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Recall: Distributed Applications Build With Messages
• How do you actually program a distributed application?

– Need to synchronize multiple threads, running on different machines 
» No shared memory, so cannot use test&set

– One Abstraction: send/receive messages
» Already atomic: no receiver gets portion of a message and two receivers cannot 

get same message
• Interface:

– Mailbox (mbox): temporary holding area for messages
» Includes both destination location and queue

– Send(message,mbox)
» Send message to remote mailbox identified by mbox

– Receive(buffer,mbox)
» Wait until mbox has message, copy into buffer, and return
» If threads sleeping on this mbox, wake up one of them

Network

Send

R
eceive
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• NFS protocol: weak consistency
– Client polls server periodically to check for changes

» Polls server if data hasn’t been checked in last 3-30 seconds (exact timeout is tunable 
parameter).

» Thus, when file is changed on one client, server is notified, but other clients use old 
version of file until timeout.

– What if multiple clients write to same file? 
» In NFS, can get either version (or parts of both)
» Completely arbitrary!

cache
F1:V2

cache

cache

F1:V1

F1:V2

Client

Server
Client

F1:V2

Recall: NFS Cache consistency

F1 still ok?
No: (F1:V2)
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• What sort of cache coherence might we expect?
– i.e. what if one CPU changes file, and before it’s done, another CPU reads file?

• Example: Start with file contents = “A”

• What would we actually want?
– Assume we want distributed system to behave exactly the same as if all 

processes are running on single system
» If read finishes before write starts, get old copy
» If read starts after write finishes, get new copy
» Otherwise, get either new or old copy

– For NFS:
» If read starts more than 30 seconds after write, get new copy; otherwise, could get 

partial update

Sequential Ordering Constraints

Read: gets A

Read: gets A or B

Write B

Write C

Read: parts of B or CClient 1:
Client 2:
Client 3: Read: parts of B or C

Time
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Andrew File System
• Andrew File System (AFS, late 80’s)  DCE DFS (commercial product)
• Callbacks: Server records who has copy of file

– On changes, server immediately tells all with old copy
– No polling bandwidth (continuous checking) needed

• Write through on close
– Changes not propagated to server until close()
– Session semantics: updates visible to other clients only after the file is 

closed
» As a result, do not get partial writes: all or nothing!
» Although, for processes on local machine, updates visible immediately to other 

programs who have file open
• In AFS, everyone who has file open sees old version

– Don’t get newer versions until reopen file
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Andrew File System (con’t)
• Data cached on local disk of client as well as memory

– On open with a cache miss (file not on local disk):
» Get file from server, set up callback with server 

– On write followed by close:
» Send copy to server; tells all clients with copies to fetch new version from server on 

next open (using callbacks)
• What if server crashes? Lose all callback state!

– Reconstruct callback information from client: go ask everyone “who has which 
files cached?”

• AFS Pro: Relative to NFS, less server load:
– Disk as cache  more files can be cached locally
– Callbacks  server not involved if file is read-only

• For both AFS and NFS: central server is bottleneck!
– Performance: all writesserver, cache missesserver
– Availability: Server is single point of failure
– Cost: server machine’s high cost relative to workstation
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Quick Security Primer



Lec 27.84/30/24 Kubiatowicz CS162 © UCB Spring 2024

Authentication in Distributed Systems
• What if identity must be established across network?

– Need way to prevent exposure of information while still proving identity to remote 
system

– Many of the original UNIX tools sent passwords over the wire “in clear text”
» E.g.: telnet, ftp, yp (yellow pages, for distributed login)
» Result: Snooping programs widespread 

• What do we need? Cannot rely on physical security!
– Encryption: Privacy, restrict receivers
– Authentication: Remote Authenticity, restrict senders

NetworkPA
SS: gina
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Private Key Cryptography
• Private Key (Symmetric) Encryption:

– Single key used for both encryption and decryption
• Plaintext: Unencrypted Version of message
• Ciphertext: Encrypted Version of message

• Important properties
– Can’t derive plain text from ciphertext (decode) without access to key
– Can’t derive key from plain text and ciphertext
– As long as password stays secret, get both secrecy and authentication

• Symmetric Key Algorithms: DES, Triple-DES, AES

Insecure
Transmission
(ciphertext)

Decrypt

Key

Encrypt

Key

Plaintext

PlaintextSPY CIA
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Key Distribution
• How do you get shared secret to both places?

– For instance: how do you send authenticated, secret mail to someone who you 
have never met?

– Must negotiate key over private channel 
» Exchange code book 
» Key cards/memory stick/others

• Third Party: Authentication Server (like Kerberos)
– Notation:

» Kxy is key for talking between x and y
» (…)K means encrypt message (…) with the key K
» Clients: A and B, Authentication server S

– A asks server for key:
» AS: [Hi! I’d like a key for talking between A and B]
» Not encrypted. Others can find out if A and B are talking

– Server returns session key encrypted using B’s key
» SA: Message [ Use Kab (This is A! Use Kab)Ksb ] Ksa

» This allows A to know, “S said use this key”
– Whenever A wants to talk with B

» AB: Ticket [ This is A! Use Kab ]Ksb

» Now, B knows that Kab is sanctioned by S
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Authentication Server Continued [Kerberos]

• Details
– Both A and B use passwords (shared with key server) to decrypt return from key 

servers
– Add in timestamps to limit how long tickets will be used to prevent attacker from 

replaying messages later
– Also have to include encrypted checksums (hashed version of message) to 

prevent malicious user from inserting things into messages/changing messages
– Want to minimize # times A types in password

» AS (Give me temporary secret)
» SA (Use Ktemp-sa for next 8 hours)Ksa

» Can now use Ktemp-sa in place of Ksa in prototcol

Key
Server

Ticket
Secure Communication
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Public Key Encryption
• Can we perform key distribution without an authentication server?

– Yes.  Use a Public-Key Cryptosystem.
• Public Key Details

– Don’t have one key, have two: Kpublic, Kprivate
» Two keys are mathematically related to one another
» Really hard to derive Kpublic from Kprivate and vice versa

– Forward encryption:
» Encrypt: (cleartext)Kpublic= ciphertext1
» Decrypt: (ciphertext1)Kprivate = cleartext

– Reverse encryption:
» Encrypt: (cleartext)Kprivate = ciphertext2
» Decrypt: (ciphertext2)Kpublic = cleartext

– Note that ciphertext1  ciphertext2
» Can’t derive one from the other!

• Public Key Examples:
– RSA: Rivest, Shamir, and Adleman

» Kpublic of form (kpublic, N), Kprivate of form (kprivate, N)
» N = pq. Can break code if know p and q

– ECC: Elliptic Curve Cryptography
» Lower overhead than RSA
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• Idea: Kpublic can be made public, keep Kprivate private

• Gives message privacy (restricted receiver):
– Public keys (secure destination points) can be acquired by anyone/used by anyone
– Only person with private key can decrypt message

• What about authentication?
– Use combination of private and public key
– AliceBob: [(I’m Alice)Aprivate Rest of message]Bpublic

– Provides restricted sender and receiver
• But: how does Alice know that it was Bob who sent her Bpublic?  And vice versa…

Bprivate
Aprivate

Public Key Encryption Details

Alice Bob

Bpublic
Apublic

Insecure Channel

Insecure Channel
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Secure Hash Function

• Hash Function: Short summary of data (message)
– For instance, h1=H(M1) is the hash of message M1

» h1 fixed length, despite size of message M1.
» Often, h1 is called the “digest” of M1.

• Hash function H is considered secure if 
– It is infeasible to find M2 with h1=H(M2); ie. can’t easily find other 

message with same digest as given message.
– It is infeasible to locate two messages, m1 and m2, which “collide”, i.e. for 

which H(m1) = H(m2)
– A small change in a message changes many bits of digest/can’t tell 

anything about message given its hash

DFCD3454BBEA788A
751A696C24D97009
CA992D17

The red fox
runs across
the ice

Hash
Function

Hash
Function

52ED879E70F71D92
6EB6957008E03CE4
CA6945D3

Fox
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Use of Hash Functions
• Several Standard Hash Functions:

– MD5: 128-bit output
– SHA-1: 160-bit output, SHA-256: 256-bit output

• Can we use hashing to securely reduce load on server?
– Yes.  Use a series of insecure mirror servers (caches)
– First, ask server for digest of desired file

» Use secure channel with server
– Then ask mirror server for file

» Can be insecure channel
» Check digest of result and catch faulty or malicious mirrors

Client

Read File X

Here is hx = H(X)

Insecure
Data
Mirror

File X
Read X

File X

Server
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Signatures/Certificate Authorities
• Can use Xpublic for person X to define their identity

– Presumably they are the only ones who know Xprivate.
– Often, we think of Xpublic as a “principle” (user)

• Suppose we want X to sign message M?
– Use private key to encrypt the digest, i.e. H(M)Xprivate

– Send both M and its signature:
» Signed message = [M,H(M)Xprivate]

– Now, anyone can verify that M was signed by X
» Simply decrypt the digest with Xpublic
» Verify that result matches H(M)

• Now: How do we know that the version of Xpublic that we have is really from X???
– Answer: Certificate Authority

» Examples: Verisign, Entrust, Etc.
– X goes to organization, presents identifying papers

» Organization signs X’s key: [ Xpublic, H(Xpublic)CAprivate]
» Called a “Certificate”

– Before we use Xpublic, ask X for certificate verifying key
» Check that signature over Xpublic produced by trusted authority

• How do we get keys of certificate authority?
– Compiled into your browser, for instance!
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(pms)Ks

• SSL Web Protocol
– Port 443: secure http
– Use public-key encryption 

for key-distribution 
• Server has a certificate signed by certificate authority

– Contains server info (organization, IP address, etc)
– Also contains server’s public key and expiration date

• Establishment of Shared, 48-byte “master secret”
– Client sends 28-byte random value nc to server
– Server returns its own 28-byte random value ns, plus its certificate certs
– Client verifies certificate by checking with public key of certificate authority 

compiled into browser
» Also check expiration date

– Client picks 46-byte “premaster” secret (pms), encrypts it with public key of 
server, and sends to server

– Now, both server and client have nc, ns, and pms
» Each can compute 48-byte master secret using one-way and collision-resistant 

function on three values
» Random “nonces” nc and ns make sure master secret fresh

ns,certs

Security through SSL
nc
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• How do we decide who is authorized
to do actions in the system?

• Access Control Matrix: all permissions in the system
– Resources across top 

» Files, Devices, etc…
– Domains in columns

» A domain might be a user or a group of permissions
» E.g. above: User D3 can read F2 or execute F3

– In practice, table would be huge and sparse!
• Two approaches to implementation

– Access Control Lists: store permissions with each object
» Still might be lots of users! 
» UNIX limits each file to: r,w,x for owner, group, world
» More recent systems allow definition of groups of users and permissions for each group

– Capability List: each process tracks objects has permission to touch
» Popular in the past, idea out of favor today
» Consider page table: Each process has list of pages it has access to, not each page has 

list of processes …

Authorization: Who Can Do What?



Lec 27.194/30/24 Kubiatowicz CS162 © UCB Spring 2024

How fine-grained should access control be?
• Example of the problem:

– Suppose you buy a copy of a new game from “Joe’s Game World” and then run it.
– It’s running with your userid

» It removes all the files you own, including the project due the next day…
• How can you prevent this?

– Have to run the program under some userid.  
» Could create a second games userid for the user, which has no write privileges.
» Like the “nobody” userid in UNIX – can’t do much

– But what if the game needs to write out a file recording scores?
» Would need to give write privileges to one particular file (or directory) to your games 

userid.
– But what about non-game programs you want to use, such as Quicken?

» Now you need to create your own private quicken userid, if you want to make sure tha
the copy of Quicken you bought can’t corrupt non-quicken-related files

– But – how to get this right??? Pretty complex…



Lec 27.204/30/24 Kubiatowicz CS162 © UCB Spring 2024

Authorization Continued
• Principle of least privilege: programs, users, and systems should get only 

enough privileges to perform their tasks
– Very hard to do in practice

» How do you figure out what the minimum set of privileges is needed to run your 
programs?

– People often run at higher privilege then necessary
» Such as the “administrator” privilege under windows

• One solution: Signed Software
– Only use software from sources that you trust, thereby dealing with the problem by 

means of authentication
– Fine for big, established firms such as Microsoft, since they can make their signing 

keys well known and people trust them
» Actually, not always fine: recently, one of Microsoft’s signing keys was compromised, 

leading to malicious software that looked valid
– What about new startups?

» Who “validates” them?
» How easy is it to fool them?
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How to perform Authorization for Distributed Systems?

• Issues: Are all user names in world unique?
– No! They only have small number of characters

» kubi@mit.edu  kubitron@lcs.mit.edu  kubitron@cs.berkeley.edu
» However, someone thought their friend was kubi@mit.edu and I got very private 

email intended for someone else…
– Need something better, more unique to identify person

• Suppose want to connect with any server at any time?
– Need an account on every machine! (possibly with different user name for 

each account)
– OR: Need to use something more universal as identity

» Public Keys!  (Called “Principles”)
» People are their public keys

Different 
Authorization
Domains
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Client 1
Domain 1

Distributed Access Control

• Distributed Access Control List (ACL)
– Contains list of attributes (Read, Write, Execute, etc) with attached identities (Here, 

we show public keys)
» ACLs signed by owner of file, only changeable by owner
» Group lists signed by group key

– ACLs can be on different servers than data
» Signatures allow us to validate them
» ACLs could even be stored separately from verifiers

Server 1: Domain 2

File X
Owner Key: 
0x22347EF…

Access Control List (ACL) for X:

R: Key: 0x546DFEFA34…
RW:Key: 0x467D34EF83…
RX: Group Key: 0xA2D3498672…

ACL verifier
Hash, Timestamp, 
Signature (owner)

Server 2: Domain 3

Group ACL:
Key: 0xA786EF889A…
Key: 0x6647DBC9AC…

GACL verifier
Hash, Timestamp, 
Signature (group)

Re
ad

Gr
ou

p

GA
CL
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???

HARDWARE

Virtual Machine Monitor
[ Hypervisor ]

Linux WinXP ???

Trusted Execution Environment
• Simple Hardware with single OS

– What we have been talking about all term!
• Virtual machines

– Multiplex different OSes on single machine
– Many techniques, including dynamic compilation 

and direct hardware support (domain “-1”)
– Need way to fool OS code into thinking it has 

complete control of machine!
• What if you don’t trust the OS or hypervisor not 

to leak your information?
– Worried about compromised OS
– Don’t trust service provider (i.e. Google, Amazon)

• Trusted Execution Environment (TEE)
– Hardware support to prevent OS or external 

actors from observing execution 
– Client can get hardware proof that trusted code is 

actual code we expect!  [ Attestation ]

TEE

Trusted
Code

Linux
Process
Manage

ment

Memory
Manage

ment

Filesyste
ms

Device
Control

Networki
ng

Architect
ure

Depende
nt

Code

Memory
Manager

Device
Control

Network
Subsyst

em

File 
System 
Types

Block
Devices

IF 
drivers

Concurrency,
multitasking

Virtual
memory

Files and dirs:
the VFS

TTYs and
device accessConnectivity

TEE

Trusted
Code

HARDWARE

Virtual Machine Monitor
[ Hypervisor ]

Linux WinXP

??
?
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Chord and Distributed Storage
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What about: Sharing Data, rather than Files ?
• Key:Value stores are used everywhere
• Native in many programming languages

– Associative Arrays in Perl
– Dictionaries in Python
– Maps in Go
– …

• What about a collaborative key-value store rather than message passing 
or file sharing?

• Can we make it scalable and reliable?
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Key Value Storage
Simple interface

• put(key, value);  // Insert/write "value" associated with key

• get(key);  // Retrieve/read value associated with key
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Why Key Value Storage?
• Easy to Scale

– Handle huge volumes of data (e.g., petabytes)
– Uniform items: distribute easily and roughly equally across many machines

• Simple consistency properties

• Used as a simpler but more scalable "database"
– Or as a building block for a more capable DB
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• Amazon:
– Key: customerID
– Value: customer profile (e.g., buying history, credit card, ..)

• Facebook, Twitter:
– Key: UserID
– Value: user profile (e.g., posting history, photos, friends, …)

• iCloud/iTunes:
– Key: Movie/song name
– Value: Movie, Song

Key Values: Examples 
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Key-value storage systems in real life
• Amazon

– DynamoDB: internal key value store used to power Amazon.com
(shopping cart)

– Simple Storage System (S3)

• BigTable/HBase/Hypertable: distributed, scalable data storage

• Cassandra: “distributed data management system” (developed by 
Facebook)

• Memcached: in-memory key-value store for small chunks of arbitrary 
data (strings, objects) 

• eDonkey/eMule: peer-to-peer sharing system

• …
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Key Value Store
• Also called Distributed Hash Tables (DHT)
• Main idea: simplify storage interface (i.e. put/get), then partition set of 

key-values across many machines
key, value

…
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Challenges

• Scalability: 
– Need to scale to thousands of machines 
– Need to allow easy addition of new machines

• Fault Tolerance: handle machine failures without losing data  and 
without degradation in performance

• Consistency: maintain data consistency in face of node failures and 
message losses 

• Heterogeneity (if deployed as peer-to-peer systems):
– Latency: 1ms to 1000ms
– Bandwidth: 32Kb/s to 100Mb/s

…
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Important Questions
• put(key, value): 

– where do you store a new (key, value) tuple?
• get(key): 

– where is the value associated with a given “key” stored?

• And, do the above while providing 
– Scalability
– Fault Tolerance
– Consistency
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How to solve the “where?”
• Hashing to map key space  location

– But what if you don’t know all the nodes that are participating?
– Perhaps they come and go …
– What if some keys are really popular?

• Lookup
– Hmm, won’t this be a bottleneck and single point of failure?
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Recursive Directory Architecture (put)
• Have a node maintain the mapping between keys and the machines 

(nodes) that store the values associated with the keys

…

N1 N2 N3 N50

K5 V5 K14 V14 K105 V105

K5 N2
K14 N3

K105 N50

Master/Directory

put(K14, V14)
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Recursive Directory Architecture (get)

…

N1 N2 N3 N50

K5 V5 K14 V14 K105 V105

K5 N2
K14 N3

K105 N50

Master/Directory

get(K14)
V14

• Have a node maintain the mapping between keys and the machines 
(nodes) that store the values associated with the keys
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Iterative Directory Architecture (put) 
• Having the master relay the requests  recursive query
• Another method: iterative query (this slide)

– Return node to requester and let requester contact node

…

N1 N2 N3 N50

K5 V5 K14 V14 K105 V105

K5 N2
K14 N3

K105 N50

Master/Directory
put(K14, V14)

N3
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Iterative Directory Architecture (get)

…

N1 N2 N3 N50

K5 V5 K14 V14 K105 V105

K5 N2
K14 N3

K105 N50

Master/Directory
get(K14)

V14
N3

• Having the master relay the requests  recursive query
• Another method: iterative query (this slide)

– Return node to requester and let requester contact node
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Iterative vs. Recursive Query

…

N1 N2 N3 N50

K14 V14

K14 N3

Master/Directory

get(K14)
V14

…

N1 N2 N3 N50

K14 V14

K14 N3

Master/Directory
get(K14)

V14
N3

Recursive Iterative

+ Faster, as directory server is typically close 
to storage nodes

+ Easier for consistency: directory can 
enforce an order for all puts and gets

- Directory is a performance bottleneck

+ More scalable, clients do more work
- Harder to enforce consistency
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Fault Tolerance
• Replicate value on several nodes
• Usually, place replicas on different racks in a datacenter to guard against 

rack failures

…

N1 N2 N3 N50

K5 V5 K14 V14 K105 V105

K5 N2
K14 N1,N3 

K105 N50

Master/Directory
put(K14, V14)

N1, N3

K14 V14

put(K14, V14)
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Scalability
• Storage: use more nodes

• Number of requests: 
– Can serve requests from all nodes on which a value is stored in parallel
– Master can replicate a popular value on more nodes

• Master/directory scalability:
– Replicate it
– Partition it, so different keys are served by different masters/directories

» How do you partition? 
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Scaling Up Directory
• Challenge:

– Directory contains a number of entries equal to number of (key, value) 
tuples in the system

– Can be tens or hundreds of billions of entries in the system!
• Solution: Consistent Hashing

– Provides mechanism to divide [key,value] pairs amongst a (potentially 
large!) set of machines (nodes) on network

• Associate to each node a unique id in an uni-dimensional space 0..2m-1 
 Wraps around: Call this “the ring!”

– Partition this space across n machines
– Assume keys are in same uni-dimensional space
– Each [Key, Value] is stored at the node with the smallest ID larger than 

Key
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Key to Node Mapping Example
• Paritioning example with

m = 6  ID space: 0..63
– Node  8 maps keys [5,8]
– Node 15 maps keys [9,15]
– Node 20 maps keys [16, 20]
– …
– Node 4 maps keys [59, 4]

• For this example, the mapping 
[14, V14] maps to node with 
ID=15

– Node with smallest ID larger than 
14 (the key)

• In practice, m=256 or more!
– Uses cryptographically secure 

hash such as SHA-256 to 
generate the node IDs

14 V14

4

20

3235

8

15

44

58

63 0

“The Ring”
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Chord: Distributed Lookup (Directory) Service
• “Chord” is a Distributed Lookup Service

– Designed at MIT and here at Berkeley (Ion Stoica among others)
– Simplest and cleanest algorithm for distributed storage

» Serves as comparison point for other optims
• Import aspect of the design space:

– Decouple correctness from efficiency
– Combined Directory and Storage

• Properties 
– Correctness: 

» Each node needs to know about neighbors on ring (one predecessor and one 
successor)

» Connected rings will perform their task correctly
– Performance: 

» Each node needs to know about O(log(M)), where M is the total number of nodes
» Guarantees that a tuple is found in O(log(M)) steps

• Many other Structured, Peer-to-Peer lookup services: 
– CAN, Tapestry, Pastry, Bamboo, Kademlia, …
– Several designed here at Berkeley!
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Chord’s Lookup Mechanism: Routing!
• Each node maintains pointer to its 

successor 
• Route packet (Key, Value) to the 

node responsible for ID using 
successor pointers
– E.g., node=4 lookups for node 

responsible for Key=37 
• Worst-case (correct) lookup is O(n)

– But much better normal lookup time is 
O(log n)

– Dynamic performance optimization 
(finger table mechanism)

» More later!!!

4

20

3235

8

15

44

58

lookup(37)

node=44 is 
responsible 
for Key=37
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But what does this really mean??

ID: 4

ID: 44

ID: 8

ID: 20

ID: 35

ID: 58

ID: 15

ID: 32

• Node names intentionally scrambled WRT geography!
– Node IDs generated by secure hashes over metadata 

» Including things like the IP address
– This geographic scrambling spreads load and avoids hotspots

• Clients access distributed storage through any member of the network

4

20

3235

8

15

44

58

14 V14

63 0

Client

Client

Client

Client

Client

14 V14
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Stabilization Procedure
• Periodic operation performed by each node n to maintain its successor 

when new nodes join the system
– The primary Correctness constraint

n.stabilize()
x = succ.pred;
if (x (n, succ))

succ = x;      // if x better successor, update 
succ.notify(n); // n tells successor about itself

n.notify(n’)
if (pred = nil or n’    (pred, n))

pred = n’;       // if n’ is better predecessor, update




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Joining Operation

4

20

3235

8

15

44

58

50

succ=4
pred=44

succ=nil
pred=nil

succ=58
pred=35

• Node with id=50 
joins the ring

• Node 50 must know 
at least one node 
already in system

– Assume known 
node is 15
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Joining Operation

4

20

3235

8

15

44

58

50

join(50)

succ=4
pred=44

succ=nil
pred=nil

succ=58
pred=35

58

succ=58

• n=50 sends join(50)
to node 15

– Join propagated 
around ring!

• n=44 returns node 58
• n=50 updates its

successor to 58
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Joining Operation

4

20

3235

8

15

44

58

50pred=nil

succ=58
pred=35

succ=4
pred=44

n.stabilize()
x = succ.pred;
if (x (n, succ))

succ = x;
succ.notify(n);



succ=58

• n=50 executes 
stabilize()

• n’s successor (58)
returns x = 44
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Joining Operation

4

20

3235

8

15

44

58

50pred=nil

succ=58
pred=35

succ=4
pred=44

n.stabilize()
x = succ.pred;
if (x (n, succ))

succ = x;
succ.notify(n);



succ=58

• n=50 executes 
stabilize()

– x = 44
– succ = 58
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Joining Operation

4

20

3235

8

15

44

58

50pred=nil

succ=58
pred=35

succ=4
pred=44

n.stabilize()
x = succ.pred;
if (x (n, succ))

succ = x;
succ.notify(n);



succ=58

• n=50 executes 
stabilize()

– x = 44
– succ = 58

• n=50 sends to it’s 
successor (58) 
notify(50)
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• n=58 executes
notify(50)

– pred = 44
– n’ = 50

Joining Operation

4

20

3235

8

15

44

58

50pred=nil

succ=58
pred=35

succ=4
pred=44

succ=58

n.notify(n’)
if (pred = nil or n’   (pred, n))

pred = n’
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Joining Operation

4

20

3235

8

15

44

58

50pred=nil

succ=58
pred=35

succ=4
pred=44

succ=58

pred=50
• n=58 executes

notify(50)
– pred = 44
– n’ = 50

• set pred = 50

n.notify(n’)
if (pred = nil or n’   (pred, n))

pred = n’
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Joining Operation

4

20

3235

8

15

44

58

50pred=nil

succ=58
pred=35

succ=4
pred=50

n.stabilize()
x = succ.pred;
if (x (n, succ))

succ = x;
succ.notify(n);



succ=58

x=50

• n=44 executes 
stabilize()

• n’s successor (58) 
returns x=50
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Joining Operation

4

20

3235

8

15

44

58

50pred=nil

succ=58
pred=35

succ=4
pred=50

n.stabilize()
x = succ.pred;
if (x (n, succ))

succ = x;
succ.notify(n);



succ=58

• n=44 executes 
stabilize()

– x=50
– succ=58
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Joining Operation

4

20

3235

8

15

44

58

50pred=nil

succ=58
pred=35

succ=4
pred=50

n.stabilize()
x = succ.pred;
if (x (n, succ))

succ = x;
succ.notify(n);



succ=58

• n=44 executes 
stabilize()

– x=50
– succ=58

• n=44 sets 
succ=50

succ=50



Lec 27.574/30/24 Kubiatowicz CS162 © UCB Spring 2024

Joining Operation

4

20

3235

8

15

44

58

50pred=nil

succ=50
pred=35

succ=4
pred=50

n.stabilize()
x = succ.pred;
if (x (n, succ))

succ = x;
succ.notify(n);



succ=58

notify(44)

• n=44 executes 
stabilize()

• n=44 sends notify(44) 
to its successor
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Joining Operation

4

20

3235

8

15

44

58

50pred=nil

succ=50
pred=35

succ=4
pred=50

n.notify(n’)
if (pred = nil or n’    (pred, n))

pred = n’


succ=58

notify(44)

• n=50 executes 
notify(44)

– pred=nil
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Joining Operation

4

20

3235

8

15

44

58

50pred=nil

succ=50
pred=35

succ=4
pred=50

succ=58

notify(44)

pred=44

• n=50 executes 
notify(44)

– pred=nil
• n=50 sets pred=44

n.notify(n’)
if (pred = nil or n’   (pred, n))

pred = n’
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Joining Operation (cont’d)

4

20

3235

8

15

44

58

50succ=58

succ=50

pred=44

pred=50
• This completes the joining 

operation!
• The same stabilizing process 

will deal with failed nodes by 
reconnecting the ring

• What if 2 or more nodes in a 
row fail?

– Keep track of
more neighbors!

– Called the “leaf set”
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Achieving Efficiency: finger tables

80 + 2080 + 21
80 + 22

80 + 23

80 + 24

80 + 25
(80 + 26) mod 27 = 16

0
Say m=7

ith entry at peer with id n is first peer with id >=                          )2(mod2 min 

i   ft[i]
0  96
1  96
2  96
3  96
4  96
5  112
6  20

Finger Table at 80

32

4580

20
112

96
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Achieving Fault Tolerance for Lookup Service

• To improve robustness each node maintains the k (> 1) immediate 
successors instead of only one successor

– Again – called the “leaf set”
– In the pred() reply message, node A can send its k-1 successors to its 

predecessor B
– Upon receiving pred() message, B can update its successor list by 

concatenating the successor list received from A with its own list
• If k = log(M), lookup operation works with high probability even if half 

of nodes fail, where M is number of nodes in the system
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Storage Fault Tolerance
• Replicate tuples on 

successor nodes
• Example: replicate (K14, 

V14) on nodes 20 and 32

4

20

3235

8

15

44

58

14 V14

63 0

14 V14

14 V14
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Storage Fault Tolerance
• If node 15 fails, no 

reconfiguration needed
– Still have two replicas 
– All lookups will be correctly 

routed after stabilization

• Will need to add a new 
replica on node 35

4

20

3235

8

15

44

58

14 V14

63 0

14 V14

14 V14

14 V14
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