone votes to abort, coordinator writes "Abort" in its log and tells everyone
to abort; each records "Abort" in log
* Commit Phase:
— After all participants respond that they are prepared, then the coordinator writes
"Commit" toits log
— Then asks all nodes to commit; they respond with ACK
— After receive ACKs, coordinator writes "Got Commit" to log
 Persistent stable log on each machine: keep track of whether commit has
happened
— Required for good semantics
— If a machine crashes, when it wakes up it first checks its log to recover state of
world at time of crash

Kubiatowicz CS162 © UCB Spring 2024 Lec 25.3

4/25/24

Alternatives to 2PC

* Three-Phase Commit: One more phase, allows nodes to fail or block and still
make progress.
+ PAXOS: An alternative used by Google and others that does not have 2PC
blocking problem
— Develop by Leslie Lamport (Turing Award Winner)
— No fixed leader, can choose new leader on fly, deal with failure
— Some think this is extremely complex!
* RAFT: PAXOS alternative from John Osterhout (Stanford)
— Simpler to describe complete protocol

* What happens if one or more of the nodes is malicious?
—Malicious: attempting to compromise the decision making
—Use a more hardened decision making process:

Byzantine Agreement and Block Chains

Kubiatowicz CS162 © UCB Spring 2024 Lec 25.4

Byzantine General’s Problem

Lieutenant

W‘
| 4116%! 7

Retreat!

| Lieutenant

Lieutenant

» Byazantine General’s Problem (n players):
— One General and n-1 Lieutenants
— Some number of these (f) can be insane or malicious

* The commanding general must send an order to his n-1 lieutenants such that the
following Integrity Constraints apply:

— IC1: All loyal lieutenants obey the same order

Byzantine General’s Problem (con’t)

» Impossibility Results:

— Cannot solve Byzantine General’s Problem with n=3 because one malicious player can
mess up things

— With f faults, need n > 3f to solve problem
» Various algorithms exist to solve problem
— Original algorithm has #messages exponential in n
— Newer algorithms have message complexity O(n2)
» One from MIT, for instance (Castro and Liskov, 1999)
» Use of BFT (Byzantine Fault Tolerance) algorithm
— Allow multiple machines to make a coordinated decision even if some subset of them
(< n/3) are malicious

Request—} Distributed

- ICZ:dIf the commanding general is loyal, then all loyal lieutenants obey the order he Decision
sends
4/25/24 Kubiatowicz CS162 © UCB Spring 2024 Lec 25.5 4/25/24 Kubiatowicz CS162 © UCB Spring 2024 Lec 25.6
Is a Blockchain a Distributed Decision
. oS : : ’
Is a BlockChain a Distributed Decision Making Algorithm” Makina Algorithm? (Con't)
@ Tentative Head #1 Observer:
Tracks state of
Root i BlockChain
Block Hash’P‘l’r Tentative Head #2
The “Block Chain”
» BlockChain: a chain of blocks connected by hashes to root block
— The Hash Pointers are unforgeable (assumption)
— The Chain has no branches except perhaps for heads
— Blocks are considered “authentic” part of chain when they have authenticity info in them
* How is the head chosen?
— Some consensus algorithm
— In many BlockChain algorithms (e.g. BitCoin, Ethereum), the head is chosen by solving
hard problem - Decisi P lis locked into BlockChai
» This is the job of “miners” who try to find “nonce” info that makes hash over block have ecision means: _roposa Is. QC edinto Bloc an
specified number of zero bits in it — Could be Commit/Abort decision
» The result is a “Proof of Work” (POW) — Could be Choice of Value, State Transition,
)) . . N " R | Proposal
» Selected blocks above (green) have POW in them and can be included in chains + NAK: Didn’t make it into the block chain (must retry!)
— Longest chain wins * Anyone in world can verify the result of decision making!
4/25/24 Kubiatowicz CS162 © UCB Spring 2024 Lec 25.7 4/25/24 Kubiatowicz CS162 © UCB Spring 2024 Lec 25.8

Recall: Distributed Applications Build With Messages

* How do you actually program a distributed application?
— Need to synchronize multiple threads, running on different machines
» No shared memory, so cannot use test&set

— One Abstraction: send/receive messages
» Already atomic: no receiver gets portion of a message and two receivers cannot get same
message
* Interface:
— Mailbox (mbox): temporary holding area for messages
» Includes both destination location and queue
» Over Internet, destination specified by IP address and Port (Recall Web server example!)
— Send(message,mbox)
» Send message to remote mailbox identified by mbox
— Receive(buffer,mbox)
» Wait until mbox has message, copy into buffer, and return
» If threads sleeping on this mbox, wake up one of them

How do we know that both sides speak same language?

* An object in memory has a machine-specific binary representation
— Threads within a single process have the same view of what's in memory
— Easy to compute offsets into fields, follow pointers, etc.

* In the absence of shared memory, externalizing an object requires us to turn
it into a sequential sequence of bytes

— Serialization/Marshalling: Express an object as a sequence of bytes

— Deserialization/Unmarshalling: Reconstructing the original object from its
marshalled form at destination

4/25/24 Kubiatowicz CS162 © UCB Spring 2024 Lec 25.9 4/25/24 Kubiatowicz CS162 © UCB Spring 2024 Lec 25.10
Simple Data Types Machine Representation
uint32_t x; » Consider using the machine representation:
» Suppose | want to write a x to a file - fwrite(&x, sizeof(uint32_t), 1, f);
» First, open the file: FILE* f = fopen(“foo.txt”, “w”); + How do we know if the recipient represents x in the same way?
« Then, | have two choices: — For pipes, is this a problem?
1. fprintf(f, “%lu”, x); — What about for sockets?
2. fwrite(&x, sizeof(uint32_t), 1, f);
» Or equivalently, write(fd, &x, sizeof(uint32_t)); (perhaps with a loop to be safe)
* Neither one is “wrong” but sender and receiver should be consistent!
4/25/24 Kubiatowicz CS162 © UCB Spring 2024 Lec 25.11 4/25/24 Kubiatowicz CS162 © UCB Spring 2024 Lec 25.12

Endianness

» For a byte-address machine, which end of a machine-

recognized object (e.g., int) does its byte-address refer to?

+ Big Endian: address points to most-significant byte
« Little Endian: address points to least-significant byte

int main(int argc, char xargv[])
{
. int val = 0x12345678;
Experiment: int i;
printf("val = %x\n", val);

for (1 = @; i < sizeof(val); i++) {

printf("vall%sd] = %x\n", i,
}
¥

valle]
vall1]
vall[2]
vall[3]

Result:

What Endian is the Internet?

Processor Endianness
Motorola 68000 Big Endian
PowerPC (PPC) Big Endian
Sun Sparc Big Endian
IBM S/390 Big Endian
Intel x86 (32 bit) Little Endian

Intel x86_64 (64 bit)

Little Endian

Dec VAX

Little Endian

Alpha Bi (Big/Little) Endian
ARM Bi (Big/Little) Endian
1A-64 (64 bit) Bi (Big/Little) Endian
MIPS Bi (Big/Little) Endian

((uint8_t x) &val)[il);

(base) CullerMacl9:code@9 culler$./endian
val = 12345678

NAME

arpafinet.h - definitions for internet operations

SYNOPSIS

#include <arpa/inet.h>

DESCRIPTION

The in_port_t and in_addr_t types shall be defined as described in <nefinet/in.h>.

The in_addr structure shall be defined as described in <netinet/in.h=.

The INET_ADDRSTRLEN (6] and INET6_ADDRSTRLEN <& macros shall be defined as described in <netinet/in.h>.
The following shall either be declared as functions, defined as macros, or both. If functions are declared, function prototypes
uint32_t htonl(uint32_t);

uintl6_t htons(uintlé_t);

uint32_t ntohl(uint32_t);

uintl6_t ntohs(uintl6é_t);

The uint32_t and uint16_t types shall be defined as described in <inttypes.h>.

The following shall be declared as functions and may also be defined as macros. Function prototypes shall be provided.

in_addr_t inet_addr(const char *);

char *inet_ntoa(struct in_addr);

const char *inet_ntop(int, const void *restrict, char *restrict,
socklen_t);

int inet_pton(int, const char *restrict, void *restrict);

Inclusion of the <arpa/inet.h>header may also make visible all symbols from <netinet/in.h> and <inttypes.h>.

* Big Endian
* Network byte order
* Vs. "host byte order”

4/25/24 Kubiatowicz CS162 © UCB Spring 2024 Lec 25.13 4/25/24 Kubiatowicz CS162 © UCB Spring 2024 Lec 25.14
Dealing with Endianness What About Richer Objects?
« Decide on an “on-wire” endianness * Consider word_count_t of Homework O and 1 ... typedef struct word_count
« Convert from native endianness to “on-wire” endianness before sending * Each element contains: char #word;
. g . . . int count;
out data (serialization/marshalling) —Anint struct word_count #next;
-uint32_t htonl(uint32_t) and uint16_t htons(uint16_t) convert — A pointer to a string (of some length) P R
from native endianness to network endianness (big endian) — A pointer to the next element il
» fprintf_words writes these as a sequence of lines (character strings with \n)
» Convert from “on-wire” endianness to native endianness when receiving to a file stream
data (deserialization/unmarshalling) + What if you wanted to write the whole list as a binary object (and read it back
- uint32_t ntohl(uint32_t) and uint16_t ntohs(uintl6_t) convert as one)?
from network endianness to native endianness (big endian) — How do you represent the string?
— Does it make any sense to write the pointer?
4/25/24 Kubiatowicz CS162 © UCB Spring 2024 Lec 25.15 4/25/24 Kubiatowicz CS162 © UCB Spring 2024 Lec 25.16

Data Serialization Formats

* JSON and XML are commonly used in web applications
* Lots of ad-hoc formats

<IDOCTYPE glossary PUBLIC "-//OASIS//DTD DocBook V3.1//EN">
t. . <glossary><title>example glossary</title>
<GlossDiv><titlex8</title>
<GlossList>
<GlossEntry ID="SGML" SortAs="SCML">
<GlossTerm>Standard Generalized Markup Language</GlossTerm>
<Acronym>SGML</Acronym>
b <Abbrev>ISO 8879:1986</Abbrev>
“Stindard Gencralised Marksp Language’s Pyt

S, <para>A meta-markup language, used to create markup
- [languages such as DocBook.</para>
"para’s " msts-marksp language, used Lo sreste warkup langusges such as DecBesk.’, 2GlossSeeAlso OtherTerm="GML'>
“GlonsSeshlao®: [GHL', “XML'1 oomr
<ClossSeeAlso OtherTerm="XML'>
*Glosssea": “markup" </ClossDet>
3 <GlossSee OtherTerm="markup">
} </GlossEntry>
</ClossList>

</GlossDiv>

</glossary>

4/25/24 Kubiatowicz CS162 © UCB Spring 2024 Lec 25.17

Data Serialization Formats: Many Options

— | e e o B P . it

;
H
;
x
)

w|e|e|e| @ |a|e| ¢

- c e 050 S N

RS Ed E3U
e s []

4/25/24 Kubiatowicz CS162 © UCB Spring 2024

Lec 25.18

Administrivia

* Midterm 3: This Thursday!
— No class on Thursday. I'll have special office hours during class time.
— Three double-sided pages of notes
— Watch for Ed post about where you should go: we have multiple exam rooms
« All material up to today’s lecture is fair game
+ Final deadlines during RRR week:
— Yes, there will be office hours — watch for specifics
» Also — we have a special lecture (just for fun) next Tuesday
— During normal class time!

4/25/24 Kubiatowicz CS162 © UCB Spring 2024 Lec 25.19

Administrivia (Con’t)

* You need to know your units as CS/Engineering students!
» Units of Time: “s”: Second, “min”: 60s, “h”: 3600s, (of course)
— Millisecond: 1ms = 103s
— Microsecond: 1us = 10°s
— Nanosecond: 1ns: = 109s
— Picosecond: 1ps = 10"2s

* Integer Sizes: “b” = "bit”, “B” = “byte” == 8 bits, “W"="word"==? (depends. Could be 16b, 32b, 64b)

» Units of Space (memory), sometimes called the “binary system”

— Kilo: 1KB = 1KiB = 1024 bytes == 210 pytes == 1024 ~ 1.0x10°

— Mega: IMB = 1MiB = (1024)2 bytes =~ == 220 bytes == 1,048,576 ~ 1.0x10°

— Giga: 1GB=1GiB = (1024)3 bytes == 2% bytes ==1,073,741,824 ~ 1.1x10°

— Tera: 1TB=1TiB = (1024)* bytes == 240 bytes ==1,099,511,627,776 ~ 1.1x10'2

— Peta: 1PB=1PiB = (1024)5 bytes = == 2% bytes ==1,125,899,906,842,624 ~ 1.1 x 105

— Exa: 1EB=1EB = (1024)f bytes == 250 pytes ==1,152,921,504,606,846,976 ~ 1.2 x 108

» Units of Bandwidth, Space on disk/etc, Everything else..., sometimes called the “decimal system”

— Kilo: 1KB/s = 10° bytes/s, 1KB = 10% bytes
— Mega: 1MB/s = 106 bytes/s, 1MB = 106 bytes
— Giga: 1GB/s = 109 bytes/s, 1GB = 10° bytes
— Tera: 1TB/s = 10'2bytes/s, 1TB= 10'2bytes
— Peta: 1PB/s = 10" bytes/s, 1PB = 10'® bytes

— Exa: 1EB/s = 10'8 bytes/s, 1EB = 10'® bytes
4/25/24 Kubiatowicz CS162 © UCB Spring 2024

Lec 25.20

Remote Procedure Call (RPC)

* Raw messaging is a bit too low-level for programming
— Must wrap up information into message at source
— Must decide what to do with message at destination
— May need to sit and wait for multiple messages to arrive
— And must deal with machine representation by hand

* Another option: Remote Procedure Call (RPC)
— Calls a procedure on a remote machine
— ldea: Make communication look like an ordinary function call
— Automate all of the complexity of translating between representations

— Client calls:
remoteFileSystem—Read ("rutabaga") ;

— Translated automatically into call on server:
fileSys—Read ("rutabaga") ;

4/25/24 Kubiatowicz CS162 © UCB Spring 2024

Lec 25.21

RPC Concept

bundle
Client (caller) args
call
Client}—30d,
r = £(vl, v2); Stub - A\
return receive
unbundle
ret vals
bundle
Server (callee)
ret vals
return d J
res t f(al, a2) Server —=" /
Stub [/
call receive
unbundle
args
4/25/24 Kubiatowicz CS162 © UCB Spring 2024 Lec 25.22

RPC Information Flow

bundle
Client (caller) args
call
Client send
= f£(vl, v2); Stub Packet
return receive |Handlen
unbundle =
ret vals
o [z
Machine B % g
bundle Z
Server (callee)
ret vals |
return
res_t f(al, a2) Server send Packet
Stub Handlen
call receive
unbundle
args
4/25/24 Kubiatowicz CS162 © UCB Spring 2024

Lec 25.23

RPC Implementation

* Request-response message passing (under covers!)
+ “Stub” provides glue on client/server

— Client stub is responsible for “marshalling” arguments and “unmarshalling” the
return values

— Server-side stub is responsible for “unmarshalling” arguments and “marshalling”
the return values.

» Marshalling involves (depending on system)

— Converting values to a canonical form, serializing objects, copying arguments
passed by reference, etc.

— Use of standardized serialization protocol

4/25/24 Kubiatowicz CS162 © UCB Spring 2024 Lec 25.24

RPC Details (1/3)

» Equivalence with regular procedure call
— Parameters < Request Message
— Result < Reply message
— Name of Procedure: Passed in request message
— Return Address: mbox2 (client return mail box)

» Stub generator: Compiler that generates stubs
— Input: interface definitions in an “interface definition language (IDL)”
» Contains, among other things, types of arguments/return
— Output: stub code in the appropriate source language

» Code for client to pack message, send it off, wait for result, unpack result and return to
caller

» Code for server to unpack message, call procedure, pack results, send them off

RPC Details (2/3)

* Cross-platform issues:
— What if client/server machines are different architectures/ languages?
» Convert everything to/from some canonical form

» Tag every item with an indication of how it is encoded (avoids unnecessary
conversions)

» How does client know which mbox (destination queue) to send to?
— Need to translate name of remote service into network endpoint (Remote
machine, port, possibly other info)
— Binding: the process of converting a user-visible name into a network endpoint
» This is another word for “naming” at network level
» Static: fixed at compile time
» Dynamic: performed at runtime

4/25/24 Kubiatowicz CS162 © UCB Spring 2024 Lec 25.25 4/25/24 Kubiatowicz CS162 © UCB Spring 2024 Lec 25.26
RPC Details (3/3) Problems with RPC: Non-Atomic Failures
» Dynamic Bindin . . - . .
4 9 o . « Different failure modes in dist. system than on a single machine
— Most RPC systems use dynamic binding via name service) . i
» Name service provides dynamic translation of service — mbox » Consider many different types of failures
— Why dynamic binding? —User-level bug causes address space to crash
» Access control: check who is permitted to access service Machi fail K | b I
» Fail-over: If server fails, use a different one —Mac !ne al ur_-e’ ernel bug causes all processes on same
machine to fail
+ What if there are multiple servers? —Some machine is compromised by malicious party
- C°“'th9"’e f'eﬁ'b"gydat b'”d"f‘g t'meh ot + Before RPC: whole system would crash/die
» 00sSe unloadeaq server 1or each new clien . . .
_ Could provide same mbox (router level redirect) . After'RPC. One machine crashes/compromised while others keep
» Choose unloaded server for each new request worklng
» Only works if no state carried from one call to next + Can easily result in inconsistent view of the world
—Di i ?
- What if multiple clients? D!d my cached data get written back or not~
— Pass pointer to client-specific return mbox in request —Did server do what | requested or not?
» Answer? Distributed transactions/Byzantine Commit
4/25/24 Kubiatowicz CS162 © UCB Spring 2024 Lec 25.27 4/25/24 Kubiatowicz CS162 © UCB Spring 2024 Lec 25.28

Problems with RPC: Performance

* RPC is not performance transparent:
— Cost of Procedure call « same-machine RPC « network RPC
— Overheads: Marshalling, Stubs, Kernel-Crossing, Communication

* Programmers must be aware that RPC is not free
— Caching can help, but may make failure handling complex

4/25/24 Kubiatowicz CS162 © UCB Spring 2024 Lec 25.29

Cross-Domain Communication/Location Transparency

* How do address spaces communicate with one another?
— Shared Memory with Semaphores, monitors, etc...
— File System
— Pipes (1-way communication)
— “Remote” procedure call (2-way communication)

* RPC’s can be used to communicate between address spaces on different
machines or the same machine

— Services can be run wherever it's most appropriate
— Access to local and remote services looks the same
+ Examples of RPC systems:
— CORBA (Common Object Request Broker Architecture)
— DCOM (Distributed COM)
— RMI (Java Remote Method Invocation)

4/25/24 Kubiatowicz CS162 © UCB Spring 2024 Lec 25.30

Microkernel operating systems

« Example: split kernel into application-level servers.
— File system looks remote, even though on same machine

EEE
windows
Sys

file system Windowing RPC address
VM Networking spaces
Threads threads

Monolithic Structure Microkernel Structure

* Why split the OS into separate domains?
— Fault isolation: bugs are more isolated (build a firewall)
- Enforc)es modularity: allows incremental upgrades of pieces of software (client or
server
— Location transparent: service can be local or remote

» For example in the X windowing system: Each X client can be on a separate machine
from X server; Neither has to run on the machine with the frame buffer.

4/25/24 Kubiatowicz CS162 © UCB Spring 2024 Lec 25.31

Network-Attached Storage and the CAP Theorem

& =

Network

: %
» Consistency:

— Changes appear to everyone in the same serial order
* Availability:
— Can get a result at any time
 Partition-Tolerance
— System continues to work even when network becomes partitioned

» Consistency, Availability, Partition-Tolerance (CAP) Theorem: Cannot have all three
at same time

— Otherwise known as “Brewer’s Theorem”
4/25/24 Kubiatowicz CS162 © UCB Spring 2024 Lec 25.32

Distributed File Systems

Read File
—

Data V
Client Server

» Transparent access to files stored on a remote disk
* Mount remote files into your local file system
— Directory in local file system refers to remote files
—e.g., /users/jane/prog/foo.c on laptop actually refers to
/prog/foo.c on adj.cs.berkeley.edu
* Naming Choices:
— [Hostname,localname]: Filename includes server

» No location or migration transparency, except
through DNS remapping

— A global name space: Filename unique in “world”
» Can be served by an}é server

mount

adj:/jane

mount
coeus:/sue

Enabling Design: VFS

v v v

Files and dirs:
the VFS

v v A\

Concurrency, Virtual
multitaskin memo

TTYs and
evice access

Connectivity

Kubiatowicz CS162 © UCB Spring 2024 Lec 25.34

4/25/24 ubiatowicz CS162 © UCB Spring 2024 Lec 25.33 4/25/24
Recall: Layers of I/O... Virtual Filesystem Switch
User App: |1length = read(input_fd, buffer, BUFFER_SIZE);
User library: ssize_t read(int, void *, size_t) { f inf = open("/floppy/TEST*, O_RDONLY, 0);
marshal args into registers A e i oy
Application / Servi issue syscall do
pplication / Service register result of syscall to rtn value :,r;;?iﬂt(if’cgu?‘,’f;)?o%)‘
High Level I/10 }; 212;‘;%;53
ow Level I/0 Exception UK, interrupt processing o .0l chielinf);
Syscall void syscall_handler (struct intr_frame *f) { ‘ 1

unmarshall call#, args from regs ftmpftest /floppy/TEST
File System dispatch : handlers[call#](args

mar‘Zhal results fo £y5cali(re§) * VFS: Virtual abstraction similar to local file system
1/O Driver — Provides virtual superblocks, inodes, files, etc
H_-,ﬁ ssize_t vfs_read(struct file *file, char __user *buf, — Compatible with a variety of local and remote file systems

size_t count, loff_t *pos) { » provides object-oriented way of implementing file systems
User Process/File System relationshi .
call device ériver Y e the wore ¥ * VFS allows the same system call interface (the API) to be used for
} different types of file systems
— The APl is to the VFS interface, rather than any specific type of file system
4/25/24 Kubiatowicz CS162 © UCB Spring 2024 Lec 25.35 4/25/24 Kubiatowicz CS162 © UCB Spring 2024 Lec 25.36

VFS Common File Model in Linux

-
disk 7
Superblock inode —
o [Lgbjm H object] fd
. — + f_dentry
yace e B e » d_inode
I Process 1 i—b(File object) Sy 2
—» i_sb
l Process2 I—V(File object)— --
I Process 3 I»—»(File object)—— gy

dentry dentry
object object ‘

» Four primary object types for VFS:

— superblock object: represents a specific mounted filesystem

— inode object: represents a specific file

— dentry object: represents a directory entry

— file object: represents open file associated with process
» There is no specific directory object (VFS treats directories as files)
* May need to fit the model by faking it

— Example: make it look like directories are files

— Example: make it look like have inodes, superblocks, etc.
4/25/24 Kubiatowicz CS162 © UCB Spring 2024 Lec 25.37

Simple Distributed File System

Client

* Remote Disk: Reads and writes forwarded to server
— Use Remote Procedure Calls (RPC) to translate file system calls into remote requests
— No local caching, but can be cache at server-side
» Advantage: Server provides consistent view of file system to multiple clients
* Problems? Performance!
— Going over network is slower than going to local memory
— Lots of network traffic/not well pipelined
— Server can be a bottleneck

4/25/24 Kubiatowicz CS162 © UCB Spring 2024 Lec 25.38

Use of caching to reduceggtwork load

read(f1)—>V1

cache
read(f1)—>V1
read(f1)—»>V1
read(f1)—»>V1

cache

write(f1)>OK
read(f1)—>V2 Client

* Idea: Use caching to reduce network load

— In practice: use buffer cache at source and destination
» Advantage: if open/read/write/close can be done locally, don’t need to do

any network traffic...fast!

* Problems:

— Failure:

» Client caches have data not committed at server
— Cache consistency!

» Client caches not consistent with server/each other
4/25/24 Kubiatowicz CS162 © UCB Spring 2024 Lec 25.39

Dealing with Failures

+ What if server crashes? Can client wait until it comes back and just
continue making requests?

— Changes in server's cache but not in disk are lost

» What if there is shared state across RPC's?
— Client opens file, then does a seek
— Server crashes
— What if client wants to do another read?

+ Similar problem: What if client removes a file but server crashes before
acknowledgement?

4/25/24 Kubiatowicz CS162 © UCB Spring 2024 Lec 25.40

4/25/24

Stateless Protocol

« Stateless Protocol: A protocol in which all information required to service a
request is included with the request

+ Even better: Idempotent Operations — repeating an operation multiple
times is same as executing it just once (e.g., storing to a mem addr.)

+ Client: timeout expires without reply, just run the operation again (safe
regardless of first attempt)

» Recall HTTP: Also a stateless protocol
— Include cookies with request to simulate a session

Kubiatowicz CS162 © UCB Spring 2024 Lec 25.41

4/25/24

Case Study: Network File System (NFS)

» Three Layers for NFS system
— UNIX file-system interface: open, read, write, close calls + file descriptors
— VFS layer: distinguishes local from remote files
» Calls the NFS protocol procedures for remote requests
— NFS service layer: bottom layer of the architecture
» Implements the NFS protocol
* NFS Protocol: RPC for file operations on server
— XDR Serialization standard for data format independence
— Reading/searching a directory
— manipulating links and directories
— accessing file attributes/reading and writing files
» Write-through caching: Modified data committed to server’s disk before
results are returned to the client
— lose some of the advantages of caching
— time to perform write() can be long

— Need some mechanism for readers to eventually notice changes! (more on this
later)

Kubiatowicz CS162 © UCB Spring 2024 Lec 25.42

4/25/24

NFS Continued

* NFS servers are stateless; each request provides all arguments require for
execution
— E.g. reads include information for entire operation, such as
ReadAt (inumber,position), not Read (openfile)
— No need to perform network open() or close() on file — each operation stands on
its own
 ldempotent: Performing requests multiple times has same effect as
performing them exactly once
— Example: Server crashes between disk /0 and message send, client resend
read, server does operation again
— Example: Read and write file blocks: just re-read or re-write file block — no other
side effects
— Example: What about “remove”? NFS does operation twice and second time
returns an advisory error
» Failure Model: Transparent to client system
— Is this a good idea? What if you are in the middle of reading a file and server
crashes?
— Options (NFS Provides both):
» Hang until server comes back up (next week?)
» Retturnka;n error. (Of course, most applications don’t know they are talking over
networi

Kubiatowicz CS162 © UCB Spring 2024 Lec 25.43

4/25/24

NFS Architecture

client server

VFS interface

system-calls interface

VFS interface

other types of UNIX file NFS NFS UNIX file
file systems system client server system
‘ RPC/XDR ‘ ‘ RPC/XDR ‘
-] [—
; network ‘

Kubiatowicz CS162 © UCB Spring 2024 Lec 25.44

NFS Cache consistency

* NFS protocol: weak consistency
— Client polls server periodically to check for changes
» Polls server if data hasn’t been checked in last 3-30 seconds (exact timeout is tunable
parameter).
» Thus, when file is changed on one client, server is notified, but other clients use old
version of file until timeout.

Client

— What if multiple clients write to same file?
» In NFS, can get either version (or parts of both)
» Completely arbitrary!

Sequential Ordering Constraints

What sort of cache coherence might we expect?
—i.e. what if one CPU changes file, and before it's done, another CPU reads file?
Example: Start with file contents = “A”

Client 1: [Read: gets A |[Write B] | Read: parts of B or @
Client 2: [Read: gets A or B|[Write €]
Client 3: |Read: parts of B or g

Time

* What would we actually want?

— Assume we want distributed system to behave exactly the same as if all
processes are running on single system
» If read finishes before write starts, get old copy
» If read starts after write finishes, get new copy
» Otherwise, get either new or old copy
— For NFS:

» If read starts more than 30 seconds after write, get new copy; otherwise, could get
partial update

4/25/24 Kubiatowicz CS162 © UCB Spring 2024 Lec 25.45 4/25/24 Kubiatowicz CS162 © UCB Spring 2024 Lec 25.46
NFS Pros and Cons Andrew File System
« NFS Pros: * Andrew File System (AFS, late 80’s) —» DCE DFS (commercial product)
— Simple, Highly portable Callbacks: Server records who has copy of file
« NFS Cons: — On changes, server immediately tells all with old copy
_ Sometimes inconsistent! — No polling bandwidth (continuous checking) needed
— Doesn’t scale to large # clients * Write through on close)
» Must keep checking to see if caches out of date — Changes not propagated to server until close()
» Server becomes bottleneck due to polling traffic — Session semantics: updates visible to other clients only after the file is
closed
» As a result, do not get partial writes: all or nothing!
» Although, for processes on local machine, updates visible immediately to other
programs who have file open
* In AFS, everyone who has file open sees old version
— Don’t get newer versions until reopen file
4/25/24 Kubiatowicz CS162 © UCB Spring 2024 Lec 25.47 4/25/24 Kubiatowicz CS162 © UCB Spring 2024 Lec 25.48

Andrew File System (con'’t)

+ Data cached on local disk of client as well as memory
— On open with a cache miss (file not on local disk):
» Get file from server, set up callback with server
— On write followed by close:

» Send copy to server; tells all clients with copies to fetch new version from server on
next open (using callbacks)

« What if server crashes? Lose all callback state!

— Reconstruct callback information from client: go ask everyone “who has which
files cached?”

AFS Pro: Relative to NFS, less server load:
— Disk as cache = more files can be cached locally
— Callbacks = server not involved if file is read-only

For both AFS and NFS: central server is bottleneck!
— Performance: all writes—server, cache misses—server
— Availability: Server is single point of failure
— Cost: server machine’s high cost relative to workstation

4/25/24 Kubiatowicz CS162 © UCB Spring 2024 Lec 25.49

4/25/24

Summary (1/2)

» Byzantine General’s Problem: distributed decision making with malicious failures

— One general, n-1 lieutenants: some number of them may be malicious (often “f’ of
them)

— All non-malicious lieutenants must come to same decision
— If general not malicious, lieutenants must follow general
— Only solvable if n > 3f+1
» BlockChain protocols:
— Cryptographically-driven ordering protocol
— Could be used for distributed decision making
* Remote Procedure Call (RPC): Call procedure on remote machine or in remote
domain
— Provides same interface as procedure
— Automatic packing and unpacking of arguments without user programming (in stub)
— Adapts automatically to different hardware and software architectures at remote end

Kubiatowicz CS162 © UCB Spring 2024 Lec 25.50

Summary (2/2)

* Distributed File System:
— Transparent access to files stored on a remote disk
— Caching for performance
+ VFS: Virtual File System layer (Or Virtual Filesystem Switch)

— Provides mechanism which gives same system call interface for different types of
file systems

» Cache Consistency: Keeping client caches consistent with one another

— If multiple clients, some reading and some writing, how do stale cached copies get
updated?

— NFS: check periodically for changes
— AFS: clients register callbacks to be notified by server of changes

4/25/24 Kubiatowicz CS162 © UCB Spring 2024 Lec 25.51

