CS162
Operating Systems and
Systems Programming

Lecture 26

Trusted Execution, Distributed File Systems
Global Data Plane

April 30, 2024
Prof. John Kubiatowicz
http://cs162.eecs.Berkeley.edu

Recall: Distributed Applications Build With Messages

* How do you actually program a distributed application?
— Need to synchronize multiple threads, running on different machines
» No shared memory, so cannot use test&set

— One Abstraction: send/receive messages

» Already atomic: no receiver gets portion of a message and two receivers cannot
get same message
* Interface:

— Mailbox (mbox): temporary holding area for messages
» Includes both destination location and queue

— Send(message,mbox)
» Send message to remote mailbox identified by mbox

— Receive(buffer,mbox)
» Wait until mbox has message, copy into buffer, and return
» If threads sleeping on this mbox, wake up one of them

4/30/24

Kubiatowicz CS162 © UCB Spring 2024 Lec 27.2

4/30/24

Recall: NFS Cache consistency

* NFS protocol: weak consistency
— Client polls server periodically to check for changes

» Polls server if data hasn’t been checked in last 3-30 seconds (exact timeout is tunable
parameter).

» Thus, when file is changed on one client, server is notified, but other clients use old
version of file until timeout.

cache ill ok?
No: (F1:V2)

Client

Client

— What if multiple clients write to same file?
» In NFS, can get either version (or parts of both)

» Completely arbitrary!

Kubiatowicz CS162 © UCB Spring 2024 Lec 27.3

Sequential Ordering Constraints
» What sort of cache coherence might we expect?
—i.e. what if one CPU changes file, and before it's done, another CPU reads file?
» Example: Start with file contents = “A”

Client 1: [Read:gets A J[Write B] [Read: parts of B or 4
Client 2: [Read: gefs Aor B[Write €]
Client 3: [Read: parts of B or 4

Time

* What would we actually want?
— Assume we want distributed system to behave exactly the same as if all
processes are running on single system

» If read finishes before write starts, get old copy
» If read starts after write finishes, get new copy
» Otherwise, get either new or old copy

— For NFS:
» If read starts more than 30 seconds after write, get new copy; otherwise, could get

partial update
4/30/24

Kubiatowicz CS162 © UCB Spring 2024 Lec 27.4

4/30/24

Andrew File System

* Andrew File System (AFS, late 80’s) —» DCE DFS (commercial product)

Callbacks: Server records who has copy of file
— On changes, server immediately tells all with old copy
— No polling bandwidth (continuous checking) needed

» Write through on close

— Changes not propagated to server until close()

— Session semantics: updates visible to other clients only after the file is

closed
» As a result, do not get partial writes: all or nothing!

» Although, for processes on local machine, updates visible immediately to other

programs who have file open
* In AFS, everyone who has file open sees old version
— Don’t get newer versions until reopen file

Kubiatowicz CS162 © UCB Spring 2024

Lec 27.5

Andrew File System (con'’t)

+ Data cached on local disk of client as well as memory
— On open with a cache miss (file not on local disk):
» Get file from server, set up callback with server
— On write followed by close:

» Send copy to server; tells all clients with copies to fetch new version from server on
next open (using callbacks)

« What if server crashes? Lose all callback state!

— Reconstruct callback information from client: go ask everyone “who has which
files cached?”

¢ AFS Pro: Relative to NFS, less server load:
— Disk as cache = more files can be cached locally
— Callbacks = server not involved if file is read-only

» For both AFS and NFS: central server is bottleneck!
— Performance: all writes—server, cache misses—server
— Availability: Server is single point of failure
— Cost: server machine’s high cost relative to workstation

4/30/24 Kubiatowicz CS162 © UCB Spring 2024 Lec 27.6

4/30/24

Quick Security Primer

Kubiatowicz CS162 © UCB Spring 2024

Lec27.7

Authentication in Distributed Systems
* What if identity must be established across network?

— Need way to prevent exposure of information while still proving identity to remote
system

— Many of the original UNIX tools sent passwords over the wire “in clear text”
» E.g.: telnet, ftp, yp (yellow pages, for distributed login)
» Result: Snooping programs widespread
* What do we need? Cannot rely on physical security!
— Encryption: Privacy, restrict receivers
— Authentication: Remote Authenticity, restrict senders

4/30/24 Kubiatowicz CS162 © UCB Spring 2024 Lec 27.8

Private Key Cryptography
Private Key (Symmetric) Encryption:
— Single key used for both encryption and decryption
Plaintext: Unencrypted Version of message
Ciphertext: Encrypted Version of message

l@ - Encryp Decrypf =

5 Insecure)

= T Transmission T £
spy ¢ (ciphertext) S CIA

=+ Key Key =

* Important properties
— Can’t derive plain text from ciphertext (decode) without access to key
— Can’t derive key from plain text and ciphertext
— As long as password stays secret, get both secrecy and authentication
* Symmetric Key Algorithms: DES, Triple-DES, AES

Key Distribution

* How do you get shared secret to both places?
— For instance: how do you send authenticated, secret mail to someone who you
have never met?
— Must negotiate key over private channel
» Exchange code book
» Key cards/memory stick/others
« Third Party: Authentication Server (like Kerberos)
— Notation:
» K,, is key for talking between x and y
» (...)K means encrypt message (...) with the key K
» Clients: A and B, Authentication server S
— A asks server for key:
» A—S: [Hi! I'd like a key for talking between A and B]
» Not encrypted. Others can find out if A and B are talking
— Server returns session key encrypted using B’s key
» S—A: Message [Use K, (This is Al Use K,)<] Ksa
» This allows A to know, “S said use this key”
— Whenever A wants to talk with B
» A—B: Ticket [This is Al Use K,]<s®
» Now, B knows that K, is sanctioned by S

4/30/24 Kubiatowicz CS162 © UCB Spring 2024 Lec 27.9 4/30/24 Kubiatowicz CS162 © UCB Spring 2024 Lec 27.10
Authentication Server Continued [Kerberos] Public Key Encryption
» Can we perform key distribution without an authentication server?
—Yes. Use a Public-Key Cryptosystem.
* Public Key Details
— Don’t have one key, have two: K, 0, Koivate
» Two keys are mathematically refated to one another
» Really hard to derive K4 from K. @nd vice versa
) — Forward encryption:
¢ Details » Encrypt: (cleartext)<euble= ciphertext,
— Both A and B use passwords (shared with key server) to decrypt return from key » Decrypt: (ciphertext,)<evete = cleartext
servers - Reverse encryption:
— Add in timestamps to limit how long tickets will be used to prevent attacker from » Encrypt: (cleartext)ervae = ciphertext,
replaying messages later » Decrypt: (ciphertext,)<pudlic = cleartext
— Also have to include encrypted checksums (hashed version of message) to - Nottéthgtd0|phenextf1 * mﬁherrt]exltz
prevent malicious user from inserting things into messages/changing messages P I'» Ka” t Ee”"e °r|‘e rom the other!
— Want to minimize # times A types in password ublic €y Examples.
. — RSA: Rivest, Shamir, and Adleman
» A—S (Give me temporary secret)
» SSA (Use K for next 8 hourS)Ksa » Kpublic of form (kpublic’ N)! Kprivate of form (kprivatev N)
temp-sa 107) » N =pq. Can break code if know p and q
» Can now use Kigmp.sa in place of K, in prototcol — ECC: Elliptic Curve Cryptography
» Lower overhead than RSA
4/30/24 Kubiatowicz CS162 © UCB Spring 2024 Lec 27.11 4/30/24 Kubiatowicz CS162 © UCB Spring 2024 Lec 27.12

Public Key Encryption Details

* ldea: K, can be made public, keep K . private

Insecure Channel Bob

Alice

» Gives message privacy (restricted receiver):
— Public keys (secure destination points) can be acquired by anyone/used by anyone
— Only person with private key can decrypt message

» What about authentication?
— Use combination of private and public key
— Alice—Bob: [(I'm Alice)Arrivate Rest of message]Bpublic
— Provides restricted sender and receiver

* But: how does Alice know that it was Bob who sent her B

? And vice versa...

Secure Hash Function

Hash DFCD3454BBEA788A

Fox = F::cﬁon | 7512696C24D97009
CA992D17

€ re 52ED879E70F71D92

runs across Hash =] 6GEB6957008E03CE4
the iro Function CA6945D3

+ Hash Function: Short summary of data (message)
— For instance, h,=H(M,) is the hash of message M,
» h, fixed length, despite size of message M,.
» Often, h, is called the “digest” of M.
+ Hash function H is considered secure if
— It is infeasible to find M, with h,=H(M,); ie. can’t easily find other
message with same digest as given message.
— It is infeasible to locate two messages, m, and m,, which “collide”, i.e. for
which H(m,) = H(m,)
— A small change in a message changes many bits of digest/can’t tell
anything about message given its hash

public
4/30/24 Kubiatowicz CS162 © UCB Spring 2024 Lec 27.13 4/30/24 Kubiatowicz CS162 © UCB Spring 2024 Lec 27.14
Use of Hash Functions Signatures/Certificate Authorities
+ Several Standard Hash Functions: + Can use X, for person X to define their identity
— MD5: 128-bit output - PresumaB?y they are the only ones who know X qe-
_ - hi _9ER- hi — Often, we think of X ;. @s a “principle” (user)
SHA-1: 160 bltgutput, SHA-256: 256-bit output) . SupposewewantXt%Jslqlgn message M? |
+ Can we use hashing to securely reduce load on server? — Use private key to encrypt the digest, i.e. H(M)Xerivate
—Yes. Use a series of insecure mirror servers (caches) — Send both M and its signature:
— First, ask server for digest of desired file Ngvslgﬁldo?:scsaar?%:ri[%’ma“g)l)\(/in\v/::]s signed by X
» Use secu.re channel with s'erver » S,imply decrypt the digest with X, o
— Then ask mirror server for file » Verify that result matches H(M)
» Can be insecure channel * Now: How do we know that the version of X, that we have is really from X??7?
» Check digest of result and catch faulty or malicious mirrors — Answer: Certificate Authority
» Examples: Verisign, Entrust, Etc.
— X goes to organization, presents identifying papers
» Organization signs X’s key: [X;upiic: H(X,yp1ic)“AP™]
» Called a “Certificate”
— Before we use X, ask X for certificate verifying key
» Check that signature over X, ;. produced b,y trusted authority
« How do we get keys of certificAté authority~
— Compiled into your browser, for instance!
Here is h, = H(X)
4/30/24 Cllent Kubiatowicz CS162 © UCB Spring 2024 Ser‘ver' Lec 27.15 4/30/24 Kubiatowicz CS162 © UCB Spring 2024 Lec 27.16

« SSL Web Protocol

Security through SSL
— n
— Port 443: secure http
— Use public-key encryption

I (S
\W/\ n. cert,
K:
for key-distribution —— _(pms) |

» Server has a certificate signed by certificate authority
— Contains server info (organization, IP address, etc)
— Also contains server’s public key and expiration date
» Establishment of Shared, 48-byte “master secret”
— Client sends 28-byte random value n, to server
— Server returns its own 28-byte random value n, plus its certificate cert,
— Client verifies certificate by checking with public key of certificate authority
compiled into browser
» Also check expiration date
— Client picks 46-byte “premaster” secret (pms), encrypts it with public key of
server, and sends to server
— Now, both server and client have n, ng, and pms
» Each can compute 48-byte master secret using one-way and collision-resistant
function on three values
» Random “nonces” n, and ny make sure master secret fresh

4/30/24 Kubiatowicz CS162 © UCB Spring 2024 Lec 27.17

Authorization: Who Can Do What?

* How do we decide who is authorized object

to do actions in the system? s GRS = [A e

* Access Control Matrix: all permissions in the system

D, read read
— Resources across top

» Files, Devices, etc... D, print

— Domains in columns
» A domain might be a user or a group of permissions b, read | execute

» E.g. above: User D, can read F, or execute F; e =
— In practice, table would be huge and sparse! b write wiite

» Two approaches to implementation
— Access Control Lists: store permissions with each object
» Still might be lots of users!
» UNIX limits each file to: r,w,x for owner, group, world
» More recent systems allow definition of groups of users and permissions for each group
— Capability List: each process tracks objects has permission to touch
» Popular in the past, idea out of favor today
» Consider page table: Each process has list of pages it has access to, not each page has
list of processes ...

4/30/24 Kubiatowicz CS162 © UCB Spring 2024 Lec 27.18

How fine-grained should access control be?

+ Example of the problem:
— Suppose you buy a copy of a new game from “Joe’s Game World” and then run it.
— It’'s running with your userid
» It removes all the files you own, including the project due the next day...
* How can you prevent this?
— Have to run the program under some userid.
» Could create a second games userid for the user, which has no write privileges.
» Like the “nobody” userid in UNIX — can’t do much
— But what if the game needs to write out a file recording scores?

» Wou'lg need to give write privileges to one particular file (or directory) to your games
userid.

— But what about non-game programs you want to use, such as Quicken?

» Now you need to create your own private quicken userid, if you want to make sure tha
the copy of Quicken you bought can’t corrupt non-quicken-related files

— But — how to get this right??? Pretty complex...

4/30/24 Kubiatowicz CS162 © UCB Spring 2024 Lec 27.19

Authorization Continued

 Principle of least privilege: programs, users, and systems should get only
enough privileges to perform their tasks
— Very hard to do in practice
» How do you figure out what the minimum set of privileges is needed to run your
programs?
— People often run at higher privilege then necessary
» Such as the “administrator” privilege under windows
* One solution: Signed Software
— Only use software from sources that you trust, thereby dealing with the problem by
means of authentication
— Fine for big, established firms such as Microsoft, since they can make their signing
keys well known and people trust them
» Actually, not always fine: recently, one of Microsoft’s signing keys was compromised,
leading to malicious software that looked valid
— What about new startups?
» Who “validates” them?
» How easy is it to fool them?

4/30/24 Kubiatowicz CS162 © UCB Spring 2024 Lec 27.20

How to perform Authorization for Distributed Systems?

Different
Authorization
Domains

* Issues: Are all user names in world unique?
— No! They only have small number of characters
» kubi@mit.edu — kubitron@lcs.mit.edu — kubitron@cs.berkeley.edu
» However, someone thought their friend was kubi@mit.edu and | got very private
email intended for someone else...
— Need something better, more unique to identify person
» Suppose want to connect with any server at any time?
— Need an account on every machine! (possibly with different user name for
each account)
— OR: Need to use something more universal as identity
» Public Keys! (Called “Principles”)
» People are their public keys

4/30/24 Kubiatowicz CS162 © UCB Spring 2024 Lec 27.21

Distributed Access Control

Access Control List (ACL) for X:

File X

Owner Key:
0x22347EF..

ACL verifier
>(Hash, Timestamp)R: Key: 0x546DFEFA34..
Signature (ownerY RW:Key: 0x467D34EF83...
RX: Group KeﬁOxAZD3498672...

rver 1: Domain 2

Client 1
Domain 1__

Key: 0xA786EF889A..

Hash, Timestamp, .
ey: 0x6647DBCIAC..

Rignature (group)

Server 2: Domain 3

+ Distributed Access Control List (ACL)
— Contains list of attributes (Read, Write, Execute, etc) with attached identities (Here,
we show public keys)

» ACLs signed by owner of file, only changeable by owner
» Group lists signed by group key

— ACLs can be on different servers than data
» Signatures allow us to validate them
» ACLs could even be stored separately from verifiers

4/30/24 Kubiatowicz CS162 © UCB Spring 2024 Lec 27.22

Trusted Execution Environment

+ Simple Hardware with single OS
— What we have been talking about all term!
+ Virtual machines
— Multiplex different OSes on single machine
— Many techniques, including dynamic compilation

and direct hardware support (domain “-1”) TE

— Need way to fool OS code into thinking it has
complete control of machine!

» What if you don’t trust the OS or hypervisor not Linux | | WinXP Trusted
to leak your information? Code

— Worried about compromised OS

— Don't trust service provider (i.e. Google, Amazon)

Virtual Machine Monitor
[Hypervisor]

 Trusted Execution Environment (TEE)

— Hardware support to prevent OS or external

actors from observing execution

— Client can get hardware proof that trusted code is HARDWARE

actual code we expect! [Attestation]
4/30/24 Kubiatowicz CS162 © UCB Spring 2024 Lec 27.23

Chord and Distributed Storage

4/30/24 Kubiatowicz CS162 © UCB Spring 2024 Lec 27.24

What about: Sharing Data, rather than Files ?

» Key:Value stores are used everywhere
+ Native in many programming languages
— Associative Arrays in Perl
— Dictionaries in Python
— Maps in Go

* What about a collaborative key-value store rather than message passing
or file sharing?

« Can we make it scalable and reliable?

4/30/24 Kubiatowicz CS162 © UCB Spring 2024 Lec 27.25

4/30/24

Key Value Storage

Simple interface
o put(key, value); // Insert/write "value" associated with key

o get(key); // Retrieve/read value associated with key

Kubiatowicz CS162 © UCB Spring 2024 Lec 27.26

Why Key Value Storage?

+ Easy to Scale
— Handle huge volumes of data (e.g., petabytes)
— Uniform items: distribute easily and roughly equally across many machines

+ Simple consistency properties

» Used as a simpler but more scalable "database"
— Or as a building block for a more capable DB

4/30/24 Kubiatowicz CS162 © UCB Spring 2024 Lec 27.27

4/30/24

Key Values: Examples

amazon
* Facebook, Twitter:

— Key: UserID u

— Value: user profile (e.g., posting history, photos, friends, ...)

> @

* Amazon:
— Key: customerlD

— Value: customer profile (e.g sredit card, ..)

* iCloud/iTunes:
— Key: Movie/song name
— Value: Movie, Song

Kubiatowicz CS162 © UCB Spring 2024 Lec 27.28

4/30/24

Key-value storage systems in real life

Amazon

— DynamoDB: internal key value store used to power Amazon.com
(shopping cart)

— Simple Storage System (S3)
BigTable/HBase/Hypertable: distributed, scalable data storage

Cassandra: “distributed data management system” (developed by
Facebook)

Memcached: in-memory key-value store for small chunks of arbitrary
data (strings, objects)

eDonkey/eMule: peer-to-peer sharing system

Kubiatowicz CS162 © UCB Spring 2024

Lec 27.29

4/30/24

Key Value Store

» Also called Distributed Hash Tables (DHT)

* Main idea: simplify storage interface (i.e. put/get), then partition set of
key-values across many machines

Kubiatowicz CS162 © UCB Spring 2024 Lec 27.30

4/30/24

Challenges

R

— Need to scale to thousands of machines
— Need to allow easy addition of new machines

Fault Tolerance: handle machine failures without losing data and
without degradation in performance

Consistency: maintain data consistency in face of node failures and
message losses

Heterogeneity (if deployed as peer-to-peer systems):
— Latency: 1ms to 1000ms
— Bandwidth: 32Kb/s to 100Mb/s

Kubiatowicz CS162 © UCB Spring 2024

Lec 27.31

4/30/24

Important Questions

* put(key, value):
— where do you store a new (key, value) tuple?
« get(key):
— where is the value associated with a given “key” stored?

* And, do the above while providing
— Scalability
— Fault Tolerance
— Consistency

Kubiatowicz CS162 © UCB Spring 2024 Lec 27.32

How to solve the “where?”

Recursive Directory Architecture (put)

* Have a node maintain the mapping between keys and the machines
(nodes) that store the values associated with the keys

Master/Directory

» Hashing to map key space = location
— But what if you don’t know all the nodes that are participating?
— Perhaps they come and go ...
— What if some keys are really popular?
* Lookup PUL(K14, V14) ~-mmmmmmeeee . K5 TND
— Hmm, won't this be a bottleneck and single point of failure? V\E K14 N3
O [KIoENSD
¥ o/
§ ,’I
g ¥
K5 1V5 K141Vi4 KT105[V105]
N, N, N3 Nso
4/30/24 Kubiatowicz CS162 © UCB Spring 2024 Lec 27.33 4/30/24 Kubiatowicz CS162 © UCB Spring 2024 Lec 27.34
Recursive Directory Architecture (get) Iterative Directory Architecture (put)
+ Have a node maintain the mapping between keys and the machines * Having the master relay the requests - recursive query
(nodes) that store the values associated with the keys * Another method: iterative query (this slide)
— Return node to requester and let requester contact node
Master/Directory Master/Directory
get(K14) --------e > K5 | N2 put(K14, V14) ---ooeomoomeooo > K5 | N2
VAL oo E K14 N3 N3 #-mmmme E K14 N3
A K105/N50 2, K105[N50
§ Nyt I V7
§/3 .
" N
K5 V5 K141V14 KT105[V105] K5 1V5 K141V14 KT105[V105]
N; N, N3 Nso N, N, N3 Nso
4/30/24 Kubiatowicz CS162 © UCB Spring 2024 Lec 27.35 4/30/24 Kubiatowicz CS162 © UCB Spring 2024 Lec 27.36

Iterative Directory Architecture (get)

* Having the master relay the requests - recursive query
+ Another method: iterative query (this slide)
— Return node to requester and let requester contact node

Iterative vs. Recursive Query

Master/Directory

get(K14)======---- >
RT2 N3 N3®---mmmoe oo ‘

Master/Directory

Vi4+

Men-
1

]]]
Master/Directory e e 33 [| : : ez :
get(K14) -=------mmm > | |
N3 ¢ K5 N2 i i i ‘ "
Vid K14 | N3 N1 N2 N3 N50 N1 N2 N3 N50
. e ey K105[N50 Recursive Iterative
=%
N + Faster, as directory server is typically close + More scalable, clients do more work
. to storage nodes - Harder to enforce consistency
+ Easier for consistency: directory can
K5 [V5 K14 V14 KT05[VT05 enforce an order for all puts and gets
- Directory is a performance bottleneck
N, N, N3 Nso
4/30/24 Kubiatowicz CS162 © UCB Spring 2024 Lec 27.37 4/30/24 Kubiatowicz CS162 © UCB Spring 2024 Lec 27.38
Fault Tolerance Scalability
* Replicate value on several nodes « Storage: use more nodes
+ Usually, place replicas on different racks in a datacenter to guard against
rack failures
* Number of requests:
Master/Directory — Can serve requests from all nodes on which a value is stored in parallel
o — g K5 | N2 — Master can replicate a popular value on more nodes
N1, N3 oo K14 [N1.N3
*p"’(/r K105[N50
put(K14, \,\1‘;()7“’:\'/{ 90 + Master/directory scalability:
T T — Replicate it
— Partition it, so different keys are served by different masters/directories
K14 [V14 K5 | V5 K14 V14 KT05|V105 » How do you partition?
N, N, N3 Nso
Lec 27.39 4/30/24 Kubiatowicz CS162 © UCB Spring 2024 Lec 27.40

4/30/24

Kubiatowicz CS162 © UCB Spring 2024

Scaling Up Directory

* Challenge:

— Directory contains a number of entries equal to number of (key, value)
tuples in the system

— Can be tens or hundreds of billions of entries in the system!
» Solution: Consistent Hashing

— Provides mechanism to divide [key,value] pairs amongst a (potentially
large!) set of machines (nodes) on network

* Associate to each node a unique id in an uni-dimensional space 0..2™-1
= Wraps around: Call this “the ring!”

— Partition this space across n machines
—Assume keys are in same uni-dimensional space

— Each [Key, Value] is stored at the node with the smallest ID larger than
Key

Key to Node Mapping Example

* Paritioning example with
m =6 > [D space: 0..63
— Node 8 maps keys [5,8]
— Node 15 maps keys [9,15]
— Node 20 maps keys [16, 20]

— Node 4 maps keys [59, 4]

» For this example, the mapﬁi]ng

[14, \/14] maps to node wi “The Ring”
D=15

15 @
— Node with smallest ID larger than
14 (the key)

* In practice, m=256 or more!

— Uses cryptographically secure
hash such as SHA-256 to
generate the node IDs

N 32

4/30/24 Kubiatowicz CS162 © UCB Spring 2024 Lec 27.41 4/30/24 Kubiatowicz CS162 © UCB Spring 2024 Lec 27.42
Chord: Distributed Lookup (Directory) Service Chord’s Lookup Mechanism: Routing!
* “Chord” is a Distributed Lookup Service Each ©oe : . -
. . n maintain Inter | |
— Designed at MIT and here at Berkeley (lon Stoica among others) Sl?gcesggre aintains pointer to its . ﬁ lookup(37)
— Simplest and cleanest algorithm for distributed storage @ _
» Serves as comparison point for other optims Route packet (Key, Value) to the i
» Import aspect of the design space: node responsible for ID using
— Decouple correctness from efficiency successor pointers
— Combined Directory and Storage - E.g., node=4 lookups for node
* Properties responsible for Key=37 node=44 is @
— Correctness: _ . responsible T
» Each node needs to know about neighbors on ring (one predecessor and one Worst-case (correct) lookup is O(n) for Key=37]
successor) — But much better normal lookup time is
» Connected rings will perform their task correctly O(log n) .
— Performance:] — Dynamic performance optimization ﬁ @
» Each node needs to know about O(log(M)), where M is the total number of nodes (finger table mechanism) : !
» Guarantees that a tuple is found in O(log(M)) steps » More later!ll
» Many other Structured, Peer-to-Peer lookup services:
— CAN, Tapestry, Pastry, Bamboo, Kademlia, ... -
— Several designed here at Berkeley! @ ﬁ
4/30/24 Kubiatowicz CS162 © UCB Spring 2024

Lec 27.43

4/30/24

Kubiatowicz CS162 © UCB Spring 2024 Lec 27.44

But what does this really mean??

--------------- ’
(g =< /
Client ﬁ S~
ID: 4 “sao /
S : . /'l
/ - NS
/ . D20 NV ’
A
AN — SENEES AN h
. / @ ” =\l /N H
Client - ID:32 { |p.35 A @ \
‘ | \
. - o |D:3‘ A
RN d L ~
\ Y !
“«._ Client s/ "
~ e Client

* Node names intentionally scrambled WRT geography!

Stabilization Procedure

» Periodic operation p

erformed by each node n to maintain its successor

when new nodes join the system
— The primary Correctness constraint

n.stabilize()

succ = x;
succ.notify(

n.notify(n’)

X = succ.pred;
if (x ¢ (n, succ))

if (pred = nil or n’ ¢ (pred, n))

Il if x better successor, update
n); I n tells successor about itself

— Node IDs generated by secure hashes over metadata pred =n’; Il if n’ is better predecessor, update
» Including things like the IP address
— This geographic scrambling spreads load and avoids hotspots
+ Clients access distributed storage through any member of the network
4/30/24 Kubiatowicz CS162 © UCB Spring 2024 Lec 27.45 4/30/24 Kubiatowicz CS162 © UCB Spring 2024 Lec 27.46
Joining Operation Joining Operation
*+ Node with id=50 succ=4 ﬁ + n=50 sends join(50) succ=4 ﬁ
joins the ring pred=44 ﬁ to node 15 pred=44 {i
* Node 50 must know — Join propagated 58
at least one node around ring!
already in system * n=44 returns node 58
— Assume known * n=50 updates its join(50)
node is 15 succ=nil = successor to 58 succ=58 [E
pred=nil pred=nil
50
succ=58 [E succ=58 [E
pred=35 Y @ pred=35 Y @
Lec 27.47 4/30/24 Kubiatowicz CS162 © UCB Spring 2024 Lec 27.48

4/30/24 Kubiatowicz CS162 © UCB Spring 2024

Joining Operation

* n=50 executes
stabilize()

* n’s successor (58)
returns x = 44

el g .

v
‘\,'y
succ=58 5 —
pred=nil 50 15 E
succ=58 [- =
pred=35 YL ﬁ

n.stabilize()

=P X =succ.pred;

if (x (n, succ))
succ = X;

succ.notify(n);

4/30/24

Kubiatowicz CS162 © UCB Spring 2024 Lec 27.49

Joining Operation

* n=50 executes

succ=4 __ ﬁ

stabilize() pred=44 @
—x=44
— succ = 58
succ=58 15 _
pred=nil 50 15 E
succ=58 [& -
pred=35 ¥l @
n.stabilize()

X = succ.pred;

= if (x g(n, succ))
succ = x;

succ.notify(n);

32

¢ &

4/30/24

Kubiatowicz CS162 © UCB Spring 2024 Lec 27.50

Joining Operation

* n=50 executes

succ=4 __ @

stabilize() pred=44 @
—x= ~
X =44 @
— succ = 58 &
* n=50 sends to it's Y
successor (58)
notify(50) succ=58 = T
pred=nil 50 15 %
succ=58 [C i
pred=35 Yl ﬁ
n.stabilize()

X = succ.pred;

if (x (n, succ))
succ = x;

=p succ.notify(n);

¢ §

4/30/24

Kubiatowicz CS162 © UCB Spring 2024 Lec 27.51

Joining Operation

* n=58 executes

succ=4 __ ﬁ

notify(50) pred=44_f§
— pred = 44 S
NS
- n' =50 RS
'
$
succ=58 ™ -
pred=nil 50 15 %
succ=58 [C
pred=35 Wi @
n.notify(n’)

=p| if (pred =nilorn’ e (pred, n)

pred =n’

O

4/30/24

Kubiatowicz CS162 © UCB Spring 2024 Lec 27.52

Joining Operation

* n=58 executes
notify(50)
— pred = 44
- n' =50
+ set pred =50

redcio [.
S

£
Q
$
succ=58 15 =
pred=nil 50 15 E
succ=58 [£ =
pred=35 YL ﬁ

n.notify(n’)

- pred =n’

if (ored = nil orn’ ¢ (pred, n)

4/30/24

Kubiatowicz CS162 © UCB Spring 2024 Lec 27.53

4/30/24

Joining Operation

* n=44 executes
stabilize()

* n’s successor (58)
returns x=50

proas0 [f]

x=50
succ=58 15 =
pred=nil 50 15 E
succ=58 [& -
pred=35 Wl @

n.stabilize()

=P X =succ.pred;

if (x (n, succ))
succ = X;

succ.notify(n);

32

¢ &

Kubiatowicz CS162 © UCB Spring 2024 Lec 27.54

Joining Operation

* n=44 executes

succ=4 @

stabilize() pred=50 @
— x=50
— succ=58
succ=58 ™ -
pred=nil 50 15 %
succ=58 [C :
pred=35 WL ﬁ
n.stabilize()

X = succ.pred;

=p if (x g(n, succ))
succ = x;

succ.notify(n);

¢ §

4/30/24

Kubiatowicz CS162 © UCB Spring 2024 Lec 27.55

4/30/24

Joining Operation

* n=44 executes

succ=4 ﬁ

stabilize() pred=50 @
— x=50
— succ=58
* n=44 sets
succ=50
succ=58 [fix -
pred=nil 50 15 %
succ=58 [
pred=35 Wi @
n.stabilize()

X = succ.pred;
if (x (n, succ))
=P succ = Xx;
succ.notify(n);

O

Kubiatowicz CS162 © UCB Spring 2024 Lec 27.56

Joining Operation

* n=44 executes
stabilize()

* n=44 sends notify(44)

to its successor

proas0 [f]

succ=58 [fiy -
pred=nil 50 15 E
notify(44)\
succ=50 [& -
pred=35 YL ﬁ

n.stabilize()
X = succ.pred;
if (x (n, succ))
succ = x;
=P succ.notify(n);

4/30/24

Kubiatowicz CS162 © UCB Spring 2024 Lec 27.57

4/30/24

Joining Operation

succ=4 __ ﬁ

* n=50 executes

notify(44) pred=50 @
— pred=nil
succ=58 E -
pred=nil 50 15 E
notify(44)\
succ=50 [& -
pred=35 Wl @
n.notify(n’)
=p if (pred = nil orn’ (pres, n))
pred =n’ 32

E

Kubiatowicz CS162 © UCB Spring 2024 Lec 27.58

Joining Operation

* n=50 executes
notify(44)

— pred=nil
* n=50 sets pred=44

Srods0 []

succ=58 |jii

pred=ail 50 15 @
notify(44)\
succ=50 [© :
pred=35 WL ﬁ

n.notify(n’)

- pred =n’

if (ored = nilorn’ € (pred, n)

¢ §

4/30/24

Kubiatowicz CS162 © UCB Spring 2024 Lec 27.59

4/30/24

Joining Operation (cont’d)

* This completes the joining
operation! pred=50 ﬁ

* The same stabilizing process
will deal with failed nodes by
reconnecting the ring

* What if 2 or more nodes in a
row fail?

— Keep track of
more neighbors!

— Called the “leaf set”

Kubiatowicz CS162 © UCB Spring 2024 Lec 27.60

Achieving Efficiency: finger tables

Finger Table at 80 0 Say m=7
i fifi]
0 96
1 96
2 96
3 96
4 96
5 112
6 20

80 + 26) mod 27 =16

ith entry at peer with id # is first peer with id >= 7+ 2'(mod2™) ‘

Achieving Fault Tolerance for Lookup Service

* To improve robustness each node maintains the k (> 1) immediate
successors instead of only one successor

— Again — called the “leaf set”

—In the pred() reply message, node A can send its k-1 successors to its
predecessor B

— Upon receiving pred() message, B can update its successor list by
concatenating the successor list received from A with its own list

* If k = log(M), lookup operation works with high probability even if half
of nodes fail, where M is number of nodes in the system

4/30/24 Kubiatowicz CS162 © UCB Spring 2024 Lec 27.61 4/30/24 Kubiatowicz CS162 © UCB Spring 2024 Lec 27.62
Storage Fault Tolerance Storage Fault Tolerance
* Replicate tuples on P 3 ﬁ * If node 15 fails, no T 3 @
successor nodes reconfiguration needed
« Example: replicate (K14 — Still have two replicas
V14) on nodes 20 and 32 X — All lookups will be correctly
i routed after stabilization
i - + Will need to add a new
: @ replica on node 35
v) *,'
35 35 32
4/30/24 Kubiatowicz CS162 © UCB Spring 2024 Lec 27.63 4/30/24 Kubiatowicz CS162 © UCB Spring 2024 Lec 27.64

— Avoids single-points of failure through randomness
4/30/24

— More nodes, more replication, more geographic spread

* Replicating in Adjacent nodes of virtual space = Geographic
Separation in physical space

Replication in Physical Space Consistency
——e Sl T ::._’@ « * Need to make sure that a value is replicated correctly
; “ﬁ ------------------- " 58 Client .
Client D 3 i S . 4 PO » .
] ("
D18 Kad R
=\ ID: 44
S~ Client

How do you know a value has been replicated on every node?
— Wait for acknowledgements from every node

What happens if a node fails during replication?
— Pick another node and try again

What happens if a node is slow?

— Slow down the entire put()? Pick another node?
In general, with multiple replicas

— Slow puts and fast gets
Kubiatowicz CS162 © UCB Spring 2024 Lec 27.65 4/30/24 Kubiatowicz CS162 © UCB Spring 2024 Lec 27.66
Consistency (cont'd) Consistency (cont’d)
« If concurrent updates (i.e., puts to same key) may need to make sure that « If concurrent updates (i.e., puts to same key) may need to make sure that
updates happen in the same order updates happen in the same order
+ put(K14, V14’) and put(K14, V14”)
Master/Directory Master/Directory reach N1 & N3 in reverse order!
put(K14, V14’) «._ put(K14, V14') «._
K5 [N2 K5 [N2
put(K14, V14”) ----» K14 NT,N3 put(K14, V14”) ----» K14 [NT,N3
KT05[N50 KT05[N50
N\ L \ O, N s O,\ T
W A W@ AR R
et L *’\b‘f/'\":\bﬁ’”‘ Fr S
& L4 S AR
o . E R 5 E\ »
K14 V14 K5 V5 K14 V14 K105]V105 14 V14 K5 V5 K14 V14 KT105]V105
4/30/24 Ny Kut[\ila?owicz cs162 Q%CB Spring 2024 Nso Lec 27.67 4/30/24 Ny Kut!\ila?owicz cs162 Q%CB Spring 2024 Nso Lec 27.68

4/30/24

Consistency (cont’d)

« If concurrent updates (i.e., puts to same key) may need to make sure that
updates happen in the same order

* put(K14, V14’) and put(K14, V14”)
reach N1 & N3 in reverse order!

. K5 N2 » What does get(K14) return?

put(K14, V14”) ‘E K14 NT.N3 + Undefined!

KT05INEY

Master/Directory

put(K14, V14') -

K14 V14 K5 [V5 K14 V14

N N
Kubidowicz CS162 © UCB Spring 2024 50

K105]V105|

Lec 27.69

4/30/24

Large Variety of Consistency Models

« Atomic consistency (linearizability): reads/writes (gets/puts) to replicas
appear as if there was a single underlying replica (single system image)
— Think “one updated at a time”
— Transactions

« Eventual consistency: given enough time all updates will propagate
through the system

— One of the weakest form of consistency; used by many systems in practice
— Must eventually converge on single value/key (coherence)

* And many others: causal consistency, sequential consistency, strong
consistency, ...

Kubiatowicz CS162 © UCB Spring 2024 Lec 27.70

4/30/24

Quorum Consensus

* Improve put() and get() operation performance
— In the presence of replication!
» Define a replica set of size N
— put() waits for acknowledgements from at least W replicas

» Different updates need to be differentiated by something monotonically increasing
like a timestamp

» Allows us to replace old values with updated ones
— get() waits for responses from at least R replicas
-W+R>N
* Why does it work?
— There is at least one node that contains the update
* Why might you use W+R > N+1?

Kubiatowicz CS162 © UCB Spring 2024 Lec 27.71

4/30/24

Quorum Consensus Example
+ N=3, W=2, R=2
* Replica set for K14: {N1, N2, N4}
* Assume put() on N3 fails

PR NN
S ’ 3 AR
XV ' KN4
- ¥ ARG
o T) Qf >
X X! AR
% 3! VNG
S 2 NS
s i v \
X X 4
K14 V14 K14 [V14
N, N, N N,

Kubiatowicz CS162 © UCB Spring 2024 Lec 27.72

Quorum Consensus Example

* Now, issuing get() to any two nodes out of three will return the answer

DynamoDB Example: Service Level Agreements (SLA)

* Dynamo is Amazon’s storage system
using “Chord” ideas

+ Application can deliver its functionality in
a bounded time:

Client Requests

-
I g O ceem

Components

— Every dependency in the platform needs
" Pt to deliver its functionality with even tighter [FemestRoting]
& 1 pounds. |y Ry
S X2 » Example: service guaranteeing that it will | B
7 . PR : thi Service:
- = provide a response within 300ms for s
) 99.9% of its requests for a peak client Eﬁ@ EF)/ \Effgj\ﬁf@
load of 500 requests per second [T *j‘ : =
= e + Contrast to services which focus on /gju%) ‘xg‘j@@&\f\} *
E E E E mean response time Wgg/ #Jgjg/
N, N, [\ N, Service-oriented architecture of
Amazon’s platform
4/30/24 Kubiatowicz CS162 © UCB Spring 2024 Lec 27.73 4/30/24 Kubiatowicz CS162 © UCB Spring 2024 Lec 27.74
rr}
o,
Real-Time
Components
. g T . SwarmLet and Summariz
Storage as First Class Citizen: ('The Applicaton’)
l I I * An Application is a Connected Graph of Services
Globa DClTC(Plane (GDP) ~ Locality and QoS aware!
— Use local resources to limit external observability/interference
+ Distributed storage everywhere
— Each arrow represents imbedded storage
— Transient or Long term
+ Computation on the edge of the network
— Perhaps Secure Enclaves (SES) for trusted computation...?
4/30/24

Kubiatowicz CS162 © UCB Spring 2024 Lec 27.75

— Rapid launching of computation to close resources

4/30/24 Kubiatowicz CS162 © UCB Spring 2024

Lec 27.76

are ouse?lg
()
; _TEEEE|

Smart Manufacturing
Robotics on the Edge
Data Analytics
Machine Learning

4/30/24 2024 Lec 27.77

Why are Data Breaches so Frequent?
Really Targe TCB

i Really Large TCB
________________ it Mtk s

 State of the art: AdHoc boundary construction!
— Protection mechanisms are all “roll-your-own” and different for each application
— Use of encrypted channels to “tunnel” across untrusted domains

» Data is protected at the Border rather than Inherently
— Large Trusted Computing Base (TCB): huge amount of code must be correct to protect data
— Make it through the border (firewall, OS, VM, container, etc...) data compromised!

* What about data integrity and provenance?

— Any bits inserted into “secure” environment get trusted as authentic =
manufacturing faults or human injury or exposure of sensitive information

4/30/24 Kubiatowicz CS162 © UCB Spring 2024 Lec 27.78

On the Importance of Data Integrity

* Machine-to-Machine (M2M)
communication has reached a
dangerous tipping point

— Cyber Physical Systems use models
and behaviors that from elsewhere

— Firmware, safety protocols, navigation
systems, recommendations, ...

— loT (whatever it is) is everywhere

*In Jully (2015), a team of researchers + Do you know where your data
took fotal control of a Jeep SUV came from? PROVENANCE

remotely _ « Do you know that it is ordered
* They exploited a firmware update properly? INTEGRITY

vulnerability and hijacked the vehicle . ;
over the Sgrint ceIIJuIar network The rise of Fake Data!

* They could make it speed up, slow
down and even veer off the road

— Much worse than Fake News...

— Corrupt the data, make the system
behave very badly

4/30/24 Kubiatowicz CS162 © UCB Spring 2024 Lec 27.79

The Data-Centric Vision:
Cryptographically Hardened Data Containers

* Inspiration: Shipping Containers
— Invented in 1956. Changed everything!

— Ships, trains, trucks, cranes handle
standardized format containers

— Each container has a unique ID
— Can ship (and store) anything
» Can we use this idea to help?

Fiber

—
«Hole m
Hash Ptr =

™ Metadata Container Signature

» DataCapsule (DC):

— Standardized metadata wrapped around
opaque data transactions

— Uniquely named and globally findable

— Every transaction explicitly sequenced in a
hash-chain history

— Provenance enforced through signatures
* Underlying infrastructure assists and
improves performance
— Anyone can verify validity, membership, and
sequencing of transactions (like blockchain)

4/30/24 Kubiatowicz CS162 © UCB Spring 2024 Lec 27.80

4/30/24

But — what is a DataCapsule Really?

A cohesive bundle of data representing a complete data object:
— A Key-Value store or afile in a filesystem
— Any storage model that can be based on a secure log

A DataCapsule

is the ground truth of the state of data

— Everything else is for optimization or durability

A DataCapsule

has a single owner which is a cryptographic credential

(public/private key pair) that restricts who can write the DataCapsule
— Writes to the data capsule consist of records signed with the owner key or by key

authorized by

owner

— Records can represent anything, but must be linked to previous records to enforce

order

— Records can optionally be encrypted for privacy.

Reads and writes to a DataCapsule are virtual and over the network
— Location-independent, Serverless storage
— DataCapsules addressed by name, not location (or IP address)

— DataCapsule contents signed by owner and enc

by ¢ _rg/gted by owner-chosen keys
Kubiafowicz CS162 © UCB Spring 2024 Lec 27.81

So: DataCapsule is really a “Blockchain in a Box”

Record 4
Hash
Pointer

Record 3 |4 Record 4

4/30/24 Kubiatowicz CS162 © UCB Spring 2024 Lec 27.82

4/30/24

DataCapsules provide proof of membership on Reads

Record 1
Hash
Pointer

Block
Of Data
Record 1

Pointer

Record 3

Record 2
Hash
Pointer

Block 3 proof of membership:
0,,0,{ Block 4 hash, Record 2 Name Hash,
¢Z'e < Block 5 hash, Signature }

i

Kubiatowicz CS162 © UCB Spring 2024 Lec 27.83

How far can we stretch the shipping container analogy?

* Physical Shipping Containers
— Shipped over standard transport platforms: planes, trains, trucks, ships
— Standardized size = fit on standard transport platforms
— Standardized labels = tracking, inventory, routing from one platform to next

— Contents = largely unconstrained except for routing constraints (safety, international
restrictions, etc...)

» DataCapsules

— Shipped and queried over standard transport platforms: global data plane (GDP)
enabled switches with embedded DataCapsule servers and data-centric routing

— No standardized (maximum) size = can go anywhere it fits
» Instead: standardized metadata = compatible with any GDP infrastructure

— Standardized labels = standard naming of DataCapsules allows for routing of queries
from one platform to the next, movement and tracking of actual DataCapsules

— Contents = largely unstrained, must adhere to structure requirements (hash-chain
strl;cture, signatures) and routing constraints (data safety, international restrictions,
etc

4/30/24 Kubiatowicz CS162 © UCB Spring 2024 Lec 27.84

Why does this help?

The “Networking” effect (Pun Intended!)

— Standardization = Infrastructure proliferation that benefits everyone

— Federation = Enable a market of service providers
» Data becomes a first-class entity in the network!
— Asserts its own requirements for security, privacy, which are enforced via cryptography
— Independent of physical location — policies can target durability, QoS, availability, etc
— No application silos — data producers own and chose how to share their information
— Network is informed about the information that it is carrying and where it may go

First (Necessary) Step:
Network Cannot Enforce what is not Specified!

Related information bundled and kept together as it migrates
— Provenance and data ordering part of all information usage

— Information labeled with meta-data about (1) Where it is allowed to be within the network,
and (2) Who is allowed to view and interact with it, (3) Who is allowed to modify it.

4/30/24

A Platform Approach: the Utility-Provider Model
[Ships, Trains, Trucks, and Cranes]

App Platform Users:
Apps/Services

Global Data Plane:
Routing, Multicast,
Trust Domains, Accounting

Utility Providers:
Heterogeneous
Infrastructure

Storage, Transport, QoS

Kubiatowicz CS162 © UCB Spring 2024 Lec 27.85 4/30/24 Kubiatowicz CS162 © UCB Spring 2024 Lec 27.86
Retactoring ot Applications around
A Physical View of the GDP Security, Integrity, and Provenance
i * Goal: A thin Standardized entity that can be easil
Cloud data center Municipal data center adopted and have mmediate ir¥1pact y
Name Resolver . R
— Can be embedded in edge environments
— Can be exploited in the cloud Homo Contral, SmartOffo | -z L ication

DataCapsule

Server
Dristributed \ -
Name Resolver \ g
N =
GDP switch ~_. Client
m 4
~& ~| | Transit(Provider)
2 Networks
Home DataCapsule Smart Factory
4/30/24 Kubiatowicz CS162 © UCB Spring 2024 Lec 27.87

4/30/24

— Natural adjunct to Secure Enclaves for computation
+ “Eye-Of-The-Needle” proposition:

— Thin enough that it will be adopted and enhanced by
the most people

— Powerful enough that application writers can do
whatever they need to do

» DataCapsules = bottom-half of a blockchain?
— Or a GIT-style version history
— Simplest mode: a secure log of information
— Universal unique name = permanent reference

» Applications writers think in terms of traditional
storage access patterns:
— File Systems, Data Bases, Key-Value stores
— Called Common Access APIs (CAAPIs)
— DataCapsules are always the Ground Truth

File System, Stream,
SQL, Key-value,...

Global
Data Plane

TCP/IP, UDP/IP,
Others (non-IP), ..

Common Access
APIs (CAAPI)

DataCapsules /
Secure Routing

Network

Ethernet, WI-FI,
Bluetooth, 802.15.4, AVB,...

Physical

Kubiatowicz CS162 © UCB Spring 2024 Lec 27.88

Global Data Plane (GDP) and the Secure Datagram Routing Protocol

Edge Domain #1

Edge Domain #2

) Provider
» Flat Address Space Routing

» Secure Multicast Protocol
— Route gueries to DCs by names, independent — Only clients/DC storage servers with

of location (e.g. no IP) proper (delegation) certificates may join
— DCs move, network deals with it * Queries (messages) are Fibers
— Short-term Channels (“u-SSL channels”) — Self-verifying chunks of DataCapsules
» Black Hole Elimination: Delegation of Names — Writes include appropriate credentials
— Only servers authorized by owner of DC may — Reads include proofs of membership
advertise DC service) + Incremental deployment as an overlay
* Routing only through domains you trust! — Prototype tunneling protocol (“GDPinUDP”)

— Secure Delegated Flat Address Routing — Federated infrastructure w/routing certificates
4/30/24 Kubiatowicz CS162 © UCB Spring 2024 Lec 27.89

Trust Domain #1

» Trust Domains: Groups of Resources owned by single entity

» Trust for:
— Message Transport, Location Resolution, DataCapsule Service, Secure Enclave Service (SE
4130/24— Conversations routed according to RataGarsWe eI eLs ggqﬁé Rysferences Lec 27.90

Reasoning about the infrastructure: Trust Domains

Global (Tier-1) Trust Domain
(Trusted Service Provider)

Global
Nal
Resolver

Trust Domain #2

e.g. Remote Status/CTR
(e.g. Factory)

— Reflect the ownership, trustworthiness, and degree of maintence
— Carry unique economic, political, or incentive structure of the owner
— Pay-for-service, Federated utility model

Common Access APIs (CAAPIs)

* Common Access APIs (CAAPIs) provide convenient/familiar Storage Access Patterns:
— Random File access, Indexing, SQL queries, Latest value for given Key, etc
— Optional Checkpoints for quick restart/cloning

— Refactoring: CAAPIs are services or libraries running in trusted or secured computing
environments on top of DataCapsule infrastructure

» Many Consistency Models possible
— DataCapsules are “Conflict-free Replicated Data Types” (CRDTSs): Synchronization via Union
— Single-Writer CAAPIs prevent branches if sufficient stable storage (strong consistency models)

— DataCapsules with branches: like GIT or Amazon Dynamo (write always, reader handles
branches)

— CAAPIs can support anything from weak consistency to serializability
* Examples:

— Streaming storage

— Key/Value store with time-travel

— Filesystem (changeable sequences of bytes organized in hierarchy)

— Multi-writer storage using Paxos or RAFT

— Byzantine agreement with threshold admission to DataCapsules

4/30/24 Kubiatowicz CS162 © UCB Spring 2024 Lec 27.91

OLTP OLTP OLAP
DB

Client

Example #1: Using DataCapsules to build more sophisticated
data access patterns (e.q. DataBase)

DB

DB
DataBase Client DataBase Client
. | Projection Projection w/Ke
AT (RAm) A (RAM)

calm

R/W DataBase

CAAPI (SQL) < sQL (R/W)
(w/Owner Key) [\

RO DataBase
CAAPI (SQL)
(wo/Owner Key)

=~

GDP Network:
Data Centric
Messaging

Kubiatowicz CS162 © UCB Spring 2024 Lec 27.92

Example #2: Function as a Service

Function: Plan Generator
Data: Situational Info

eéure “lambdas”

. . B Result: Plak
Robots sorting objects in
unfamiliar environment

» Problems with “standard” Function as a Service:
— Runs entirely in uncontrolled cloud (F::‘"‘:m“'“?'“'ser." ice(Faas)
oud Service Provider
— No explicit state: must add something else (“lambdas”)
— Not private, leaks algorithms and results
« Opportunity cost: Can’t exploit Edge! %La- O Google Cloud
— Latency, predictability, privacy,

A better Alternative: Paranoid Stateful Lambdas (PSL)

Secure M)
Enclave
A Ax)
3rd-Party ..t.' ’\\ 7
Loy Y [kvs capel ¢>§§,

Manager

Secure
Enclave

Mx
KVS CAPPI

» Enclaves launched automatically
by 3rd-party enclave manager
— Handles attestation of code
— Launches runtime system (and CAAPI)
* Code and Data in DataCapsules
— Privacy, Integrity, Provenance

» Provides eventual consistency and
release consistency

J3YL LSVYOILINN

Secure
Enclave

A(x)
KVS CAPPI

KVS Replicas

g
4

4/30/24 Kubiatowicz CS162 © UCB Spring 2024 Lec 27.93 4/30/24 Kubiatowicz CS162 © UCB Spring 2024 Lec 27.94
Multi-writer Model for Parallel Key-Value Store: Paranoid Stateful Lambdas:
(Inside DataCapsule) Key-Value Store CAAPI for Secure FaaS
Each A has unique key
and write timeline ﬂ Secure Faa$S Coordinator/ CapsuleDB Enclave |
- - Third Party Service Tree-Based Storage 22 Untrusted
16,03 g, 03 Client Key Dist. Code and Checkgointingg §, ;ET Loc(acl Str?rfge
- Manager Attester Consistency > | & =0
— Bounded, Eventually-Consistent | vemtable || coorinator || (3 g %
R g3 ;i
Write-Ahead Log (WAL) KVS CAAPI o
I Crypto Actors |
\/ark Circular Buffer }—‘
! !
Tq, 0'1 _ Tg, 0'1 Worker Enclaves
Sync Points Bound Skew [‘ T ‘ 2lg TS)
Release Consistency] g 1 il
[e ————————] | Memtable ” Concurrency || | & %l
R Sha256 hashes ! Control 8|5 DataCapsuIeServerC)
I . H 1 KVS CAAPI i - - aching
i ©: owner signatures H Write Verifier || 2¢""€
Level-Structured Merge | o'yt derived key signatures| ProoT of
Tree (Snapshots) ! 1, time stamps ! | Membership |
L e e e e e e e o e e e e e e e e] 1
Kubiatowicz CS162 © UCB Spring 20241 O Lec 27.95 4/30/24 Kubiatowicz CS162 © UCB Spring 2024 Lec 27.96

4/30/24

The Opportunity of the Edge:
Paranoid Stateful ambdas (PSI)

el
ar'e ouse/Cloud
~
~— ?{ o

JU—
=" Clusters

Sty ¥

+ Secure Compute (e.g. SGX)
« Secure Binaries and Data
* Federated Service

4/30/24 R0 2024 Lec 27.97

Example #3: Data Capsules as Part of Model Delivery

g'"‘édge Network
:(Trust Domain)

oo,

Mobile Compute
(Secure Execution)

Cloud Based
Model Development
w/ Secure Distribution)
Model

Bu;l:ltiing =>Model.ph

Refinement

,'—E-d;e- 'l-'r;i;i:g-\
i1 (Secure Execution)
H |

" Sense and
Actuatio

Mobile Compute
(Secure Execution)

Updéted
Model.p

deel
Refinemen
t

« Robotic grasping model distributed in DCs
— Intellectual property of producer (only unpacked in environments guaranteed not to leak model)

430720 Refinement on the edge is upda%gi 5?&%}?:%%9‘88@&@%,%%@"63 with attested algorithms

. ofs

Lec 27.98

DataCapsule Infrastructure

‘N

Cloud Service

ocation
Services

B

Location

Lec 27.99

Research Agenda: What is Hard?

+ Biggest Challenge: Convince People to Refactor their applications around DataCapsules

— Incremental Deployment encouraged via (1F} overlay networking followed by (2) “native” GDP
datagram routing — possibly even without 1P service

— CAAPIs provide standardized storage “patterns” for naive and domain application writers

» DataCapsules provide extremely flexible storage (intended as a primitive element upon
which to build a wide array of storage systems?

— The trick is to provide understandable semantics with good performance
— Consider wide range of Google storage systems (GFS, BigTable, Megastore, Spanner...)!
» DataCapsule placement: Edge vs Cloud
— Placement based on Performance, Privacy Constraints, Durability Requirements, BW, QoS,

« Replication and Failover semantics

— Basic Replication simple since DataCapsules are CRDTs (Conflict-Free Replicated
Datatypes). Thus, synchronization is via union of DataCapsules is easy

— Providing quick adaptation in (routingp network as DataCapsule servers fail and recover while
still providing understandable semantics is tricky

» Replication in the presence of network partitions and malicious agents
— Can provide multi-writer storage using Paxos or RAFT
— Can use Byzantine agreement with threshold admission to DataCapsules

4/30/24 Kubiatowicz CS162 © UCB Spring 2024 Lec 27.100

Research Agenda (con’t): What is Hard?

Location Resolution

» Flat Address Space Routing is Dead, long live Flat
and Routing Infrastructure

Address Space Routing

— No physical hierarchy in the names of DataCapsules
Parent Domain .
Peer Domain

— Each advertising certificate (Delegated Flat Name) is (e.g. Tier-1)
unforgeable (RO) and easily exported using a scalable DHT =
— Using Redis key-value store for initial prototype 10 J0
» Adaptable, Authenticated, Automatic Multicast Domain Location And
construction Multicast build services
— Multicast is an old topic, but secure, performant, multicast
that respects trust domains is essential to DataCapsule/GDP 1 £

— Can leverage ideas from prior Bayeux multicast DHT work
* Only Active Conversations Stored in Switches!
— Provides hope of scalability, but challenge of routing

* QoS-Aware Routing problem: Efficiently routing while
respecting QoS and exploiting hardware (e.g., TSN)

Click Switch:
? GDPinUDP tunnel
\\

Why the Global Data Plane Again???

* Yes, you could:
— Provide your own infrastructure for everything
— Provide your own storage servers
— Provide your own networking, location resolvers, intermediate rendezvous points
* But: Why?
— Standardization is what made the IP infrastructure so powerful
— Utilize 3"-party infrastructure owned (and constantly improved) by others
— Sharing is much harder with stovepiped solutions!
» The Global Data Plane provides standardized infrastructure support
— It provides a standardized substrate for secure flat routing and publish-subscribe multicast
— It provides a provides the ability to reason about infrastructure providers (Trust Domains)
— It frees DataCapsules from being tied to a particular physical location
— = Analogous to ships, planes, trains, and cranes that support shipping containers
» The GDP routes conversations between endpoints such as DataCapsules, sensors,
actuators, services, clients, etc.
» Information protected in DataCapsules, but freed from physical limitations by the GDP
— Correctness and Provenance enforced by DataCapsules
— Performance, QoS, and Delegation of Trust handled by the GDP

— Can leverage ideas from prior Brocade landmark overlay Swl\;ItChI'ilng
4/30/24 DHT work Kubiatowicz CS162 © UCB Spring 2024 ? = 4/30/24 Kubiatowicz CS162 © UCB Spring 2024 Lec 27.102
GDP: Conclusion Thank you!
» The most game-changing element of this agenda is the presence of ubiquitous, secure le s
and mobile bundles of data: DataCapsules © € VS#@%
— Provably authentic and self-consistent Q°
— Only authorized writers can add information; anyone with possession can verify integrity o 9
. . 7] .
» The power of DataCapsules are in standardization v Y
— If everyone uses DataCapsules, then everyone reaps the benefits— '_g 3,
No malicious information, no fake news, no breached passwords 0 £ g
— Eliminate rampant “roll-your-own” philosophy that yields data breaches ”) Q’?
» Naturally Coupled with Secure Edge Computing (Enclaves) o "{@ 4%3.1.1\'\9“ \
» Burden of standardization reduced through careful design: ° s\»q,\(’
— Incremental, flat-address-space routing (no IP addresses!) S @gﬂgnu
— Efficient refactoring of communication around storage)
— Famili f . Fil DataB Key-Val .
. .ta'ml iar storag? patt'terns (Racbadfs) |Zi/|ystehrﬁs, I_ata efses, ey-Value Stores, Streams, « Thanks for all your great questions!
» Exciting new applications: Robotics and Machine Learnin
g PP g * Good Bye! You have all been great!
Lec 27.103 4/30/24 Kubiatowicz CS162 © UCB Spring 2024 Lec 27.104

4/30/24 Kubiatowicz CS162 © UCB Spring 2024

