
CS162
Operating Systems and
Systems Programming

Lecture 25

Distributed 2: Distributed Decision Making (Con’t),
RPC, and Distributed Storage

April 25th, 2024
Prof. John Kubiatowicz

http://cs162.eecs.Berkeley.edu

Lec 25.24/25/24 Kubiatowicz CS162 © UCB Spring 2024

Recall: Distributed Consensus Making
• Consensus problem

– All nodes propose a value
– Some nodes might crash and stop responding
– Eventually, all remaining nodes decide on the same value from set of proposed

values
• Distributed Decision Making

– Choose between “true” and “false”
– Or Choose between “commit” and “abort”

• Equally important (but often forgotten!): make it durable!
– How do we make sure that decisions cannot be forgotten?

» This is the “D” of “ACID” in a regular database
– In a global-scale system?

» What about erasure coding or massive replication?
» Like BlockChain applications!

Lec 25.34/25/24 Kubiatowicz CS162 © UCB Spring 2024

Recall: Two-Phase Commit Protocol (2PC)
• Prepare Phase:

– The global coordinator requests that all participants will promise to commit or
rollback the transaction

– Participants record promise in log, then acknowledge
– If anyone votes to abort, coordinator writes "Abort" in its log and tells everyone

to abort; each records "Abort" in log
• Commit Phase:

– After all participants respond that they are prepared, then the coordinator writes
"Commit" to its log

– Then asks all nodes to commit; they respond with ACK
– After receive ACKs, coordinator writes "Got Commit" to log

• Persistent stable log on each machine: keep track of whether commit has
happened

– Required for good semantics
– If a machine crashes, when it wakes up it first checks its log to recover state of

world at time of crash

Lec 25.44/25/24 Kubiatowicz CS162 © UCB Spring 2024

Alternatives to 2PC
• Three-Phase Commit: One more phase, allows nodes to fail or block and still

make progress.
• PAXOS: An alternative used by Google and others that does not have 2PC

blocking problem
– Develop by Leslie Lamport (Turing Award Winner)
– No fixed leader, can choose new leader on fly, deal with failure
– Some think this is extremely complex!

• RAFT: PAXOS alternative from John Osterhout (Stanford)
– Simpler to describe complete protocol

• What happens if one or more of the nodes is malicious?
– Malicious: attempting to compromise the decision making
– Use a more hardened decision making process:

Byzantine Agreement and Block Chains

Lec 25.54/25/24 Kubiatowicz CS162 © UCB Spring 2024

Byzantine General’s Problem

• Byazantine General’s Problem (n players):
– One General and n-1 Lieutenants
– Some number of these (f) can be insane or malicious

• The commanding general must send an order to his n-1 lieutenants such that the
following Integrity Constraints apply:

– IC1: All loyal lieutenants obey the same order
– IC2: If the commanding general is loyal, then all loyal lieutenants obey the order he

sends

General

Retreat!
Attack!

Lieutenant

Lieutenant

Lieutenant
Malicious!

Lec 25.64/25/24 Kubiatowicz CS162 © UCB Spring 2024

Byzantine General’s Problem (con’t)
• Impossibility Results:

– Cannot solve Byzantine General’s Problem with n=3 because one malicious player can
mess up things

– With f faults, need n > 3f to solve problem
• Various algorithms exist to solve problem

– Original algorithm has #messages exponential in n
– Newer algorithms have message complexity O(n2)

» One from MIT, for instance (Castro and Liskov, 1999)
• Use of BFT (Byzantine Fault Tolerance) algorithm

– Allow multiple machines to make a coordinated decision even if some subset of them
(< n/3) are malicious

General

LieutenantLieutenant
Attack! Attack!

Retreat!

General

LieutenantLieutenant

Attack! Retreat!

Retreat!

Request Distributed
Decision

Lec 25.74/25/24 Kubiatowicz CS162 © UCB Spring 2024

• BlockChain: a chain of blocks connected by hashes to root block
– The Hash Pointers are unforgeable (assumption)
– The Chain has no branches except perhaps for heads
– Blocks are considered “authentic” part of chain when they have authenticity info in them

• How is the head chosen?
– Some consensus algorithm
– In many BlockChain algorithms (e.g. BitCoin, Ethereum), the head is chosen by solving

hard problem
» This is the job of “miners” who try to find “nonce” info that makes hash over block have

specified number of zero bits in it
» The result is a “Proof of Work” (POW)
» Selected blocks above (green) have POW in them and can be included in chains

– Longest chain wins

Hash Ptr
Root
Block

The “Block Chain”

Tentative Head #2

Tentative Head #1

Is a BlockChain a Distributed Decision Making Algorithm?

Lec 25.84/25/24 Kubiatowicz CS162 © UCB Spring 2024

Is a Blockchain a Distributed Decision
Making Algorithm? (Con’t)

• Decision means: Proposal is locked into BlockChain
– Could be Commit/Abort decision
– Could be Choice of Value, State Transition, ….

• NAK: Didn’t make it into the block chain (must retry!)
• Anyone in world can verify the result of decision making!

Hash Ptr
Root
Block

Miner:
Tries to solve
POW problem

Hash Ptr
Root
Block

Miner:
Tries to solve
POW problem

Hash Ptr
Root
Block

Miner:
Tries to solve
POW problem

Hash Ptr
Root
Block

Observer:
Tracks state of

BlockChain

Hash Ptr
Root
Block

Observer:
Tracks state of

BlockChain

Hash Ptr
Root
Block

Observer:
Tracks state of

BlockChain

Hash Ptr
Root
Block

Observer:
Tracks state of

BlockChain

Hash Ptr
Root
Block

Observer:
Tracks state of

BlockChain

Hash Ptr
Root
Block

Observer:
Tracks state of

BlockChain

Proposal

Proposal

Epidemic
Replication

Hash Ptr
Root
Block

Observer:
Tracks state of

BlockChain

Hash Ptr
Root
Block

Observer:
Tracks state of

BlockChain

Hash Ptr
Root
Block

Observer:
Tracks state of

BlockChain

Lec 25.94/25/24 Kubiatowicz CS162 © UCB Spring 2024

Recall: Distributed Applications Build With Messages
• How do you actually program a distributed application?

– Need to synchronize multiple threads, running on different machines
» No shared memory, so cannot use test&set

– One Abstraction: send/receive messages
» Already atomic: no receiver gets portion of a message and two receivers cannot get same

message
• Interface:

– Mailbox (mbox): temporary holding area for messages
» Includes both destination location and queue
» Over Internet, destination specified by IP address and Port (Recall Web server example!)

– Send(message,mbox)
» Send message to remote mailbox identified by mbox

– Receive(buffer,mbox)
» Wait until mbox has message, copy into buffer, and return
» If threads sleeping on this mbox, wake up one of them

Network

Send

R
eceive

Lec 25.104/25/24 Kubiatowicz CS162 © UCB Spring 2024

How do we know that both sides speak same language?
• An object in memory has a machine-specific binary representation

– Threads within a single process have the same view of what’s in memory
– Easy to compute offsets into fields, follow pointers, etc.

• In the absence of shared memory, externalizing an object requires us to turn
it into a sequential sequence of bytes

– Serialization/Marshalling: Express an object as a sequence of bytes
– Deserialization/Unmarshalling: Reconstructing the original object from its

marshalled form at destination

Lec 25.114/25/24 Kubiatowicz CS162 © UCB Spring 2024

Simple Data Types
uint32_t x;
• Suppose I want to write a x to a file

• First, open the file: FILE* f = fopen(“foo.txt”, “w”);
• Then, I have two choices:

1. fprintf(f, “%lu”, x);
2. fwrite(&x, sizeof(uint32_t), 1, f);

» Or equivalently, write(fd, &x, sizeof(uint32_t)); (perhaps with a loop to be safe)

• Neither one is “wrong” but sender and receiver should be consistent!

Lec 25.124/25/24 Kubiatowicz CS162 © UCB Spring 2024

Machine Representation
• Consider using the machine representation:

– fwrite(&x, sizeof(uint32_t), 1, f);

• How do we know if the recipient represents x in the same way?
– For pipes, is this a problem?
– What about for sockets?

Lec 25.134/25/24 Kubiatowicz CS162 © UCB Spring 2024

Endianness
• For a byte-address machine, which end of a machine-

recognized object (e.g., int) does its byte-address refer to?
• Big Endian: address points to most-significant byte
• Little Endian: address points to least-significant byte

Result:

Experiment:

Lec 25.144/25/24 Kubiatowicz CS162 © UCB Spring 2024

What Endian is the Internet?

• Big Endian
• Network byte order
• Vs. “host byte order”

Lec 25.154/25/24 Kubiatowicz CS162 © UCB Spring 2024

Dealing with Endianness
• Decide on an “on-wire” endianness
• Convert from native endianness to “on-wire” endianness before sending

out data (serialization/marshalling)
– uint32_t htonl(uint32_t) and uint16_t htons(uint16_t) convert

from native endianness to network endianness (big endian)

• Convert from “on-wire” endianness to native endianness when receiving
data (deserialization/unmarshalling)
– uint32_t ntohl(uint32_t) and uint16_t ntohs(uint16_t) convert

from network endianness to native endianness (big endian)

Lec 25.164/25/24 Kubiatowicz CS162 © UCB Spring 2024

What About Richer Objects?
• Consider word_count_t of Homework 0 and 1 …
• Each element contains:

– An int
– A pointer to a string (of some length)
– A pointer to the next element

• fprintf_words writes these as a sequence of lines (character strings with \n)
to a file stream

• What if you wanted to write the whole list as a binary object (and read it back
as one)?

– How do you represent the string?
– Does it make any sense to write the pointer?

Lec 25.174/25/24 Kubiatowicz CS162 © UCB Spring 2024

Data Serialization Formats

• JSON and XML are commonly used in web applications
• Lots of ad-hoc formats

Lec 25.184/25/24 Kubiatowicz CS162 © UCB Spring 2024

Data Serialization Formats: Many Options

Lec 25.194/25/24 Kubiatowicz CS162 © UCB Spring 2024

Administrivia
• Midterm 3: This Thursday!

– No class on Thursday. I’ll have special office hours during class time.
– Three double-sided pages of notes
– Watch for Ed post about where you should go: we have multiple exam rooms

• All material up to today’s lecture is fair game
• Final deadlines during RRR week:

– Yes, there will be office hours – watch for specifics
• Also – we have a special lecture (just for fun) next Tuesday

– During normal class time!

Lec 25.204/25/24 Kubiatowicz CS162 © UCB Spring 2024

Administrivia (Con’t)
• You need to know your units as CS/Engineering students!
• Units of Time: “s”: Second, “min”: 60s, “h”: 3600s, (of course)

– Millisecond: 1ms  10-3 s
– Microsecond: 1s  10-6 s
– Nanosecond: 1ns:  10-9 s
– Picosecond: 1ps  10-12 s

• Integer Sizes: “b”  ”bit”, “B”  “byte” == 8 bits, “W””word”==? (depends. Could be 16b, 32b, 64b)
• Units of Space (memory), sometimes called the “binary system”

– Kilo: 1KB  1KiB  1024 bytes == 210 bytes == 1024  1.0×103

– Mega: 1MB  1MiB  (1024)2 bytes == 220 bytes == 1,048,576  1.0×106

– Giga: 1GB  1GiB  (1024)3 bytes == 230 bytes == 1,073,741,824  1.1×109

– Tera: 1TB  1TiB  (1024)4 bytes == 240 bytes == 1,099,511,627,776  1.1×1012

– Peta: 1PB  1PiB  (1024)5 bytes == 250 bytes == 1,125,899,906,842,624  1.1 × 1015

– Exa: 1EB  1EiB  (1024)6 bytes == 260 bytes == 1,152,921,504,606,846,976  1.2 × 1018

• Units of Bandwidth, Space on disk/etc, Everything else…, sometimes called the “decimal system”
– Kilo: 1KB/s  103 bytes/s, 1KB  103 bytes
– Mega: 1MB/s 106 bytes/s, 1MB  106 bytes
– Giga: 1GB/s  109 bytes/s, 1GB  109 bytes
– Tera: 1TB/s  1012 bytes/s, 1TB  1012 bytes
– Peta: 1PB/s  1015 bytes/s, 1PB  1015 bytes
– Exa: 1EB/s  1018 bytes/s, 1EB  1018 bytes

Lec 25.214/25/24 Kubiatowicz CS162 © UCB Spring 2024

Remote Procedure Call (RPC)
• Raw messaging is a bit too low-level for programming

– Must wrap up information into message at source
– Must decide what to do with message at destination
– May need to sit and wait for multiple messages to arrive
– And must deal with machine representation by hand

• Another option: Remote Procedure Call (RPC)
– Calls a procedure on a remote machine
– Idea: Make communication look like an ordinary function call
– Automate all of the complexity of translating between representations
– Client calls:

remoteFileSystemRead("rutabaga");
– Translated automatically into call on server:

fileSysRead("rutabaga");
Lec 25.224/25/24 Kubiatowicz CS162 © UCB Spring 2024

Client (caller)

r = f(v1, v2);

Server (callee)

res_t f(a1, a2)

call

return receive

return

call

Client
Stub

bundle
args

bundle
ret vals

unbundle
ret vals

send

receive

send

Server
Stub

unbundle
args

RPC Concept

Lec 25.234/25/24 Kubiatowicz CS162 © UCB Spring 2024

Client (caller)

r = f(v1, v2);

Server (callee)

res_t f(a1, a2)

call

return receive

return

call

bundle
ret vals

unbundle
ret vals

send

receive

Machine A

Machine B

Packet
Handler

Packet
Handler

N
etw

orkN
et

w
or

k

Server
Stub

unbundle
args

send

Server
Stub

unbundle
args

RPC Information Flow

Client
Stub

bundle
args

Lec 25.244/25/24 Kubiatowicz CS162 © UCB Spring 2024

RPC Implementation
• Request-response message passing (under covers!)
• “Stub” provides glue on client/server

– Client stub is responsible for “marshalling” arguments and “unmarshalling” the
return values

– Server-side stub is responsible for “unmarshalling” arguments and “marshalling”
the return values.

• Marshalling involves (depending on system)
– Converting values to a canonical form, serializing objects, copying arguments

passed by reference, etc.
– Use of standardized serialization protocol

Lec 25.254/25/24 Kubiatowicz CS162 © UCB Spring 2024

RPC Details (1/3)
• Equivalence with regular procedure call

– Parameters Request Message
– Result  Reply message
– Name of Procedure: Passed in request message
– Return Address: mbox2 (client return mail box)

• Stub generator: Compiler that generates stubs
– Input: interface definitions in an “interface definition language (IDL)”

» Contains, among other things, types of arguments/return
– Output: stub code in the appropriate source language

» Code for client to pack message, send it off, wait for result, unpack result and return to
caller

» Code for server to unpack message, call procedure, pack results, send them off

Lec 25.264/25/24 Kubiatowicz CS162 © UCB Spring 2024

RPC Details (2/3)
• Cross-platform issues:

– What if client/server machines are different architectures/ languages?
» Convert everything to/from some canonical form
» Tag every item with an indication of how it is encoded (avoids unnecessary

conversions)

• How does client know which mbox (destination queue) to send to?
– Need to translate name of remote service into network endpoint (Remote

machine, port, possibly other info)
– Binding: the process of converting a user-visible name into a network endpoint

» This is another word for “naming” at network level
» Static: fixed at compile time
» Dynamic: performed at runtime

Lec 25.274/25/24 Kubiatowicz CS162 © UCB Spring 2024

RPC Details (3/3)
• Dynamic Binding

– Most RPC systems use dynamic binding via name service
» Name service provides dynamic translation of service  mbox

– Why dynamic binding?
» Access control: check who is permitted to access service
» Fail-over: If server fails, use a different one

• What if there are multiple servers?
– Could give flexibility at binding time

» Choose unloaded server for each new client
– Could provide same mbox (router level redirect)

» Choose unloaded server for each new request
» Only works if no state carried from one call to next

• What if multiple clients?
– Pass pointer to client-specific return mbox in request

Lec 25.284/25/24 Kubiatowicz CS162 © UCB Spring 2024

Problems with RPC: Non-Atomic Failures
• Different failure modes in dist. system than on a single machine
• Consider many different types of failures

–User-level bug causes address space to crash
–Machine failure, kernel bug causes all processes on same

machine to fail
–Some machine is compromised by malicious party

• Before RPC: whole system would crash/die
• After RPC: One machine crashes/compromised while others keep

working
• Can easily result in inconsistent view of the world

–Did my cached data get written back or not?
–Did server do what I requested or not?

• Answer? Distributed transactions/Byzantine Commit

Lec 25.294/25/24 Kubiatowicz CS162 © UCB Spring 2024

Problems with RPC: Performance
• RPC is not performance transparent:

– Cost of Procedure call « same-machine RPC « network RPC
– Overheads: Marshalling, Stubs, Kernel-Crossing, Communication

• Programmers must be aware that RPC is not free
– Caching can help, but may make failure handling complex

Lec 25.304/25/24 Kubiatowicz CS162 © UCB Spring 2024

• How do address spaces communicate with one another?
– Shared Memory with Semaphores, monitors, etc…
– File System
– Pipes (1-way communication)
– “Remote” procedure call (2-way communication)

• RPC’s can be used to communicate between address spaces on different
machines or the same machine

– Services can be run wherever it’s most appropriate
– Access to local and remote services looks the same

• Examples of RPC systems:
– CORBA (Common Object Request Broker Architecture)
– DCOM (Distributed COM)
– RMI (Java Remote Method Invocation)

Cross-Domain Communication/Location Transparency

Lec 25.314/25/24 Kubiatowicz CS162 © UCB Spring 2024

Microkernel operating systems
• Example: split kernel into application-level servers.

– File system looks remote, even though on same machine

• Why split the OS into separate domains?
– Fault isolation: bugs are more isolated (build a firewall)
– Enforces modularity: allows incremental upgrades of pieces of software (client or

server)
– Location transparent: service can be local or remote

» For example in the X windowing system: Each X client can be on a separate machine
from X server; Neither has to run on the machine with the frame buffer.

App App
file system Windowing

NetworkingVM
Threads

App

Monolithic Structure

App File
sys windows

RPC address
spaces

threads
Microkernel Structure

Lec 25.324/25/24 Kubiatowicz CS162 © UCB Spring 2024

Network-Attached Storage and the CAP Theorem

• Consistency:
– Changes appear to everyone in the same serial order

• Availability:
– Can get a result at any time

• Partition-Tolerance
– System continues to work even when network becomes partitioned

• Consistency, Availability, Partition-Tolerance (CAP) Theorem: Cannot have all three
at same time

– Otherwise known as “Brewer’s Theorem”

Network

Lec 25.334/25/24 Kubiatowicz CS162 © UCB Spring 2024

Distributed File Systems

• Transparent access to files stored on a remote disk
• Mount remote files into your local file system

– Directory in local file system refers to remote files
– e.g., /users/jane/prog/foo.c on laptop actually refers to

/prog/foo.c on adj.cs.berkeley.edu
• Naming Choices:

– [Hostname,localname]: Filename includes server
» No location or migration transparency, except

through DNS remapping
– A global name space: Filename unique in “world”

» Can be served by any server

Network
Read File

Data
ServerClient

mount
coeus:/sue

mount
adj:/prog

mount
adj:/jane

Lec 25.344/25/24 Kubiatowicz CS162 © UCB Spring 2024

Enabling Design: VFS
The System Call Interface

Process
Management

Memory
Management Filesystems Device

Control Networking

Architecture
Dependent

Code

Memory
Manager

Device
Control

Network
Subsystem

File System
Types

Block
Devices

IF drivers

Concurrency,
multitasking

Virtual
memory

Files and dirs:
the VFS

TTYs and
device access Connectivity

Lec 25.354/25/24 Kubiatowicz CS162 © UCB Spring 2024

length = read(input_fd, buffer, BUFFER_SIZE);

ssize_t read(int, void *, size_t) {
marshal args into registers
issue syscall
register result of syscall to rtn value

};

void syscall_handler (struct intr_frame *f) {
unmarshall call#, args from regs
dispatch : handlers[call#](args)
marshal results fo syscall ret

}

Exception UK, interrupt processing

ssize_t vfs_read(struct file *file, char __user *buf,
size_t count, loff_t *pos) {

User Process/File System relationship
call device driver to do the work

}

User App:

User library:

Device Driver

Recall: Layers of I/O…

High Level I/O
Low Level I/O

Syscall

File System

I/O Driver

Application / Service

Lec 25.364/25/24 Kubiatowicz CS162 © UCB Spring 2024

Virtual Filesystem Switch

• VFS: Virtual abstraction similar to local file system
– Provides virtual superblocks, inodes, files, etc
– Compatible with a variety of local and remote file systems

» provides object-oriented way of implementing file systems
• VFS allows the same system call interface (the API) to be used for

different types of file systems
– The API is to the VFS interface, rather than any specific type of file system

Lec 25.374/25/24 Kubiatowicz CS162 © UCB Spring 2024

VFS Common File Model in Linux

• Four primary object types for VFS:
– superblock object: represents a specific mounted filesystem
– inode object: represents a specific file
– dentry object: represents a directory entry
– file object: represents open file associated with process

• There is no specific directory object (VFS treats directories as files)
• May need to fit the model by faking it

– Example: make it look like directories are files
– Example: make it look like have inodes, superblocks, etc.

Lec 25.384/25/24 Kubiatowicz CS162 © UCB Spring 2024

Simple Distributed File System

• Remote Disk: Reads and writes forwarded to server
– Use Remote Procedure Calls (RPC) to translate file system calls into remote requests
– No local caching, but can be cache at server-side

• Advantage: Server provides consistent view of file system to multiple clients
• Problems? Performance!

– Going over network is slower than going to local memory
– Lots of network traffic/not well pipelined
– Server can be a bottleneck

Server

Read (RPC)

Return (Data)

cache
Client

Client

Lec 25.394/25/24 Kubiatowicz CS162 © UCB Spring 2024

Client

cache
F1:V1F1:V2

Use of caching to reduce network load
Read (RPC)

Return (Data)
cache

cache

• Idea: Use caching to reduce network load
– In practice: use buffer cache at source and destination

• Advantage: if open/read/write/close can be done locally, don’t need to do
any network traffic…fast!

• Problems:
– Failure:

» Client caches have data not committed at server
– Cache consistency!

» Client caches not consistent with server/each other

F1:V1

F1:V2

read(f1)

write(f1)

V1
read(f1)V1
read(f1)V1

OK

read(f1)V1

read(f1)V2

Server
Client

Lec 25.404/25/24 Kubiatowicz CS162 © UCB Spring 2024

Dealing with Failures
• What if server crashes? Can client wait until it comes back and just

continue making requests?
– Changes in server's cache but not in disk are lost

• What if there is shared state across RPC's?
– Client opens file, then does a seek
– Server crashes
– What if client wants to do another read?

• Similar problem: What if client removes a file but server crashes before
acknowledgement?

Lec 25.414/25/24 Kubiatowicz CS162 © UCB Spring 2024

Stateless Protocol
• Stateless Protocol: A protocol in which all information required to service a

request is included with the request
• Even better: Idempotent Operations – repeating an operation multiple

times is same as executing it just once (e.g., storing to a mem addr.)
• Client: timeout expires without reply, just run the operation again (safe

regardless of first attempt)

• Recall HTTP: Also a stateless protocol
– Include cookies with request to simulate a session

Lec 25.424/25/24 Kubiatowicz CS162 © UCB Spring 2024

Case Study: Network File System (NFS)
• Three Layers for NFS system

– UNIX file-system interface: open, read, write, close calls + file descriptors
– VFS layer: distinguishes local from remote files

» Calls the NFS protocol procedures for remote requests
– NFS service layer: bottom layer of the architecture

» Implements the NFS protocol
• NFS Protocol: RPC for file operations on server

– XDR Serialization standard for data format independence
– Reading/searching a directory
– manipulating links and directories
– accessing file attributes/reading and writing files

• Write-through caching: Modified data committed to server’s disk before
results are returned to the client

– lose some of the advantages of caching
– time to perform write() can be long
– Need some mechanism for readers to eventually notice changes! (more on this

later)

Lec 25.434/25/24 Kubiatowicz CS162 © UCB Spring 2024

NFS Continued
• NFS servers are stateless; each request provides all arguments require for

execution
– E.g. reads include information for entire operation, such as ReadAt(inumber,position), not Read(openfile)
– No need to perform network open() or close() on file – each operation stands on

its own
• Idempotent: Performing requests multiple times has same effect as

performing them exactly once
– Example: Server crashes between disk I/O and message send, client resend

read, server does operation again
– Example: Read and write file blocks: just re-read or re-write file block – no other

side effects
– Example: What about “remove”? NFS does operation twice and second time

returns an advisory error
• Failure Model: Transparent to client system

– Is this a good idea? What if you are in the middle of reading a file and server
crashes?

– Options (NFS Provides both):
» Hang until server comes back up (next week?)
» Return an error. (Of course, most applications don’t know they are talking over

network)
Lec 25.444/25/24 Kubiatowicz CS162 © UCB Spring 2024

NFS Architecture

Lec 25.454/25/24 Kubiatowicz CS162 © UCB Spring 2024

• NFS protocol: weak consistency
– Client polls server periodically to check for changes

» Polls server if data hasn’t been checked in last 3-30 seconds (exact timeout is tunable
parameter).

» Thus, when file is changed on one client, server is notified, but other clients use old
version of file until timeout.

– What if multiple clients write to same file?
» In NFS, can get either version (or parts of both)
» Completely arbitrary!

cache
F1:V2

cache

cache

F1:V1

F1:V2

Client

Server
Client

F1:V2

NFS Cache consistency

F1 still ok?
No: (F1:V2)

Lec 25.464/25/24 Kubiatowicz CS162 © UCB Spring 2024

• What sort of cache coherence might we expect?
– i.e. what if one CPU changes file, and before it’s done, another CPU reads file?

• Example: Start with file contents = “A”

• What would we actually want?
– Assume we want distributed system to behave exactly the same as if all

processes are running on single system
» If read finishes before write starts, get old copy
» If read starts after write finishes, get new copy
» Otherwise, get either new or old copy

– For NFS:
» If read starts more than 30 seconds after write, get new copy; otherwise, could get

partial update

Sequential Ordering Constraints

Read: gets A

Read: gets A or B

Write B

Write C

Read: parts of B or CClient 1:
Client 2:
Client 3: Read: parts of B or C

Time

Lec 25.474/25/24 Kubiatowicz CS162 © UCB Spring 2024

NFS Pros and Cons
• NFS Pros:

– Simple, Highly portable
• NFS Cons:

– Sometimes inconsistent!
– Doesn’t scale to large # clients

» Must keep checking to see if caches out of date
» Server becomes bottleneck due to polling traffic

Lec 25.484/25/24 Kubiatowicz CS162 © UCB Spring 2024

Andrew File System
• Andrew File System (AFS, late 80’s)  DCE DFS (commercial product)
• Callbacks: Server records who has copy of file

– On changes, server immediately tells all with old copy
– No polling bandwidth (continuous checking) needed

• Write through on close
– Changes not propagated to server until close()
– Session semantics: updates visible to other clients only after the file is

closed
» As a result, do not get partial writes: all or nothing!
» Although, for processes on local machine, updates visible immediately to other

programs who have file open
• In AFS, everyone who has file open sees old version

– Don’t get newer versions until reopen file

Lec 25.494/25/24 Kubiatowicz CS162 © UCB Spring 2024

Andrew File System (con’t)
• Data cached on local disk of client as well as memory

– On open with a cache miss (file not on local disk):
» Get file from server, set up callback with server

– On write followed by close:
» Send copy to server; tells all clients with copies to fetch new version from server on

next open (using callbacks)
• What if server crashes? Lose all callback state!

– Reconstruct callback information from client: go ask everyone “who has which
files cached?”

• AFS Pro: Relative to NFS, less server load:
– Disk as cache  more files can be cached locally
– Callbacks  server not involved if file is read-only

• For both AFS and NFS: central server is bottleneck!
– Performance: all writesserver, cache missesserver
– Availability: Server is single point of failure
– Cost: server machine’s high cost relative to workstation

Lec 25.504/25/24 Kubiatowicz CS162 © UCB Spring 2024

Summary (1/2)
• Byzantine General’s Problem: distributed decision making with malicious failures

– One general, n-1 lieutenants: some number of them may be malicious (often “f” of
them)

– All non-malicious lieutenants must come to same decision
– If general not malicious, lieutenants must follow general
– Only solvable if n  3f+1

• BlockChain protocols:
– Cryptographically-driven ordering protocol
– Could be used for distributed decision making

• Remote Procedure Call (RPC): Call procedure on remote machine or in remote
domain

– Provides same interface as procedure
– Automatic packing and unpacking of arguments without user programming (in stub)
– Adapts automatically to different hardware and software architectures at remote end

Lec 25.514/25/24 Kubiatowicz CS162 © UCB Spring 2024

Summary (2/2)
• Distributed File System:

– Transparent access to files stored on a remote disk
– Caching for performance

• VFS: Virtual File System layer (Or Virtual Filesystem Switch)
– Provides mechanism which gives same system call interface for different types of

file systems
• Cache Consistency: Keeping client caches consistent with one another

– If multiple clients, some reading and some writing, how do stale cached copies get
updated?

– NFS: check periodically for changes
– AFS: clients register callbacks to be notified by server of changes

