CS162
Operating Systems and

Systems Programming
Lecture 26

Trusted Execution, Distributed File Systems
Global Data Plane

April 30t 2024
Prof. John Kubiatowicz
http://cs162.eecs.Berkeley.edu

Recall: Distributed Applications Build With Messages

* How do you actually program a distributed application?

— Need to synchronize multiple threads, running on different machines
» No shared memory, so cannot use test&set

9A1929Y

— One Abstraction: send/receive messages

» Already atomic: no receiver gets portion of a message and two receivers cannot
get same message

* Interface:

— Mailbox (mbox): temporary holding area for messages
» Includes both destination location and queue

— Send(message,mbox)
» Send message to remote mailbox identified by mbox

— Receive(buffer,mbox)
» Wait until mbox has message, copy into buffer, and return
» If threads sleeping on this mbox, wake up one of them

4/30/24 Kubiatowicz CS162 © UCB Spring 2024 Lec 27.2

Recall: NFS Cache consistency

* NFS protocol: weak consistency

— Client polls server periodically to check for changes

» Polls server if data hasn’t been checked in last 3-30 seconds (exact timeout is tunable
parameter).

» Thus, when file is changed on one client, server is notified, but other clients use old
version of file until timeout.

cache

cache
F1:V2

Client

— What if multiple clients write to same file?
» In NFS, can get either version (or parts of both)

» Completely arbitrary!

4/30/24 Kubiatowicz CS162 © UCB Spring 2024 Lec 27.3

Sequential Ordering Constraints

« What sort of cache coherence might we expect?
—i.e. what if one CPU changes file, and before it's done, another CPU reads file?
« Example: Start with file contents = “A”

Client 1: LRead: gets A Write B Read: parts of B or (
Client 2: Read: gets A or Bl[Write C
Client 3: Read: parts of B or (
>
Time

« What would we actually want?
— Assume we want distributed system to behave exactly the same as if all
processes are running on single system

» If read finishes before write starts, get old copy
» If read starts after write finishes, get new copy
» Otherwise, get either new or old copy

— For NFS:
» If read starts more than 30 seconds after write, get new copy; otherwise, could get

partial update

4/30/24 Kubiatowicz CS162 © UCB Spring 2024 Lec 27.4

Andrew File System

Andrew File System (AFS, late 80’s) » DCE DFS (commercial product)
Callbacks: Server records who has copy of file

— On changes, server immediately tells all with old copy

— No polling bandwidth (continuous checking) needed
Write through on close

— Changes not propagated to server until close()

— Session semantics: updates visible to other clients only after the file is
closed

» As a result, do not get partial writes: all or nothing!

» Although, for processes on local machine, updates visible immediately to other
programs who have file open

In AFS, everyone who has file open sees old version
— Don’t get newer versions until reopen file

4/30/24 Kubiatowicz CS162 © UCB Spring 2024 Lec 27.5

Andrew File System (con’t)

Data cached on local disk of client as well as memory

— On open with a cache miss (file not on local disk):
» Get file from server, set up callback with server

— On write followed by close:

» Send copy to server; tells all clients with copies to fetch new version from server on
next open (using callbacks)

What if server crashes? Lose all callback state!

— Reconstruct callback information from client: go ask everyone “who has which
files cached?”

AFS Pro: Relative to NFS, less server load:
— Disk as cache = more files can be cached locally
— Callbacks = server not involved if file is read-only

For both AFS and NFS: central server is bottleneck!
— Performance: all writes—server, cache misses—server
— Availability: Server is single point of failure
— Cost: server machine’s high cost relative to workstation

4/30/24 Kubiatowicz CS162 © UCB Spring 2024 Lec 27.6

Quick Security Primer

4/30/24 Kubiatowicz CS162 © UCB Spring 2024 Lec 27.7

Authentication in Distributed Systems
« What if identity must be established across network?

Network

(9)
A
(e
§.
— Need way to prevent exposure of information while still proving identity to remote
system

— Many of the original UNIX tools sent passwords over the wire “in clear text”
» E.g.: telnet, ftp, yp (yellow pages, for distributed login)
» Result: Snooping programs widespread

« What do we need? Cannot rely on physical security!
— Encryption: Privacy, restrict receivers
— Authentication: Remote Authenticity, restrict senders

4/30/24 Kubiatowicz CS162 © UCB Spring 2024 Lec 27.8

4/30/24

Private Key Cryptography

Private Key (Symmetric) Encryption:
— Single key used for both encryption and decryption
Plaintext: Unencrypted Version of message

Ciphertext: Encrypted Version of message

@ —| Encrypt
-
l o Insecure
§_' T Transmission
spry ¢ (ciphertext)
-+ Key

Important properties

Decryp -
=
I =
% CIA
Key -+

— Can’t derive plain text from ciphertext (decode) without access to key

— Can’t derive key from plain text and ciphertext

— As long as password stays secret, get both secrecy and authentication
Symmetric Key Algorithms: DES, Triple-DES, AES

Kubiatowicz CS162 © UCB Spring 2024

Lec 27.9

Key Distribution

« How do you get shared secret to both places?

— For instance: how do you send authenticated, secret mail to someone who you

have never met?
— Must negotiate key over private channel
» Exchange code book
» Key cards/memory stick/others
« Third Party: Authentication Server (like Kerberos)
— Notation:
» K,, Is key for talking between x and y
» (...)K means encrypt message (...) with the key K
» Clients: A and B, Authentication server S
— A asks server for key:
» A—S: [Hi! I'd like a key for talking between A and B]
» Not encrypted. Others can find out if A and B are talking
— Server returns session key encrypted using B’s key
» S—A: Message [Use K, (This is Al Use K,)Ksb] Ksa
» This allows A to know, “S said use this key”
— Whenever A wants to talk with B
» A—B: Ticket [This is Al Use K,]KsP
» Now, B knows that K, is sanctioned by S

4/30/24 Kubiatowicz CS162 © UCB Spring 2024

Lec 27.10

Authentication Server Continued [Kerberos]

Ticket

o0
@wu&qmmm&q@
* Details

— Both A and B use passwords (shared with key server) to decrypt return from key
servers

— Add in timestamps to limit how long tickets will be used to prevent attacker from
replaying messages later
— Also have to include encrypted checksums (hashed version of message) to
prevent malicious user from inserting things into messages/changing messages
— Want to minimize # times A types in password
» A—S (Give me temporary secret)
» S—A (Use Ko fOr next 8 hours)isa
» Can now use K in place of K, in prototcol

temp-sa

4/30/24 Kubiatowicz CS162 © UCB Spring 2024 Lec 27.11

Public Key Encryption

« Can we perform key distribution without an authentication server?
— Yes. Use a Public-Key Cryptosystem.
» Public Key Details
— Don't have one key, have two: K, i, Kjiivate
» Two keys are mathematically related to one another
» Really hard to derive K, ;i from K and vice versa
— Forward encryption:
» Encrypt: (cleartext)Xpublic= ciphertext,
» Decrypt: (ciphertext,)kprivate = cleartext
— Reverse encryption:
» Encrypt: (cleartext)<ervate = ciphertext,
» Decrypt: (ciphertext,)kpublic = cleartext
— Note that ciphertext, # ciphertext,
» Can’t derive one from the other!
* Public Key Examples:

— RSA: Rivest, Shamir, and Adleman

» Kpublic of form (kpublic’ N)’ Kprivate of form (k
» N = pq. Can break code if know p and q

— ECC: Elliptic Curve Cryptography

» Lower overhead than RSA
4/30/24 Kubiatowicz CS162 © UCB Spring 2024 Lec 27.12

private

N)

private’

Public Key Encryption Detalls

can be made public, keep K ;. Private
Insecure Ch

nnel

A | ice Insecure Channel Bob

Gives message privacy (restricted receiver):
— Public keys (secure destination points) can be acquired by anyone/used by anyone
— Only person with private key can decrypt message
What about authentication?
— Use combination of private and public key
— Alice—Bob: [(I'm Alice)/rrvate Rest of message]Brublic
— Provides restricted sender and receiver
But: how does Alice know that it was Bob who sent her B, ;.7 And vice versa...

4/30/24 Kubiatowicz CS162 © UCB Spring 2024 Lec 27.13

Secure Hash Function
Hash DFCD3454BBEA788A
Fox = F“s tion [FP] 7512696c24D97009
dnction CA992D17
The Fed ToX | S 52ED879E70F71D92
runs across | F°S \iop [=P>| 6EB6957008E03CE4
the icp dnction CA6945D3

« Hash Function: Short summary of data (message)

— For instance, h,=H(M,) is the hash of message M,

» h, fixed length, despite size of message M,.
» Often, h, is called the “digest” of M,.

 Hash function H is considered secure if

— It is infeasible to find M, with h,=H(M,); ie. can'’t easily find other
message with same digest as given message.

— It is infeasible to locate two messages, m, and m,, which “collide”, i.e. for
which H(m,) = H(m2)

— A small change in a message changes many bits of digest/can’t tell
anything about message given its hash

4/30/24 Kubiatowicz CS162 © UCB Spring 2024 Lec 27.14

Use of Hash Functions

« Several Standard Hash Functions:
— MD5: 128-bit output
— SHA-1: 160-bit output, SHA-256: 256-bit output
« Can we use hashing to securely reduce load on server?
— Yes. Use a series of insecure mirror servers (caches)
— First, ask server for digest of desired file
» Use secure channel with server
— Then ask mirror server for file

» Can be insecure channel
» Check digest of result and catch faulty or malicious mirrors

Read File X
Here is h, = H(X)

Client

4/30/24 Kubiatowicz CS162 © UCB Spring 2024 Ser‘ver‘ Lec 27.15

Signatures/Certificate Authorities

Can use X, . for person X to define their identity
— Presumagtfy they are the only ones who know X

— Often, we think of X, ;. as a “principle” (user)

Suppose we want X to sign message M? |
— Use private key to encrypt the digest, i.e. H(M)Xrrivate
— Send both M and its signature:
» Signed message = [M,H(M)Xprivate]
— Now, anyone can verify that M was signed by X
» Simply decrypt the digest with X
» Verify that result matches H(M) _
Now: How do we know that the version of X
— Answer: Certificate Authority
» Examples: Verisign, Entrust, Etc.
— X goes to organization, presents identifying papers
» Organization signs X's key: [Xpjic, H(X,ypiic) AP Mvate]
» Called a “Certificate”
— Before we use X i, ask X for certificate verifying key
produceg&)%/ trusted authority

private-

public

oublic that we have is really from X??7?

Check that signat Xo L
How do we get keys of certificats author

— Compiled Into your browser, for instance!

4/30/24 Kubiatowicz CS162 © UCB Spring 2024 Lec 27.16

Security through SSL

- SShehrm,, =l
— Po : secure http P (¥ < -—
— Use public-key encryption s =
for kgy—distribl}jtion s \2 (pms)® | 1I===

« Server has a certificate signed by certificate authority
— Contains server info (organization, IP address, etc)
— Also contains server’s public key and expiration date
« Establishment of Shared, 48-byte “master secret”
— Client sends 28-byte random value n, to server
— Server returns its own 28-byte random value ng, plus its certificate cert
— Client verifies certificate by checking with public key of certificate authority
compiled into browser
» Also check expiration date
— Client picks 46-byte “premaster” secret (pms), encrypts it with public key of
server, and sends to server
— Now, both server and client have n_, n,, and pms

» Each can compute 48-byte master secret using one-way and collision-resistant
function on three values

» Random “nonces” n, and ng make sure master secret fresh

4/30/24 Kubiatowicz CS162 © UCB Spring 2024 Lec 27.17

Authorization: Who Can Do What?

 How do we decide who is authorized object
to do actions in the system? dorialh

printer

« Access Control Matrix: all permissions in the system : o
1

read

— Resources across top
» Files, Devices, etc... D,

print

— Domains in columns
» A domain might be a user or a group of permissions Dy

read

Execute

» E.g. above: User D; can read F, or execute F; o
— In practice, table would be huge and sparse! D, write

read
write

« Two approaches to implementation
— Access Control Lists: store permissions with each object
» Still might be lots of users!
» UNIX limits each file to: r,w,x for owner, group, world

» More recent systems allow definition of groups of users and permissions for each group

— Capability List: each process tracks objects has permission to touch

» Popular in the past, idea out of favor today

» Consider page table: Each process has list of pages it has access to, not each page has

list of processes ...

4/30/24 Kubiatowicz CS162 © UCB Spring 2024

Lec 27.18

How fine-grained should access control be?

« Example of the problem:
— Suppose you buy a copy of a new game from “Joe’s Game World” and then run it.
— It's running with your userid
» It removes all the files you own, including the project due the next day...
« How can you prevent this?

— Have to run the program under some userid.
» Could create a second games userid for the user, which has no write privileges.
» Like the “nobody” userid in UNIX — can’t do much

— But what if the game needs to write out a file recording scores?

» Would need to give write privileges to one particular file (or directory) to your games
userid.

— But what about non-game programs you want to use, such as Quicken?

» Now you need to create your own private quicken userid, if you want to make sure tha
the copy of Quicken you bought can’t corrupt non-quicken-related files

— But — how to get this right??? Pretty complex...

4/30/24 Kubiatowicz CS162 © UCB Spring 2024 Lec 27.19

Authorization Continued

* Principle of least privilege: programs, users, and systems should get only
enough privileges to perform their tasks
— Very hard to do in practice
» How do you figure out what the minimum set of privileges is needed to run your
programs?
— People often run at higher privilege then necessary
» Such as the “administrator” privilege under windows
* One solution: Signed Software
— Only use software from sources that you trust, thereby dealing with the problem by
means of authentication
— Fine for big, established firms such as Microsoft, since they can make their signing
keys well known and people trust them

» Actually, not always fine: recently, one of Microsoft’s signing keys was compromised,
leading to malicious software that looked valid

— What about new startups?
» Who “validates” them?
» How easy is it to fool them?

4/30/24 Kubiatowicz CS162 © UCB Spring 2024 Lec 27.20

How to perform Authorization for Distributed Systems?

Different
— B)Authorization
Domains

* Issues: Are all user names in world unique?
— No! They only have small number of characters

» kubi@mit.edu — kubitron@Ics.mit.edu — kubitron@cs.berkeley.edu

» However, someone thought their friend was kubi@mit.edu and | got very private
email intended for someone else...

— Need something better, more unique to identify person
« Suppose want to connect with any server at any time?

— Need an account on every machine! (possibly with different user name for
each account)

— OR: Need to use something more universal as identity
» Public Keys! (Called “Principles”)
» People are their public keys

4/30/24 Kubiatowicz CS162 © UCB Spring 2024 Lec 27.21

Distributed Access Control
(" . Access Control List (ACL) for X: 1
File X ”
Owner Key: ACL ver'l.fler'
Y* —>(Hash, Timestamp, Key: 0x546DFEFA34..
| 0x22347EF.. Signature (ownerYRW: Key: 0x467D34EF83..
N RX: Group Key: 0xA2D3498672...
: =
~

roup ACL:
Key: 0xA786EF889A..
Key: 0x6647DBC9AC...

Hash, Timestamp,
Rignature (group)

Server 2: Domain 3 /

 Distributed Access Control List (ACL)

— Contains list of attributes (Read, Write, Execute, etc) with attached identities (Here,
we show public keys)

» ACLs signed by owner of file, only changeable by owner
» Group lists signed by group key

— ACLs can be on different servers than data
» Signatures allow us to validate them
» ACLs could even be stored separately from verifiers

4/30/24 Kubiatowicz CS162 © UCB Spring 2024 Lec 27.22

Trusted Execution Environment

Simple Hardware with single OS
— What we have been talking about all term!

Virtual machines
— Multiplex different OSes on single machine

— Many techniques, including dynamic compilation
and direct hardware support (domain “-17)

— Need way to fool OS code into thinking it has
complete control of machine!

What if you don’t trust the OS or hypervisor not
to leak your information?

— Worried about compromised OS
— Don’t trust service provider (i.e. Google, Amazon)
Trusted Execution Environment (TEE)

— Hardware support to prevent OS or external
actors from observing execution

— Client can get hardware proof that trusted code is
actual code we expect! [Attestation]

Linux

WinXP

Virtual Machine Monitor

[Hypervisor]

HARDWARE

4/30/24 Kubiatowicz CS162 © UCB Spring 2024

Lec 27.23

Chord and Distributed Storage

4/30/24 Kubiatowicz CS162 © UCB Spring 2024 Lec 27.24

What about: Sharing Data, rather than Files ?

Key:Value stores are used everywhere
Native in many programming languages
— Associative Arrays in Perl
— Dictionaries in Python
— Maps in Go

What about a collaborative key-value store rather than message passing
or file sharing?

Can we make it scalable and reliable?

4/30/24 Kubiatowicz CS162 © UCB Spring 2024 Lec 27.25

Key Value Storage

Simple interface

e put(key, value); // Insert/write "value" associated with key

e get(key); // Retrieve/read value associated with key

4/30/24 Kubiatowicz CS162 © UCB Spring 2024 Lec 27.26

Why Key Value Storage?

« Easy to Scale
— Handle huge volumes of data (e.g., petabytes)
— Uniform items: distribute easily and roughly equally across many machines

« Simple consistency properties

« Used as a simpler but more scalable "database”
— Or as a building block for a more capable DB

4/30/24 Kubiatowicz CS162 © UCB Spring 2024 Lec 27.27

Key Values: Examples

« Amazon: amazon

— Key: customerlD
— Value: customer profile (e.g sredit card, ..)

« Facebook, Twitter: l“'
— Key: UserlD

— Value: user profile (e.g., posting history, photos, friends, ...)

+ iCloud/iTunes: %, @
— Key: Movie/song name . e

— Value: Movie, Song

4/30/24 Kubiatowicz CS162 © UCB Spring 2024 Lec 27.28

4/30/24

Key-value storage systems in real life

Amazon

— DynamoDB: internal key value store used to power Amazon.com
(shopping cart)

— Simple Storage System (S3)
BigTable/HBase/Hypertable: distributed, scalable data storage

Cassandra: “distributed data management system” (developed by
Facebook)

Memcached: in-memory key-value store for small chunks of arbitrary
data (strings, objects)

eDonkey/eMule: peer-to-peer sharing system

Kubiatowicz CS162 © UCB Spring 2024 Lec 27.29

Key Value Store

 Also called Distributed Hash Tables (DHT)

« Main idea: simplify storage interface (i.e. put/get), then partition set of
key-values across many machines

key, value

& F

4/30/24 Kubiatowicz CS162 © UCB Spring 2024 Lec 27.30

4/30/24

Challenges

T O T
Scalability:

— Need to scale to thousands of machines
— Need to allow easy addition of new machines

Fault Tolerance: handle machine failures without losing data and
without degradation in performance

Consistency: maintain data consistency in face of node failures and
message losses

Heterogeneity (if deployed as peer-to-peer systems):
— Latency: 1ms to 1000ms
— Bandwidth: 32Kb/s to 100Mb/s

Kubiatowicz CS162 © UCB Spring 2024

Lec 27.31

Important Questions

« put(key, value):
— where do you store a new (key, value) tuple?

« get(key):
— where is the value associated with a given “key” stored?

* And, do the above while providing
— Scalability
— Fault Tolerance
— Consistency

4/30/24 Kubiatowicz CS162 © UCB Spring 2024 Lec 27.32

How to solve the “where?”

« Hashing to map key space = location
— But what if you don’t know all the nodes that are participating?
— Perhaps they come and go ...
— What if some keys are really popular?
« Lookup
— Hmm, won'’t this be a bottleneck and single point of failure?

4/30/24 Kubiatowicz CS162 © UCB Spring 2024 Lec 27.33

4/30/24

Recursive Directory Architecture (put)

« Have a node maintain the mapping between keys and the machines
(nodes) that store the values associated with the keys

Master/Directory
put(K14, V14) --------oe > K5 | N2
K14 { N3
w
L [KIINGD
w
S
Q ¥
K5 V5 K14 V14 K105[V105
N1 N2 N3 N50

Kubiatowicz CS162 © UCB Spring 2024

Lec 27.34

4/30/24

Recursive Directory Architecture (get)

« Have a node maintain the mapping between keys and the machines
(nodes) that store the values associated with the keys

Master/Directory

get(K14) -m-mmmmmom - K5 | N2
VA4 - K14 | N3
R/ 1 K105 N50
Sc\ ! v I
NN
‘ 1
K5 V5 K14 V14 K105[V105
N, N, N3 Nso

Kubiatowicz CS162 © UCB Spring 2024

Lec 27.35

lterative Directory Architecture (put)

« Having the master relay the requests - recursive query

« Another method: iterative query (this slide)

— Return node to requester and let requester contact node

PUL(K14, V14) ~=mcome

Master/Directory
KS | N2
K14 | N3
K105 NS0
K105[V105
Nso

> ~(/\r\74
79
K5 V5 K141 V14

4/30/24 Kubiatowicz CS162 © UCB Spring 2024

Lec 27.36

lterative Directory Architecture (get)

« Having the master relay the requests - recursive query

« Another method: iterative query (this slide)

— Return node to requester and let requester contact node

Master/Directory

get(K14) ~=-==-momme R
N R E
V14
AN 9@{
¢
7
K5 V5 K14 [V14
N1 N2 N3

K5 | N2
K14 N3
KT05[N50

KT05|V105

Nso

4/30/24 Kubiatowicz CS162 © UCB Spring 2024

Lec 27.37

lterative vs. Recursive Query

Master/Directory Master/Directory

___________ get(K14)-==-=------->
get(\}ﬁﬂ_ ___________ . E K14 N3 V":if """"""" E R14 N3

R/ * %

éZ; / AII ‘\:\\\
y o S0 A

RT4[VT R14[VT

N1 N2 N3 N50 N1 N2 N3 N50
Recursive lterative
+ Faster, as directory server is typically close + More scalable, clients do more work
to storage nodes - Harder to enforce consistency

+ Easier for consistency: directory can
enforce an order for all puts and gets

- Directory is a performance bottleneck

4/30/24 Kubiatowicz CS162 © UCB Spring 2024

Lec 27.38

4/30/24

Fault Tolerance

* Replicate value on several nodes
« Usually, place replicas on different racks in a datacenter to guard against

rack failures

Master/Directory

put(K14, V14) =--=-mommmemeee . TN
N1, N3 ¢ E K14 [N1,N3
*{/{(’%) K105/ N50
put(K14, V14) ~."7¢4
e }/\/7
o el A
K14 V14 K5 [V5 K14 V14 [KT05|V105

N, N, N Nso

Kubiatowicz CS162 © UCB Spring 2024

Lec 27.39

Scalability

- Storage: use more nodes

* Number of requests:
— Can serve requests from all nodes on which a value is stored in parallel
— Master can replicate a popular value on more nodes

« Master/directory scalability:
— Replicate it
— Partition it, so different keys are served by different masters/directories
» How do you partition?

4/30/24 Kubiatowicz CS162 © UCB Spring 2024 Lec 27.40

Scaling Up Directory

« Challenge:

— Directory contains a number of entries equal to number of (key, value)
tuples in the system

— Can be tens or hundreds of billions of entries in the system!

» Solution: Consistent Hashing

— Provides mechanism to divide [key,value] pairs amongst a (potentially
large!) set of machines (nodes) on network

« Associate to each node a unique id in an uni-dimensional space 0..2™M-1
= Wraps around: Call this “the ring!”

— Partition this space across n machines
— Assume keys are in same uni-dimensional space

— Each [Key, Value] is stored at the node with the smallest ID larger than
Key

4/30/24 Kubiatowicz CS162 © UCB Spring 2024 Lec 27.41

Key to Node Mapping Example

 Paritioning example with
m =6 -2 [D space: 0..63

— Node 8 maps keys [5,8]

— Node 15 maps keys [9,15]
— Node 20 maps keys [16, 20]
— Node 4 maps keys [59, 4]

 For this example, the mapFing
[14, V14] maps to node with
D=15
— Node with smallest ID larger than
14 (the key)

 |In practice, m=256 or more!

— Uses cryptographically secure
hash such as SHA-256 to
generate the node IDs

“The Ring”

4/30/24 Kubiatowicz CS162 © UCB Spring 2024 Lec 27.42

4/30/24

Chord: Distributed Lookup (Directory) Service

“Chord” is a Distributed Lookup Service
— Designed at MIT and here at Berkeley (lon Stoica among others)
— Simplest and cleanest algorithm for distributed storage
» Serves as comparison point for other optims
Import aspect of the design space:
— Decouple correctness from efficiency
— Combined Directory and Storage
Properties
— Correctness:

» Each node needs to know about neighbors on ring (one predecessor and one
successor)

» Connected rings will perform their task correctly
— Performance:
» Each node needs to know about O(log(M)), where M is the total number of nodes
» Guarantees that a tuple is found in O(log(M)) steps
Many other Structured, Peer-to-Peer lookup services:
— CAN, Tapestry, Pastry, Bamboo, Kademlia, ...
— Several designed here at Berkeley!

Kubiatowicz CS162 © UCB Spring 2024 Lec 27.43

Chord’s Lookup Mechanism: Routing!

« Each node maintains pointer to its
successor

* Route packet (Key, Value) to the
node responsible for ID using
successor pointers
— E.g., node=4 lookups for node

responsible for Key=37 node=44 is

« Worst-case (correct) lookup is O(n) el

— But much better normal lookup time is
O(log n)
— Dynamic performance optimization
(finger table mechanism)
» More later!!!

for Key=37

4/30/24 Kubiatowicz CS162 © UCB Spring 2024 Lec 27.44

But what does this really mean??

————— ———
m————— e ———
- - ey
- -~
- ~

== ———— T N e
-

4 =

V14

Pl S

Client

Node names intentionally scrambled WRT geography!
— Node IDs generated by secure hashes over metadata
» Including things like the IP address
— This geographic scrambling spreads load and avoids hotspots

» Clients access distributed storage through any member of the network
4/30/24 Kubiatowicz CS162 © UCB Spring 2024 Lec 27.45

Stabilization Procedure

 Periodic operation performed by each node n to maintain its successor
when new nodes join the system

— The primary Correctness constraint

n.stabilize()
X = succ.pred;
if (x < (n, succ))
succ =Xx; [l if x better successor, update
succ.notify(n); /I n tells successor about itself

n.notify(n’)
if (pred = nil or n’ c (pred, n))
pred = n’; Il if n’is better predecessor, update

4/30/24 Kubiatowicz CS162 © UCB Spring 2024 Lec 27.46

Joining Operation
* Node with id=50 succ=4 __
joins the ring pred=44 (i

* Node 50 must know
at least one node
already in system

— Assume known
node is 15

g

succ=nil =
pred=nil {ji

50

succ=58 [
pred=35

"

4/30/24 Kubiatowicz CS162 © UCB Spring 2024

Lec 27.47

Joining Operation

* n=50 sends join(50) succ=4 ﬁ
to node 15 pred=44 {ji

— Join propagated
around ring!

* n=44 returns node 58

* n=50 updates its
successor to 58

succ=58 |_
pred=35

4/30/24 Kubiatowicz CS162 © UCB Spring 2024 Lec 27.48

Joining Operation

* n=50 executes
stabilize()

* n’s successor (58)
returns x = 44

succ=4
pred=

succ=58 [fi
pred=nil

succ=58 |
pred=35

n.stabilize()

= X = succ.pred;

if (x =(n, succ))
succ = X;

succ.notify(n);

4/30/24

Kubiatowicz CS162 © UCB Spring 2024 Lec 27.49

4/30/24

Joining Operation

* n=50 executes
stabilize()

— X=44
— succ = 58

succ=4 _ @

pred=44

succ=58 [fi
pred=nil

succ=58 |
pred=35 Ul

n.stabilize()
X = succ.pred;

= if (x =(n, succ))

succ = X;
succ.notify(n);

Kubiatowicz CS162 © UCB Spring 2024 Lec 27.50

Joining Operation

* n=50 executes
stabilize()

— X=44
— succ = 58

« n=50sends toit’s
successor (58)

notify(50) succ=58 [F
pred=nil
succ=58
pred=35
n.stabilize()

X = succ.pred;

if (x =(n, succ))
succ = Xx;

=) succ.notify(n);

4/30/24 Kubiatowicz CS162 © UCB Spring 2024 Lec 27.51

Joining Operation

e n=58 executes

notify(50)
— pred = 44
- n =50
succ=58 |
pred=nil
succ=58
pred=35
n.notify(n’)
=p(if (pred = nil orn’ € (pred, n))
pred = n’

4/30/24 Kubiatowicz CS162 © UCB Spring 2024 Lec 27.52

Joining Operation

e n=58 executes
notify(50)

— pred = 44
- n =50
» set pred =50

succ=58 [fi
pred=nil

succ=58 _
pred=35

n.notify(n’)
if (pred = nil or n’ € (pred, n))
- pred =n’

4/30/24 Kubiatowicz CS162 © UCB Spring 2024 Lec 27.53

Joining Operation

e n=44 executes
stabilize()

* n’s successor (58)
returns x=50

succ=4
pred=50

succ=58 [fi
pred=nil

succ=58 |
pred=35

n.stabilize()

= X = succ.pred;

if (x =(n, succ))
succ = X;

succ.notify(n);

4/30/24

Kubiatowicz CS162 © UCB Spring 2024

Lec 27.54

4/30/24

Joining Operation

e n=44 executes
stabilize()

— x=50
— succ=58

succ=4 _ @

pred=50

succ=58 [fi
pred=nil

succ=58 |
pred=35 Ul

n.stabilize()
X = succ.pred;

= if (x =(n, succ))

succ = X;
succ.notify(n);

Kubiatowicz CS162 © UCB Spring 2024 Lec 27.55

Joining Operation

e n=44 executes
stabilize()

— x=50
— succ=58

e n=44 sets
succ=50

succ=4 _ ﬁ

pred=50

succ=58 [fi
pred=nil

n.stabilize()
X = succ.pred;
if (x =(n, succ))
—p succ = X;
succ.notify(n);

4/30/24

Kubiatowicz CS162 © UCB Spring 2024 Lec 27.56

Joining Operation
* n=44 executes succ=4 __ ﬁ
stabilize() pred=50 |fw

* n=44 sends notify(44)
to its successor

succ=58 |
pred=nil 50 E
notify(44)\
succ=50 |
pred=35
n.stabilize()
X = succ.pred;
if (x =(n, succ))
succ = X; @
= succ.notify(n);

4/30/24 Kubiatowicz CS162 © UCB Spring 2024 Lec 27.57

Joining Operation

* n=50 executes succ=4 __ ﬁ
notify(44) pred=50 |

— pred=nil

succ=58 [fi
pred=nil

50
notify(44)\

succ=50 |
pred=35

n.notify(n’)
=p if (pred = nil orn’ (prezl, n))
pred =n’

4/30/24 Kubiatowicz CS162 © UCB Spring 2024 Lec 27.58

Joining Operation
* n=50 executes succ=4 __ ﬁ
notify(44) pred=50 |
— pred=nil
* n=50 sets pred=44

sucoc|:=452
pPrea=it 5o

notify(44)\

succ=50 |
pred=35

n.notify(n’)
if (pred = nil or n’ € (pred, n))
- pred =n’

4/30/24 Kubiatowicz CS162 © UCB Spring 2024 Lec 27.59

Joining Operation (cont'd)

* This completes the joining ﬁ
operation! pred=50 W
* The same stabilizing process

will deal with failed nodes by
reconnecting the ring

 What if 2 or more nodes in a
row fail?

Koon track of succ=58 [E
— Keep track o _ =
more neighbors! pred=44
— Called the “leaf set”
succ=50

‘@

4/30/24 Kubiatowicz CS162 © UCB Spring 2024 Lec 27.60

Achieving Efficiency: finger tables

Finger Table at 80 | 0 Say m=7

80 + 26) mod 27 = 16

ith entry at peer with id 7 is first peer with id >= n+2'(mod2™)

4/30/24 Kubiatowicz CS162 © UCB Spring 2024 Lec 27.61

Achieving Fault Tolerance for Lookup Service

* To improve robustness each node maintains the k (> 1) immediate
successors instead of only one successor

— Again — called the “leaf set”

— In the pred() reply message, node A can send its k-1 successors to its
predecessor B

— Upon receiving pred() message, B can update its successor list by
concatenating the successor list received from A with its own list

* If k =log(M), lookup operation works with high probability even if half
of nodes fail, where M is number of nodes in the system

4/30/24 Kubiatowicz CS162 © UCB Spring 2024 Lec 27.62

Storage Fault Tolerance

* Replicate tuples on
successor nodes

« Example: replicate (K14,
V14) on nodes 20 and 32

4/30/24 Kubiatowicz CS162 © UCB Spring 2024 Lec 27.63

Storage Fault Tolerance

* If node 15 fails, no
reconfiguration needed
— Still have two replicas
— All lookups will be correctly
routed after stabilization

 Will need to add a new
replica on node 35

4/30/24 Kubiatowicz CS162 © UCB Spring 2024 Lec 27.64

4/30/24 Kubiatowicz CS162 © UCB Spring 2024 Lec 27.65

