
CS162
Operating Systems and
Systems Programming

Lecture 26

Trusted Execution, Distributed File Systems
Global Data Plane

April 30th, 2024
Prof. John Kubiatowicz

http://cs162.eecs.Berkeley.edu

Lec 27.24/30/24 Kubiatowicz CS162 © UCB Spring 2024

Recall: Distributed Applications Build With Messages
• How do you actually program a distributed application?

– Need to synchronize multiple threads, running on different machines
» No shared memory, so cannot use test&set

– One Abstraction: send/receive messages
» Already atomic: no receiver gets portion of a message and two receivers cannot

get same message
• Interface:

– Mailbox (mbox): temporary holding area for messages
» Includes both destination location and queue

– Send(message,mbox)
» Send message to remote mailbox identified by mbox

– Receive(buffer,mbox)
» Wait until mbox has message, copy into buffer, and return
» If threads sleeping on this mbox, wake up one of them

Network

Send

R
eceive

Lec 27.34/30/24 Kubiatowicz CS162 © UCB Spring 2024

• NFS protocol: weak consistency
– Client polls server periodically to check for changes

» Polls server if data hasn’t been checked in last 3-30 seconds (exact timeout is tunable
parameter).

» Thus, when file is changed on one client, server is notified, but other clients use old
version of file until timeout.

– What if multiple clients write to same file?
» In NFS, can get either version (or parts of both)
» Completely arbitrary!

cache
F1:V2

cache

cache

F1:V1

F1:V2

Client

Server
Client

F1:V2

Recall: NFS Cache consistency

F1 still ok?
No: (F1:V2)

Lec 27.44/30/24 Kubiatowicz CS162 © UCB Spring 2024

• What sort of cache coherence might we expect?
– i.e. what if one CPU changes file, and before it’s done, another CPU reads file?

• Example: Start with file contents = “A”

• What would we actually want?
– Assume we want distributed system to behave exactly the same as if all

processes are running on single system
» If read finishes before write starts, get old copy
» If read starts after write finishes, get new copy
» Otherwise, get either new or old copy

– For NFS:
» If read starts more than 30 seconds after write, get new copy; otherwise, could get

partial update

Sequential Ordering Constraints

Read: gets A

Read: gets A or B

Write B

Write C

Read: parts of B or CClient 1:
Client 2:
Client 3: Read: parts of B or C

Time

Lec 27.54/30/24 Kubiatowicz CS162 © UCB Spring 2024

Andrew File System
• Andrew File System (AFS, late 80’s)  DCE DFS (commercial product)
• Callbacks: Server records who has copy of file

– On changes, server immediately tells all with old copy
– No polling bandwidth (continuous checking) needed

• Write through on close
– Changes not propagated to server until close()
– Session semantics: updates visible to other clients only after the file is

closed
» As a result, do not get partial writes: all or nothing!
» Although, for processes on local machine, updates visible immediately to other

programs who have file open
• In AFS, everyone who has file open sees old version

– Don’t get newer versions until reopen file

Lec 27.64/30/24 Kubiatowicz CS162 © UCB Spring 2024

Andrew File System (con’t)
• Data cached on local disk of client as well as memory

– On open with a cache miss (file not on local disk):
» Get file from server, set up callback with server

– On write followed by close:
» Send copy to server; tells all clients with copies to fetch new version from server on

next open (using callbacks)
• What if server crashes? Lose all callback state!

– Reconstruct callback information from client: go ask everyone “who has which
files cached?”

• AFS Pro: Relative to NFS, less server load:
– Disk as cache  more files can be cached locally
– Callbacks  server not involved if file is read-only

• For both AFS and NFS: central server is bottleneck!
– Performance: all writesserver, cache missesserver
– Availability: Server is single point of failure
– Cost: server machine’s high cost relative to workstation

Lec 27.74/30/24 Kubiatowicz CS162 © UCB Spring 2024

Quick Security Primer

Lec 27.84/30/24 Kubiatowicz CS162 © UCB Spring 2024

Authentication in Distributed Systems
• What if identity must be established across network?

– Need way to prevent exposure of information while still proving identity to remote
system

– Many of the original UNIX tools sent passwords over the wire “in clear text”
» E.g.: telnet, ftp, yp (yellow pages, for distributed login)
» Result: Snooping programs widespread

• What do we need? Cannot rely on physical security!
– Encryption: Privacy, restrict receivers
– Authentication: Remote Authenticity, restrict senders

NetworkPA
SS: gina

Lec 27.94/30/24 Kubiatowicz CS162 © UCB Spring 2024

Private Key Cryptography
• Private Key (Symmetric) Encryption:

– Single key used for both encryption and decryption
• Plaintext: Unencrypted Version of message
• Ciphertext: Encrypted Version of message

• Important properties
– Can’t derive plain text from ciphertext (decode) without access to key
– Can’t derive key from plain text and ciphertext
– As long as password stays secret, get both secrecy and authentication

• Symmetric Key Algorithms: DES, Triple-DES, AES

Insecure
Transmission
(ciphertext)

Decrypt

Key

Encrypt

Key

Plaintext

PlaintextSPY CIA

Lec 27.104/30/24 Kubiatowicz CS162 © UCB Spring 2024

Key Distribution
• How do you get shared secret to both places?

– For instance: how do you send authenticated, secret mail to someone who you
have never met?

– Must negotiate key over private channel
» Exchange code book
» Key cards/memory stick/others

• Third Party: Authentication Server (like Kerberos)
– Notation:

» Kxy is key for talking between x and y
» (…)K means encrypt message (…) with the key K
» Clients: A and B, Authentication server S

– A asks server for key:
» AS: [Hi! I’d like a key for talking between A and B]
» Not encrypted. Others can find out if A and B are talking

– Server returns session key encrypted using B’s key
» SA: Message [Use Kab (This is A! Use Kab)Ksb] Ksa

» This allows A to know, “S said use this key”
– Whenever A wants to talk with B

» AB: Ticket [This is A! Use Kab]Ksb

» Now, B knows that Kab is sanctioned by S

Lec 27.114/30/24 Kubiatowicz CS162 © UCB Spring 2024

Authentication Server Continued [Kerberos]

• Details
– Both A and B use passwords (shared with key server) to decrypt return from key

servers
– Add in timestamps to limit how long tickets will be used to prevent attacker from

replaying messages later
– Also have to include encrypted checksums (hashed version of message) to

prevent malicious user from inserting things into messages/changing messages
– Want to minimize # times A types in password

» AS (Give me temporary secret)
» SA (Use Ktemp-sa for next 8 hours)Ksa

» Can now use Ktemp-sa in place of Ksa in prototcol

Key
Server

Ticket
Secure Communication

Lec 27.124/30/24 Kubiatowicz CS162 © UCB Spring 2024

Public Key Encryption
• Can we perform key distribution without an authentication server?

– Yes. Use a Public-Key Cryptosystem.
• Public Key Details

– Don’t have one key, have two: Kpublic, Kprivate
» Two keys are mathematically related to one another
» Really hard to derive Kpublic from Kprivate and vice versa

– Forward encryption:
» Encrypt: (cleartext)Kpublic= ciphertext1
» Decrypt: (ciphertext1)Kprivate = cleartext

– Reverse encryption:
» Encrypt: (cleartext)Kprivate = ciphertext2
» Decrypt: (ciphertext2)Kpublic = cleartext

– Note that ciphertext1  ciphertext2
» Can’t derive one from the other!

• Public Key Examples:
– RSA: Rivest, Shamir, and Adleman

» Kpublic of form (kpublic, N), Kprivate of form (kprivate, N)
» N = pq. Can break code if know p and q

– ECC: Elliptic Curve Cryptography
» Lower overhead than RSA

Lec 27.134/30/24 Kubiatowicz CS162 © UCB Spring 2024

• Idea: Kpublic can be made public, keep Kprivate private

• Gives message privacy (restricted receiver):
– Public keys (secure destination points) can be acquired by anyone/used by anyone
– Only person with private key can decrypt message

• What about authentication?
– Use combination of private and public key
– AliceBob: [(I’m Alice)Aprivate Rest of message]Bpublic

– Provides restricted sender and receiver
• But: how does Alice know that it was Bob who sent her Bpublic? And vice versa…

Bprivate
Aprivate

Public Key Encryption Details

Alice Bob

Bpublic
Apublic

Insecure Channel

Insecure Channel

Lec 27.144/30/24 Kubiatowicz CS162 © UCB Spring 2024

Secure Hash Function

• Hash Function: Short summary of data (message)
– For instance, h1=H(M1) is the hash of message M1

» h1 fixed length, despite size of message M1.
» Often, h1 is called the “digest” of M1.

• Hash function H is considered secure if
– It is infeasible to find M2 with h1=H(M2); ie. can’t easily find other

message with same digest as given message.
– It is infeasible to locate two messages, m1 and m2, which “collide”, i.e. for

which H(m1) = H(m2)
– A small change in a message changes many bits of digest/can’t tell

anything about message given its hash

DFCD3454BBEA788A
751A696C24D97009
CA992D17

The red fox
runs across
the ice

Hash
Function

Hash
Function

52ED879E70F71D92
6EB6957008E03CE4
CA6945D3

Fox

Lec 27.154/30/24 Kubiatowicz CS162 © UCB Spring 2024

Use of Hash Functions
• Several Standard Hash Functions:

– MD5: 128-bit output
– SHA-1: 160-bit output, SHA-256: 256-bit output

• Can we use hashing to securely reduce load on server?
– Yes. Use a series of insecure mirror servers (caches)
– First, ask server for digest of desired file

» Use secure channel with server
– Then ask mirror server for file

» Can be insecure channel
» Check digest of result and catch faulty or malicious mirrors

Client

Read File X

Here is hx = H(X)

Insecure
Data
Mirror

File X
Read X

File X

Server Lec 27.164/30/24 Kubiatowicz CS162 © UCB Spring 2024

Signatures/Certificate Authorities
• Can use Xpublic for person X to define their identity

– Presumably they are the only ones who know Xprivate.
– Often, we think of Xpublic as a “principle” (user)

• Suppose we want X to sign message M?
– Use private key to encrypt the digest, i.e. H(M)Xprivate

– Send both M and its signature:
» Signed message = [M,H(M)Xprivate]

– Now, anyone can verify that M was signed by X
» Simply decrypt the digest with Xpublic
» Verify that result matches H(M)

• Now: How do we know that the version of Xpublic that we have is really from X???
– Answer: Certificate Authority

» Examples: Verisign, Entrust, Etc.
– X goes to organization, presents identifying papers

» Organization signs X’s key: [Xpublic, H(Xpublic)CAprivate]
» Called a “Certificate”

– Before we use Xpublic, ask X for certificate verifying key
» Check that signature over Xpublic produced by trusted authority

• How do we get keys of certificate authority?
– Compiled into your browser, for instance!

Lec 27.174/30/24 Kubiatowicz CS162 © UCB Spring 2024

(pms)Ks

• SSL Web Protocol
– Port 443: secure http
– Use public-key encryption

for key-distribution
• Server has a certificate signed by certificate authority

– Contains server info (organization, IP address, etc)
– Also contains server’s public key and expiration date

• Establishment of Shared, 48-byte “master secret”
– Client sends 28-byte random value nc to server
– Server returns its own 28-byte random value ns, plus its certificate certs
– Client verifies certificate by checking with public key of certificate authority

compiled into browser
» Also check expiration date

– Client picks 46-byte “premaster” secret (pms), encrypts it with public key of
server, and sends to server

– Now, both server and client have nc, ns, and pms
» Each can compute 48-byte master secret using one-way and collision-resistant

function on three values
» Random “nonces” nc and ns make sure master secret fresh

ns,certs

Security through SSL
nc

Lec 27.184/30/24 Kubiatowicz CS162 © UCB Spring 2024

• How do we decide who is authorized
to do actions in the system?

• Access Control Matrix: all permissions in the system
– Resources across top

» Files, Devices, etc…
– Domains in columns

» A domain might be a user or a group of permissions
» E.g. above: User D3 can read F2 or execute F3

– In practice, table would be huge and sparse!
• Two approaches to implementation

– Access Control Lists: store permissions with each object
» Still might be lots of users!
» UNIX limits each file to: r,w,x for owner, group, world
» More recent systems allow definition of groups of users and permissions for each group

– Capability List: each process tracks objects has permission to touch
» Popular in the past, idea out of favor today
» Consider page table: Each process has list of pages it has access to, not each page has

list of processes …

Authorization: Who Can Do What?

Lec 27.194/30/24 Kubiatowicz CS162 © UCB Spring 2024

How fine-grained should access control be?
• Example of the problem:

– Suppose you buy a copy of a new game from “Joe’s Game World” and then run it.
– It’s running with your userid

» It removes all the files you own, including the project due the next day…
• How can you prevent this?

– Have to run the program under some userid.
» Could create a second games userid for the user, which has no write privileges.
» Like the “nobody” userid in UNIX – can’t do much

– But what if the game needs to write out a file recording scores?
» Would need to give write privileges to one particular file (or directory) to your games

userid.
– But what about non-game programs you want to use, such as Quicken?

» Now you need to create your own private quicken userid, if you want to make sure tha
the copy of Quicken you bought can’t corrupt non-quicken-related files

– But – how to get this right??? Pretty complex…

Lec 27.204/30/24 Kubiatowicz CS162 © UCB Spring 2024

Authorization Continued
• Principle of least privilege: programs, users, and systems should get only

enough privileges to perform their tasks
– Very hard to do in practice

» How do you figure out what the minimum set of privileges is needed to run your
programs?

– People often run at higher privilege then necessary
» Such as the “administrator” privilege under windows

• One solution: Signed Software
– Only use software from sources that you trust, thereby dealing with the problem by

means of authentication
– Fine for big, established firms such as Microsoft, since they can make their signing

keys well known and people trust them
» Actually, not always fine: recently, one of Microsoft’s signing keys was compromised,

leading to malicious software that looked valid
– What about new startups?

» Who “validates” them?
» How easy is it to fool them?

Lec 27.214/30/24 Kubiatowicz CS162 © UCB Spring 2024

How to perform Authorization for Distributed Systems?

• Issues: Are all user names in world unique?
– No! They only have small number of characters

» kubi@mit.edu  kubitron@lcs.mit.edu  kubitron@cs.berkeley.edu
» However, someone thought their friend was kubi@mit.edu and I got very private

email intended for someone else…
– Need something better, more unique to identify person

• Suppose want to connect with any server at any time?
– Need an account on every machine! (possibly with different user name for

each account)
– OR: Need to use something more universal as identity

» Public Keys! (Called “Principles”)
» People are their public keys

Different
Authorization
Domains

Lec 27.224/30/24 Kubiatowicz CS162 © UCB Spring 2024

Client 1
Domain 1

Distributed Access Control

• Distributed Access Control List (ACL)
– Contains list of attributes (Read, Write, Execute, etc) with attached identities (Here,

we show public keys)
» ACLs signed by owner of file, only changeable by owner
» Group lists signed by group key

– ACLs can be on different servers than data
» Signatures allow us to validate them
» ACLs could even be stored separately from verifiers

Server 1: Domain 2

File X
Owner Key:
0x22347EF…

Access Control List (ACL) for X:

R: Key: 0x546DFEFA34…
RW:Key: 0x467D34EF83…
RX: Group Key: 0xA2D3498672…

ACL verifier
Hash, Timestamp,
Signature (owner)

Server 2: Domain 3

Group ACL:
Key: 0xA786EF889A…
Key: 0x6647DBC9AC…

GACL verifier
Hash, Timestamp,
Signature (group)

Re
ad

Gr
ou

p

GA
CL

Lec 27.234/30/24 Kubiatowicz CS162 © UCB Spring 2024

???

HARDWARE

Virtual Machine Monitor
[Hypervisor]

Linux WinXP ???

Trusted Execution Environment
• Simple Hardware with single OS

– What we have been talking about all term!
• Virtual machines

– Multiplex different OSes on single machine
– Many techniques, including dynamic compilation

and direct hardware support (domain “-1”)
– Need way to fool OS code into thinking it has

complete control of machine!
• What if you don’t trust the OS or hypervisor not

to leak your information?
– Worried about compromised OS
– Don’t trust service provider (i.e. Google, Amazon)

• Trusted Execution Environment (TEE)
– Hardware support to prevent OS or external

actors from observing execution
– Client can get hardware proof that trusted code is

actual code we expect! [Attestation]

TEE

Trusted
Code

Linux
Process
Manage

ment

Memory
Manage

ment

Filesyste
ms

Device
Control

Networki
ng

Architect
ure

Depende
nt

Code

Memory
Manager

Device
Control

Network
Subsyst

em

File
System
Types

Block
Devices

IF
drivers

Concurrency,
multitasking

Virtual
memory

Files and dirs:
the VFS

TTYs and
device accessConnectivity

TEE

Trusted
Code

HARDWARE

Virtual Machine Monitor
[Hypervisor]

Linux WinXP

??
?

A
tte

st
at

io
n

Lec 27.244/30/24 Kubiatowicz CS162 © UCB Spring 2024

Chord and Distributed Storage

Lec 27.254/30/24 Kubiatowicz CS162 © UCB Spring 2024

What about: Sharing Data, rather than Files ?
• Key:Value stores are used everywhere
• Native in many programming languages

– Associative Arrays in Perl
– Dictionaries in Python
– Maps in Go
– …

• What about a collaborative key-value store rather than message passing
or file sharing?

• Can we make it scalable and reliable?

Lec 27.264/30/24 Kubiatowicz CS162 © UCB Spring 2024

Key Value Storage
Simple interface

• put(key, value); // Insert/write "value" associated with key

• get(key); // Retrieve/read value associated with key

Lec 27.274/30/24 Kubiatowicz CS162 © UCB Spring 2024

Why Key Value Storage?
• Easy to Scale

– Handle huge volumes of data (e.g., petabytes)
– Uniform items: distribute easily and roughly equally across many machines

• Simple consistency properties

• Used as a simpler but more scalable "database"
– Or as a building block for a more capable DB

Lec 27.284/30/24 Kubiatowicz CS162 © UCB Spring 2024

• Amazon:
– Key: customerID
– Value: customer profile (e.g., buying history, credit card, ..)

• Facebook, Twitter:
– Key: UserID
– Value: user profile (e.g., posting history, photos, friends, …)

• iCloud/iTunes:
– Key: Movie/song name
– Value: Movie, Song

Key Values: Examples

Lec 27.294/30/24 Kubiatowicz CS162 © UCB Spring 2024

Key-value storage systems in real life
• Amazon

– DynamoDB: internal key value store used to power Amazon.com
(shopping cart)

– Simple Storage System (S3)

• BigTable/HBase/Hypertable: distributed, scalable data storage

• Cassandra: “distributed data management system” (developed by
Facebook)

• Memcached: in-memory key-value store for small chunks of arbitrary
data (strings, objects)

• eDonkey/eMule: peer-to-peer sharing system

• …
Lec 27.304/30/24 Kubiatowicz CS162 © UCB Spring 2024

Key Value Store
• Also called Distributed Hash Tables (DHT)
• Main idea: simplify storage interface (i.e. put/get), then partition set of

key-values across many machines
key, value

…

Lec 27.314/30/24 Kubiatowicz CS162 © UCB Spring 2024

Challenges

• Scalability:
– Need to scale to thousands of machines
– Need to allow easy addition of new machines

• Fault Tolerance: handle machine failures without losing data and
without degradation in performance

• Consistency: maintain data consistency in face of node failures and
message losses

• Heterogeneity (if deployed as peer-to-peer systems):
– Latency: 1ms to 1000ms
– Bandwidth: 32Kb/s to 100Mb/s

…

Lec 27.324/30/24 Kubiatowicz CS162 © UCB Spring 2024

Important Questions
• put(key, value):

– where do you store a new (key, value) tuple?
• get(key):

– where is the value associated with a given “key” stored?

• And, do the above while providing
– Scalability
– Fault Tolerance
– Consistency

Lec 27.334/30/24 Kubiatowicz CS162 © UCB Spring 2024

How to solve the “where?”
• Hashing to map key space  location

– But what if you don’t know all the nodes that are participating?
– Perhaps they come and go …
– What if some keys are really popular?

• Lookup
– Hmm, won’t this be a bottleneck and single point of failure?

Lec 27.344/30/24 Kubiatowicz CS162 © UCB Spring 2024

Recursive Directory Architecture (put)
• Have a node maintain the mapping between keys and the machines

(nodes) that store the values associated with the keys

…

N1 N2 N3 N50

K5 V5 K14 V14 K105 V105

K5 N2
K14 N3

K105 N50

Master/Directory

put(K14, V14)

Lec 27.354/30/24 Kubiatowicz CS162 © UCB Spring 2024

Recursive Directory Architecture (get)

…

N1 N2 N3 N50

K5 V5 K14 V14 K105 V105

K5 N2
K14 N3

K105 N50

Master/Directory

get(K14)
V14

• Have a node maintain the mapping between keys and the machines
(nodes) that store the values associated with the keys

Lec 27.364/30/24 Kubiatowicz CS162 © UCB Spring 2024

Iterative Directory Architecture (put)
• Having the master relay the requests  recursive query
• Another method: iterative query (this slide)

– Return node to requester and let requester contact node

…

N1 N2 N3 N50

K5 V5 K14 V14 K105 V105

K5 N2
K14 N3

K105 N50

Master/Directory
put(K14, V14)

N3

Lec 27.374/30/24 Kubiatowicz CS162 © UCB Spring 2024

Iterative Directory Architecture (get)

…

N1 N2 N3 N50

K5 V5 K14 V14 K105 V105

K5 N2
K14 N3

K105 N50

Master/Directory
get(K14)

V14
N3

• Having the master relay the requests  recursive query
• Another method: iterative query (this slide)

– Return node to requester and let requester contact node

Lec 27.384/30/24 Kubiatowicz CS162 © UCB Spring 2024

Iterative vs. Recursive Query

…

N1 N2 N3 N50

K14 V14

K14 N3

Master/Directory

get(K14)
V14

…

N1 N2 N3 N50

K14 V14

K14 N3

Master/Directory
get(K14)

V14
N3

Recursive Iterative

+ Faster, as directory server is typically close
to storage nodes

+ Easier for consistency: directory can
enforce an order for all puts and gets

- Directory is a performance bottleneck

+ More scalable, clients do more work
- Harder to enforce consistency

Lec 27.394/30/24 Kubiatowicz CS162 © UCB Spring 2024

Fault Tolerance
• Replicate value on several nodes
• Usually, place replicas on different racks in a datacenter to guard against

rack failures

…

N1 N2 N3 N50

K5 V5 K14 V14 K105 V105

K5 N2
K14 N1,N3

K105 N50

Master/Directory
put(K14, V14)

N1, N3

K14 V14

put(K14, V14)

Lec 27.404/30/24 Kubiatowicz CS162 © UCB Spring 2024

Scalability
• Storage: use more nodes

• Number of requests:
– Can serve requests from all nodes on which a value is stored in parallel
– Master can replicate a popular value on more nodes

• Master/directory scalability:
– Replicate it
– Partition it, so different keys are served by different masters/directories

» How do you partition?

Lec 27.414/30/24 Kubiatowicz CS162 © UCB Spring 2024

Scaling Up Directory
• Challenge:

– Directory contains a number of entries equal to number of (key, value)
tuples in the system

– Can be tens or hundreds of billions of entries in the system!
• Solution: Consistent Hashing

– Provides mechanism to divide [key,value] pairs amongst a (potentially
large!) set of machines (nodes) on network

• Associate to each node a unique id in an uni-dimensional space 0..2m-1
 Wraps around: Call this “the ring!”

– Partition this space across n machines
– Assume keys are in same uni-dimensional space
– Each [Key, Value] is stored at the node with the smallest ID larger than

Key

Lec 27.424/30/24 Kubiatowicz CS162 © UCB Spring 2024

Key to Node Mapping Example
• Paritioning example with

m = 6  ID space: 0..63
– Node 8 maps keys [5,8]
– Node 15 maps keys [9,15]
– Node 20 maps keys [16, 20]
– …
– Node 4 maps keys [59, 4]

• For this example, the mapping
[14, V14] maps to node with
ID=15

– Node with smallest ID larger than
14 (the key)

• In practice, m=256 or more!
– Uses cryptographically secure

hash such as SHA-256 to
generate the node IDs

14 V14

4

20

3235

8

15

44

58

63 0

“The Ring”

Lec 27.434/30/24 Kubiatowicz CS162 © UCB Spring 2024

Chord: Distributed Lookup (Directory) Service
• “Chord” is a Distributed Lookup Service

– Designed at MIT and here at Berkeley (Ion Stoica among others)
– Simplest and cleanest algorithm for distributed storage

» Serves as comparison point for other optims
• Import aspect of the design space:

– Decouple correctness from efficiency
– Combined Directory and Storage

• Properties
– Correctness:

» Each node needs to know about neighbors on ring (one predecessor and one
successor)

» Connected rings will perform their task correctly
– Performance:

» Each node needs to know about O(log(M)), where M is the total number of nodes
» Guarantees that a tuple is found in O(log(M)) steps

• Many other Structured, Peer-to-Peer lookup services:
– CAN, Tapestry, Pastry, Bamboo, Kademlia, …
– Several designed here at Berkeley!

Lec 27.444/30/24 Kubiatowicz CS162 © UCB Spring 2024

Chord’s Lookup Mechanism: Routing!
• Each node maintains pointer to its

successor
• Route packet (Key, Value) to the

node responsible for ID using
successor pointers
– E.g., node=4 lookups for node

responsible for Key=37
• Worst-case (correct) lookup is O(n)

– But much better normal lookup time is
O(log n)

– Dynamic performance optimization
(finger table mechanism)

» More later!!!

4

20

3235

8

15

44

58

lookup(37)

node=44 is
responsible
for Key=37

Lec 27.454/30/24 Kubiatowicz CS162 © UCB Spring 2024

But what does this really mean??

ID: 4

ID: 44

ID: 8

ID: 20

ID: 35

ID: 58

ID: 15

ID: 32

• Node names intentionally scrambled WRT geography!
– Node IDs generated by secure hashes over metadata

» Including things like the IP address
– This geographic scrambling spreads load and avoids hotspots

• Clients access distributed storage through any member of the network

4

20

3235

8

15

44

58

14 V14

63 0

Client

Client

Client

Client

Client

14 V14

Lec 27.464/30/24 Kubiatowicz CS162 © UCB Spring 2024

Stabilization Procedure
• Periodic operation performed by each node n to maintain its successor

when new nodes join the system
– The primary Correctness constraint

n.stabilize()
x = succ.pred;
if (x (n, succ))

succ = x; // if x better successor, update
succ.notify(n); // n tells successor about itself

n.notify(n’)
if (pred = nil or n’ (pred, n))

pred = n’; // if n’ is better predecessor, update





Lec 27.474/30/24 Kubiatowicz CS162 © UCB Spring 2024

Joining Operation

4

20

3235

8

15

44

58

50

succ=4
pred=44

succ=nil
pred=nil

succ=58
pred=35

• Node with id=50
joins the ring

• Node 50 must know
at least one node
already in system

– Assume known
node is 15

Lec 27.484/30/24 Kubiatowicz CS162 © UCB Spring 2024

Joining Operation

4

20

3235

8

15

44

58

50

join(50)

succ=4
pred=44

succ=nil
pred=nil

succ=58
pred=35

58

succ=58

• n=50 sends join(50)
to node 15

– Join propagated
around ring!

• n=44 returns node 58
• n=50 updates its

successor to 58

Lec 27.494/30/24 Kubiatowicz CS162 © UCB Spring 2024

Joining Operation

4

20

3235

8

15

44

58

50pred=nil

succ=58
pred=35

succ=4
pred=44

n.stabilize()
x = succ.pred;
if (x (n, succ))

succ = x;
succ.notify(n);



succ=58

• n=50 executes
stabilize()

• n’s successor (58)
returns x = 44

Lec 27.504/30/24 Kubiatowicz CS162 © UCB Spring 2024

Joining Operation

4

20

3235

8

15

44

58

50pred=nil

succ=58
pred=35

succ=4
pred=44

n.stabilize()
x = succ.pred;
if (x (n, succ))

succ = x;
succ.notify(n);



succ=58

• n=50 executes
stabilize()

– x = 44
– succ = 58

Lec 27.514/30/24 Kubiatowicz CS162 © UCB Spring 2024

Joining Operation

4

20

3235

8

15

44

58

50pred=nil

succ=58
pred=35

succ=4
pred=44

n.stabilize()
x = succ.pred;
if (x (n, succ))

succ = x;
succ.notify(n);



succ=58

• n=50 executes
stabilize()

– x = 44
– succ = 58

• n=50 sends to it’s
successor (58)
notify(50)

Lec 27.524/30/24 Kubiatowicz CS162 © UCB Spring 2024

• n=58 executes
notify(50)

– pred = 44
– n’ = 50

Joining Operation

4

20

3235

8

15

44

58

50pred=nil

succ=58
pred=35

succ=4
pred=44

succ=58

n.notify(n’)
if (pred = nil or n’  (pred, n))

pred = n’

Lec 27.534/30/24 Kubiatowicz CS162 © UCB Spring 2024

Joining Operation

4

20

3235

8

15

44

58

50pred=nil

succ=58
pred=35

succ=4
pred=44

succ=58

pred=50
• n=58 executes

notify(50)
– pred = 44
– n’ = 50

• set pred = 50

n.notify(n’)
if (pred = nil or n’  (pred, n))

pred = n’

Lec 27.544/30/24 Kubiatowicz CS162 © UCB Spring 2024

Joining Operation

4

20

3235

8

15

44

58

50pred=nil

succ=58
pred=35

succ=4
pred=50

n.stabilize()
x = succ.pred;
if (x (n, succ))

succ = x;
succ.notify(n);



succ=58

x=50

• n=44 executes
stabilize()

• n’s successor (58)
returns x=50

Lec 27.554/30/24 Kubiatowicz CS162 © UCB Spring 2024

Joining Operation

4

20

3235

8

15

44

58

50pred=nil

succ=58
pred=35

succ=4
pred=50

n.stabilize()
x = succ.pred;
if (x (n, succ))

succ = x;
succ.notify(n);



succ=58

• n=44 executes
stabilize()

– x=50
– succ=58

Lec 27.564/30/24 Kubiatowicz CS162 © UCB Spring 2024

Joining Operation

4

20

3235

8

15

44

58

50pred=nil

succ=58
pred=35

succ=4
pred=50

n.stabilize()
x = succ.pred;
if (x (n, succ))

succ = x;
succ.notify(n);



succ=58

• n=44 executes
stabilize()

– x=50
– succ=58

• n=44 sets
succ=50

succ=50

Lec 27.574/30/24 Kubiatowicz CS162 © UCB Spring 2024

Joining Operation

4

20

3235

8

15

44

58

50pred=nil

succ=50
pred=35

succ=4
pred=50

n.stabilize()
x = succ.pred;
if (x (n, succ))

succ = x;
succ.notify(n);



succ=58

notify(44)

• n=44 executes
stabilize()

• n=44 sends notify(44)
to its successor

Lec 27.584/30/24 Kubiatowicz CS162 © UCB Spring 2024

Joining Operation

4

20

3235

8

15

44

58

50pred=nil

succ=50
pred=35

succ=4
pred=50

n.notify(n’)
if (pred = nil or n’ (pred, n))

pred = n’


succ=58

notify(44)

• n=50 executes
notify(44)

– pred=nil

Lec 27.594/30/24 Kubiatowicz CS162 © UCB Spring 2024

Joining Operation

4

20

3235

8

15

44

58

50pred=nil

succ=50
pred=35

succ=4
pred=50

succ=58

notify(44)

pred=44

• n=50 executes
notify(44)

– pred=nil
• n=50 sets pred=44

n.notify(n’)
if (pred = nil or n’  (pred, n))

pred = n’

Lec 27.604/30/24 Kubiatowicz CS162 © UCB Spring 2024

Joining Operation (cont’d)

4

20

3235

8

15

44

58

50succ=58

succ=50

pred=44

pred=50
• This completes the joining

operation!
• The same stabilizing process

will deal with failed nodes by
reconnecting the ring

• What if 2 or more nodes in a
row fail?

– Keep track of
more neighbors!

– Called the “leaf set”

Lec 27.614/30/24 Kubiatowicz CS162 © UCB Spring 2024

Achieving Efficiency: finger tables

80 + 2080 + 21
80 + 22

80 + 23

80 + 24

80 + 25
(80 + 26) mod 27 = 16

0
Say m=7

ith entry at peer with id n is first peer with id >=)2(mod2 min 

i ft[i]
0 96
1 96
2 96
3 96
4 96
5 112
6 20

Finger Table at 80

32

4580

20
112

96

Lec 27.624/30/24 Kubiatowicz CS162 © UCB Spring 2024

Achieving Fault Tolerance for Lookup Service

• To improve robustness each node maintains the k (> 1) immediate
successors instead of only one successor

– Again – called the “leaf set”
– In the pred() reply message, node A can send its k-1 successors to its

predecessor B
– Upon receiving pred() message, B can update its successor list by

concatenating the successor list received from A with its own list
• If k = log(M), lookup operation works with high probability even if half

of nodes fail, where M is number of nodes in the system

Lec 27.634/30/24 Kubiatowicz CS162 © UCB Spring 2024

Storage Fault Tolerance
• Replicate tuples on

successor nodes
• Example: replicate (K14,

V14) on nodes 20 and 32

4

20

3235

8

15

44

58

14 V14

63 0

14 V14

14 V14

Lec 27.644/30/24 Kubiatowicz CS162 © UCB Spring 2024

Storage Fault Tolerance
• If node 15 fails, no

reconfiguration needed
– Still have two replicas
– All lookups will be correctly

routed after stabilization

• Will need to add a new
replica on node 35

4

20

3235

8

15

44

58

14 V14

63 0

14 V14

14 V14

14 V14

Lec 27.654/30/24 Kubiatowicz CS162 © UCB Spring 2024

Replication in Physical Space

ID: 4

ID: 44

ID: 8

ID: 20

ID: 35

ID: 58

ID: 15

ID: 32

• Replicating in Adjacent nodes of virtual space  Geographic
Separation in physical space

– Avoids single-points of failure through randomness
– More nodes, more replication, more geographic spread

Client

Client

Client

Client

Client

14 V14

4

20

3235

8

15

44

58

14 V14

630

14 V14

14 V14

14 V14

14 V14

Lec 27.664/30/24 Kubiatowicz CS162 © UCB Spring 2024

Consistency
• Need to make sure that a value is replicated correctly
• How do you know a value has been replicated on every node?

– Wait for acknowledgements from every node
• What happens if a node fails during replication?

– Pick another node and try again
• What happens if a node is slow?

– Slow down the entire put()? Pick another node?
• In general, with multiple replicas

– Slow puts and fast gets

Lec 27.674/30/24 Kubiatowicz CS162 © UCB Spring 2024

Consistency (cont’d)
• If concurrent updates (i.e., puts to same key) may need to make sure that

updates happen in the same order

…

N1 N2 N3 N50

K5 V5 K14 V14 K105 V105

K5 N2
K14 N1,N3

K105 N50

Master/Directory
put(K14, V14’)

K14 V14

put(K14, V14’’)

K14 V14’K14 V14’’

Lec 27.684/30/24 Kubiatowicz CS162 © UCB Spring 2024

Consistency (cont’d)
• If concurrent updates (i.e., puts to same key) may need to make sure that

updates happen in the same order

…

N1 N2 N3 N50

K5 V5 K14 V14 K105 V105

K5 N2
K14 N1,N3

K105 N50

Master/Directory
put(K14, V14’)

K14 V14

put(K14, V14’’)

K14 V14’’K14 V14’

• put(K14, V14’) and put(K14, V14’’)
reach N1 & N3 in reverse order!

Lec 27.694/30/24 Kubiatowicz CS162 © UCB Spring 2024

Consistency (cont’d)
• If concurrent updates (i.e., puts to same key) may need to make sure that

updates happen in the same order

…

N1 N2 N3 N50

K5 V5 K14 V14 K105 V105

K5 N2
K14 N1,N3

K105 N50

Master/Directory
put(K14, V14’)

K14 V14

put(K14, V14’’)

K14 V14’’K14 V14’

• put(K14, V14’) and put(K14, V14’’)
reach N1 & N3 in reverse order!

• What does get(K14) return?
• Undefined!

Lec 27.704/30/24 Kubiatowicz CS162 © UCB Spring 2024

Large Variety of Consistency Models
• Atomic consistency (linearizability): reads/writes (gets/puts) to replicas

appear as if there was a single underlying replica (single system image)
– Think “one updated at a time”
– Transactions

• Eventual consistency: given enough time all updates will propagate
through the system

– One of the weakest form of consistency; used by many systems in practice
– Must eventually converge on single value/key (coherence)

• And many others: causal consistency, sequential consistency, strong
consistency, …

Lec 27.714/30/24 Kubiatowicz CS162 © UCB Spring 2024

Quorum Consensus
• Improve put() and get() operation performance

– In the presence of replication!
• Define a replica set of size N

– put() waits for acknowledgements from at least W replicas
» Different updates need to be differentiated by something monotonically increasing

like a timestamp
» Allows us to replace old values with updated ones

– get() waits for responses from at least R replicas
– W+R > N

• Why does it work?
– There is at least one node that contains the update

• Why might you use W+R > N+1?

Lec 27.724/30/24 Kubiatowicz CS162 © UCB Spring 2024

Quorum Consensus Example
• N=3, W=2, R=2
• Replica set for K14: {N1, N2, N4}
• Assume put() on N3 fails

N1 N2 N3 N4

K14 V14K14 V14

pu
t(K

14
, V

14
)

Lec 27.734/30/24 Kubiatowicz CS162 © UCB Spring 2024

Quorum Consensus Example
• Now, issuing get() to any two nodes out of three will return the answer

N1 N2 N3 N4

K14 V14K14 V14

get(K14)

nill

Lec 27.744/30/24 Kubiatowicz CS162 © UCB Spring 2024

DynamoDB Example: Service Level Agreements (SLA)

• Dynamo is Amazon’s storage system
using “Chord” ideas

• Application can deliver its functionality in
a bounded time:

– Every dependency in the platform needs
to deliver its functionality with even tighter
bounds.

• Example: service guaranteeing that it will
provide a response within 300ms for
99.9% of its requests for a peak client
load of 500 requests per second

• Contrast to services which focus on
mean response time

Service-oriented architecture of
Amazon’s platform

Lec 27.754/30/24 Kubiatowicz CS162 © UCB Spring 2024

Storage as First Class Citizen:
Global Data Plane (GDP)

Lec 27.764/30/24 Kubiatowicz CS162 © UCB Spring 2024

Applications in the Era of IoT

• An Application is a Connected Graph of Services
– Locality and QoS aware!
– Use local resources to limit external observability/interference

• Distributed storage everywhere
– Each arrow represents imbedded storage
– Transient or Long term

• Computation on the edge of the network
– Perhaps Secure Enclaves (SES) for trusted computation…?
– Rapid launching of computation to close resources

Sensors
with

Aggregation
Real-Time

Components

SwarmLet
(“The Application”)

Transform
and Summarize

Cloud Services

SES

SES

Lec 27.774/30/24 Kubiatowicz CS162 © UCB Spring 2024

Factory

Home

Warehouse/Cloud

Clusters
g

• Smart Manufacturing
• Robotics on the Edge
• Data Analytics
• Machine Learning

A Physical View of these Applications:
Distributed, Ad Hoc, and Vulnerable

Lec 27.784/30/24 Kubiatowicz CS162 © UCB Spring 2024

Why are Data Breaches so Frequent?

• State of the art: AdHoc boundary construction!
– Protection mechanisms are all “roll-your-own” and different for each application
– Use of encrypted channels to “tunnel” across untrusted domains

• Data is protected at the Border rather than Inherently
– Large Trusted Computing Base (TCB): huge amount of code must be correct to protect data
– Make it through the border (firewall, OS, VM, container, etc…) data compromised!

• What about data integrity and provenance?
– Any bits inserted into “secure” environment get trusted as authentic 

manufacturing faults or human injury or exposure of sensitive information

Full OS TCB

Really Large TCB

hh

Really Large TCB

SSL

SSL

SSL

Lec 27.794/30/24 Kubiatowicz CS162 © UCB Spring 2024

• In July (2015), a team of researchers
took total control of a Jeep SUV
remotely

• They exploited a firmware update
vulnerability and hijacked the vehicle
over the Sprint cellular network

• They could make it speed up, slow
down and even veer off the road

• Machine-to-Machine (M2M)
communication has reached a
dangerous tipping point

– Cyber Physical Systems use models
and behaviors that from elsewhere

– Firmware, safety protocols, navigation
systems, recommendations, …

– IoT (whatever it is) is everywhere
• Do you know where your data

came from? PROVENANCE
• Do you know that it is ordered

properly? INTEGRITY
• The rise of Fake Data!

– Much worse than Fake News…
– Corrupt the data, make the system

behave very badly

On the Importance of Data Integrity

Lec 27.804/30/24 Kubiatowicz CS162 © UCB Spring 2024

The Data-Centric Vision:
Cryptographically Hardened Data Containers

• Inspiration: Shipping Containers
– Invented in 1956. Changed everything!
– Ships, trains, trucks, cranes handle

standardized format containers
– Each container has a unique ID
– Can ship (and store) anything

• Can we use this idea to help?

• DataCapsule (DC):
– Standardized metadata wrapped around

opaque data transactions
– Uniquely named and globally findable
– Every transaction explicitly sequenced in a

hash-chain history
– Provenance enforced through signatures

• Underlying infrastructure assists and
improves performance

– Anyone can verify validity, membership, and
sequencing of transactions (like blockchain)

Fiber


 
Hole

Hash Ptr
SignatureMetadata Container

Lec 27.814/30/24 Kubiatowicz CS162 © UCB Spring 2024

But – what is a DataCapsule Really?
• A cohesive bundle of data representing a complete data object:

– A Key-Value store or a file in a filesystem
– Any storage model that can be based on a secure log

• A DataCapsule is the ground truth of the state of data
– Everything else is for optimization or durability

• A DataCapsule has a single owner which is a cryptographic credential
(public/private key pair) that restricts who can write the DataCapsule

– Writes to the data capsule consist of records signed with the owner key or by key
authorized by owner

– Records can represent anything, but must be linked to previous records to enforce
order

– Records can optionally be encrypted for privacy.
• Reads and writes to a DataCapsule are virtual and over the network

– Location-independent, Serverless storage
– DataCapsules addressed by name, not location (or IP address)
– DataCapsule contents signed by owner and encrypted by owner-chosen keys

Lec 27.824/30/24 Kubiatowicz CS162 © UCB Spring 2024

Record 1
Name
Hash

So: DataCapsule is really a “Blockchain in a Box”

Record 3
Name
Hash


h

Block
Of Data
Record 1

Record 1
Hash

Pointer
Array Top

H
ash

Rec1

Record 2
Name
Hash


h

Block
Of Data
Record 2

Record 2
Hash

Pointer
Array Top

H
ash

Rec2


h

Block
Of Data
Record 3

Record 3
Hash

Pointer
Array Top

H
ash

Rec3

Record 4
Name
Hash


h

Block
Of Data
Record 4

Record 4
Hash

Pointer
Array Top

H
ash

Rec4

Block
Of Data
Record 5

Record 5
Hash

Pointers

Top
H
ash

Rec5

Record 5
Name
Hash



Rec1

Rec3

Rec2

Rec4
Rec5 

Lec 27.834/30/24 Kubiatowicz CS162 © UCB Spring 2024

Record 1
Name
Hash

DataCapsules provide proof of membership on Reads

Record 3
Name
Hash


h

Block
Of Data
Record 1

Record 1
Hash

Pointer
Array Top

H
ash

Rec1

Record 2
Name
Hash


h

Block
Of Data
Record 2

Record 2
Hash

Pointer
Array Top

H
ash

Rec2


h

Block
Of Data
Record 3

Record 3
Hash

Pointer
Array Top

H
ash

Rec3

Record 4
Name
Hash


h

Block
Of Data
Record 4

Record 4
Hash

Pointer
Array Top

H
ash

Rec4

Block
Of Data
Record 5

Record 5
Hash

Pointers

Top
H
ash

Rec5

Record 5
Name
Hash



9
Rec1

Rec3

Rec2

Rec4
Rec5 

Block 3 proof of membership:
{ Block 4 hash, Record 2 Name Hash,

Block 5 hash, Signature }

Lec 27.844/30/24 Kubiatowicz CS162 © UCB Spring 2024

How far can we stretch the shipping container analogy?
• Physical Shipping Containers

– Shipped over standard transport platforms: planes, trains, trucks, ships
– Standardized size  fit on standard transport platforms
– Standardized labels  tracking, inventory, routing from one platform to next
– Contents  largely unconstrained except for routing constraints (safety, international

restrictions, etc…)
• DataCapsules

– Shipped and queried over standard transport platforms: global data plane (GDP)
enabled switches with embedded DataCapsule servers and data-centric routing

– No standardized (maximum) size  can go anywhere it fits
» Instead: standardized metadata  compatible with any GDP infrastructure

– Standardized labels  standard naming of DataCapsules allows for routing of queries
from one platform to the next, movement and tracking of actual DataCapsules

– Contents  largely unstrained, must adhere to structure requirements (hash-chain
structure, signatures) and routing constraints (data safety, international restrictions,
etc)

Lec 27.854/30/24 Kubiatowicz CS162 © UCB Spring 2024

Why does this help?
• The “Networking” effect (Pun Intended!)

– Standardization  Infrastructure proliferation that benefits everyone
– Federation  Enable a market of service providers

• Data becomes a first-class entity in the network!
– Asserts its own requirements for security, privacy, which are enforced via cryptography
– Independent of physical location – policies can target durability, QoS, availability, etc
– No application silos – data producers own and chose how to share their information
– Network is informed about the information that it is carrying and where it may go

• First (Necessary) Step:
Network Cannot Enforce what is not Specified!

• Related information bundled and kept together as it migrates
– Provenance and data ordering part of all information usage
– Information labeled with meta-data about (1) Where it is allowed to be within the network,

and (2) Who is allowed to view and interact with it, (3) Who is allowed to modify it.

Lec 27.864/30/24 Kubiatowicz CS162 © UCB Spring 2024

A Platform Approach: the Utility-Provider Model
[Ships, Trains, Trucks, and Cranes]

Platform Users:
Apps/Services

Utility Providers:
Heterogeneous
Infrastructure

Storage, Transport, QoS

Platform

A widely distributed system

App AppService

App

Global Data Plane:
Routing, Multicast,

Trust Domains, Accounting

Lec 27.874/30/24 Kubiatowicz CS162 © UCB Spring 2024

Transit (Provider)
Networks

Cloud data center Municipal data center

Home Smart Factory

A Physical View of the GDP

GDP switch

DNR

DNR

DNR

NR

NR

Name Resolver

Dristributed
Name Resolver

Peering

NR

NR

NR

NR

DataCapsule
Server

Client

DataCapsule

Lec 27.884/30/24 Kubiatowicz CS162 © UCB Spring 2024

Refactoring of Applications around
Security, Integrity, and Provenance

• Goal: A thin Standardized entity that can be easily
adopted and have immediate impact

– Can be embedded in edge environments
– Can be exploited in the cloud
– Natural adjunct to Secure Enclaves for computation

• “Eye-Of-The-Needle” proposition:
– Thin enough that it will be adopted and enhanced by

the most people
– Powerful enough that application writers can do

whatever they need to do
• DataCapsules  bottom-half of a blockchain?

– Or a GIT-style version history
– Simplest mode: a secure log of information
– Universal unique name  permanent reference

• Applications writers think in terms of traditional
storage access patterns:

– File Systems, Data Bases, Key-Value stores
– Called Common Access APIs (CAAPIs)
– DataCapsules are always the Ground Truth

File System, Stream,
SQL, Key-value,…

Home Control, Smart Office
Industrial Internet, …

Global
Data Plane

TCP/IP, UDP/IP,
Others (non-IP), …

Ethernet, WI-FI,
Bluetooth, 802.15.4, AVB,…

Application

Common Access
APIs (CAAPI)

Network

Physical

DataCapsules /
Secure Routing

Lec 27.894/30/24 Kubiatowicz CS162 © UCB Spring 2024

• Flat Address Space Routing
– Route queries to DCs by names, independent

of location (e.g. no IP)
– DCs move, network deals with it
– Short-term Channels (“-SSL channels”)

• Black Hole Elimination: Delegation of Names
– Only servers authorized by owner of DC may

advertise DC service
• Routing only through domains you trust!

– Secure Delegated Flat Address Routing

• Secure Multicast Protocol
– Only clients/DC storage servers with

proper (delegation) certificates may join
• Queries (messages) are Fibers

– Self-verifying chunks of DataCapsules
– Writes include appropriate credentials
– Reads include proofs of membership

• Incremental deployment as an overlay
– Prototype tunneling protocol (“GDPinUDP”)
– Federated infrastructure w/routing certificates

C1

C2

Edge Domain #1

C5C6

C3

C4

Edge Domain #2

C7

Service
Provider

Global Data Plane (GDP) and the Secure Datagram Routing Protocol

Lec 27.904/30/24 Kubiatowicz CS162 © UCB Spring 2024

Reasoning about the infrastructure: Trust Domains

• Trust Domains: Groups of Resources owned by single entity
– Reflect the ownership, trustworthiness, and degree of maintence
– Carry unique economic, political, or incentive structure of the owner
– Pay-for-service, Federated utility model

• Trust for:
– Message Transport, Location Resolution, DataCapsule Service, Secure Enclave Service (SES)
– Conversations routed according to DataCapsule owner’s Trust Preferences

Global (Tier-1) Trust Domain
(Trusted Service Provider)

Trust Domain #2
(e.g. Remote Status/CTRL)Trust Domain #1

(e.g. Factory)
SES

SES

SES

Name
Resolver

Name
Resolver

Global
Name

Resolver

GDP Peering (Adv, Route)

Mobile Domain

Name
Resolver

SES

Lec 27.914/30/24 Kubiatowicz CS162 © UCB Spring 2024

Common Access APIs (CAAPIs)
• Common Access APIs (CAAPIs) provide convenient/familiar Storage Access Patterns:

– Random File access, Indexing, SQL queries, Latest value for given Key, etc
– Optional Checkpoints for quick restart/cloning
– Refactoring: CAAPIs are services or libraries running in trusted or secured computing

environments on top of DataCapsule infrastructure
• Many Consistency Models possible

– DataCapsules are “Conflict-free Replicated Data Types” (CRDTs): Synchronization via Union
– Single-Writer CAAPIs prevent branches if sufficient stable storage (strong consistency models)
– DataCapsules with branches: like GIT or Amazon Dynamo (write always, reader handles

branches)
– CAAPIs can support anything from weak consistency to serializability

• Examples:
– Streaming storage
– Key/Value store with time-travel
– Filesystem (changeable sequences of bytes organized in hierarchy)
– Multi-writer storage using Paxos or RAFT
– Byzantine agreement with threshold admission to DataCapsules

Lec 27.924/30/24 Kubiatowicz CS162 © UCB Spring 2024

Example #1: Using DataCapsules to build more sophisticated
data access patterns (e.g. DataBase)

GDP Network:
Data Centric
Messaging

RO DataBase
CAAPI (SQL)

(wo/Owner Key)

DataBase
Projection

(RAM)

OLAP
DB

Client
(w/Key)

SQL (RO)
R/W DataBase
CAAPI (SQL)

(w/Owner Key)

DataBase
Projection

(RAM)

OLTP
DB

Client
(w/Key)

SQL (R/W)

OLTP
DB

Client
(w/Key)

SQL (R/W)

Lec 27.934/30/24 Kubiatowicz CS162 © UCB Spring 2024

Example #2: Function as a Service

• Problems with “standard” Function as a Service:
– Runs entirely in uncontrolled cloud
– No explicit state: must add something else
– Not private, leaks algorithms and results

• Opportunity cost: Can’t exploit Edge!
– Latency, predictability, privacy, ….

Robots sorting objects in
unfamiliar environment

Function-as-a-Service(Faas)
Cloud Service Provider
(“lambdas”)

Result: Plan

Function: Plan Generator
Data: Situational Info Insecure “lambdas”

Lec 27.944/30/24 Kubiatowicz CS162 © UCB Spring 2024

A better Alternative: Paranoid Stateful Lambdas (PSL)
Secure
Enclave

(x)
KVS CAPPI

Secure
Enclave

(x)
KVS CAPPI

Secure
Enclave

(x)
KVS CAPPI

M
ULTICAST TREE

KVS Replicas







3rd‐Party
Enclave
Manager



• Enclaves launched automatically
by 3rd-party enclave manager

– Handles attestation of code
– Launches runtime system (and CAAPI)

• Code and Data in DataCapsules
– Privacy, Integrity, Provenance

• Provides eventual consistency and
release consistency

Lec 27.954/30/24 Kubiatowicz CS162 © UCB Spring 2024

L0

L2

L1

L0

L0

L1

Sync Points Bound Skew [
Release Consistency]

Multi-writer Model for Parallel Key-Value Store:
(Inside DataCapsule)

Bounded, Eventually-Consistent
Write-Ahead Log (WAL)

Level-Structured Merge
Tree (Snapshots)

Each  has unique key
and write timeline

W
1 𝜏଻,𝜎ଵ ᇱ

W
1

W
3

W
0

W
4𝜏ଷ,𝜎ଶᇱW

2𝜏ଵ,𝜎ଵᇱ
𝜏ଶ,𝜎ଷ ᇱ 𝜏ସ,𝜎ଷᇱ

𝜏ହ,𝜎ଶᇱ
W
3 𝜏ଽ,𝜎ଵ ᇱ

W
0 𝜏଺,𝜎ଷ ᇱ W

2 𝜏଼,𝜎ଷ ᇱ
Syncn Syncn+1

: Sha256 hashes
: owner signatures

’x: derived key signatures
n: time stamps

Lec 27.964/30/24 Kubiatowicz CS162 © UCB Spring 2024

Paranoid Stateful Lambdas:
Key-Value Store CAAPI for Secure FaaS

Worker Enclaves

Lambda Program

Memtable

KVS CAAPI

Concurrency
Control

Crypto Actors
Circular Buffer

Untrusted
Local Storage

(Cache)

CapsuleDB Enclave

Memtable

KVS CAAPI

Consistency
Coordinator

Crypto Actors
Circular Buffer

Tree‐Based Storage
and Checkpointing

Crypto Actors
Circular Buffer

DataCapsule Server
Caching
IndexerWrite Verifier

Proof of
Membership

Worker Enclaves

Lambda Program

Memtable

KVS CAAPI

Concurrency
Control

Crypto Actors
Circular Buffer

Worker Enclaves

Lambda Program

Memtable

KVS CAAPI

Concurrency
Control

Crypto Actors
Circular Buffer

MULTICAST TREE

Secure FaaS Coordinator/
Third Party Service

Key Dist.
Manager

Code
Attester

Client

Lec 27.974/30/24 Kubiatowicz CS162 © UCB Spring 2024

Factory

Home

Warehouse/Cloud

Clusters
g

• Secure Compute (e.g. SGX)
• Secure Binaries and Data
• Federated Service

The Opportunity of the Edge:
Paranoid Stateful Lambdas (PSL)

Lec 27.984/30/24 Kubiatowicz CS162 © UCB Spring 2024

Edge Network
(Trust Domain)

Edge Training
(Secure Execution)

Model

t

Model
Refinemen

t

Updated

b

Updated
Model.p

b

Working
Model

Working
Model

Sense and
Actuation Data

Mobile Compute
(Secure Execution)

Logs

Working
Model

Sense and
Actuation Data

Mobile Compute
(Secure Execution)

Logs

Example #3: Data Capsules as Part of Model Delivery

• Robotic grasping model distributed in DCs
– Intellectual property of producer (only unpacked in environments guaranteed not to leak model)
– Refinement on the edge is updated only by authorized enclaves with attested algorithms

Training
Data Sets

Model
Building

And
Refinement

Model.pb

Cloud Based
Model Development

(w/ Secure Distribution)

Initial
Model

Lec 27.994/30/24 Kubiatowicz CS162 © UCB Spring 2024

DataCapsule Infrastructure

Large Edge Domain

Cloud Domain

Global Domain

SES

SES

SES

Cloud Service

h

Combined
GDP EndPT

GDP
Switch

GDP
Switch

GDP
Switch

GDP
Switch

Global
GDP

Switch

GDP
Switch

Small Edge Domain

DC Service

DC Service

DC Service

Location
Services

Global
Location
Services

Location
Services

Lec 27.1004/30/24 Kubiatowicz CS162 © UCB Spring 2024

Research Agenda: What is Hard?
• Biggest Challenge: Convince People to Refactor their applications around DataCapsules

– Incremental Deployment encouraged via (1) overlay networking followed by (2) “native” GDP
datagram routing – possibly even without IP service

– CAAPIs provide standardized storage “patterns” for naïve and domain application writers
• DataCapsules provide extremely flexible storage (intended as a primitive element upon

which to build a wide array of storage systems)
– The trick is to provide understandable semantics with good performance
– Consider wide range of Google storage systems (GFS, BigTable, Megastore, Spanner…)!

• DataCapsule placement: Edge vs Cloud
– Placement based on Performance, Privacy Constraints, Durability Requirements, BW, QoS,

….
• Replication and Failover semantics

– Basic Replication simple since DataCapsules are CRDTs (Conflict-Free Replicated
Datatypes). Thus, synchronization is via union of DataCapsules is easy

– Providing quick adaptation in (routing) network as DataCapsule servers fail and recover while
still providing understandable semantics is tricky

• Replication in the presence of network partitions and malicious agents
– Can provide multi-writer storage using Paxos or RAFT
– Can use Byzantine agreement with threshold admission to DataCapsules

Lec 27.1014/30/24 Kubiatowicz CS162 © UCB Spring 2024

Research Agenda (con’t): What is Hard?
• Flat Address Space Routing is Dead, long live Flat

Address Space Routing
– No physical hierarchy in the names of DataCapsules
– Each advertising certificate (Delegated Flat Name) is

unforgeable (RO) and easily exported using a scalable DHT
– Using Redis key-value store for initial prototype

• Adaptable, Authenticated, Automatic Multicast
construction

– Multicast is an old topic, but secure, performant, multicast
that respects trust domains is essential to DataCapsule/GDP

– Can leverage ideas from prior Bayeux multicast DHT work
• Only Active Conversations Stored in Switches!

– Provides hope of scalability, but challenge of routing
• QoS-Aware Routing problem: Efficiently routing while

respecting QoS and exploiting hardware (e.g., TSN)
– Can leverage ideas from prior Brocade landmark overlay

DHT work

Click Switch:
GDPinUDP tunnel

Parent Domain
(e.g. Tier-1)

Domain Location And
Multicast build services

Peer Domain

Location Resolution
and Routing Infrastructure

Switching
Mesh

Lec 27.1024/30/24 Kubiatowicz CS162 © UCB Spring 2024

Why the Global Data Plane Again???
• Yes, you could:

– Provide your own infrastructure for everything
– Provide your own storage servers
– Provide your own networking, location resolvers, intermediate rendezvous points

• But: Why?
– Standardization is what made the IP infrastructure so powerful
– Utilize 3rd-party infrastructure owned (and constantly improved) by others
– Sharing is much harder with stovepiped solutions!

• The Global Data Plane provides standardized infrastructure support
– It provides a standardized substrate for secure flat routing and publish-subscribe multicast
– It provides a provides the ability to reason about infrastructure providers (Trust Domains)
– It frees DataCapsules from being tied to a particular physical location
–  Analogous to ships, planes, trains, and cranes that support shipping containers

• The GDP routes conversations between endpoints such as DataCapsules, sensors,
actuators, services, clients, etc.

• Information protected in DataCapsules, but freed from physical limitations by the GDP
– Correctness and Provenance enforced by DataCapsules
– Performance, QoS, and Delegation of Trust handled by the GDP

Lec 27.1034/30/24 Kubiatowicz CS162 © UCB Spring 2024

GDP: Conclusion
• The most game-changing element of this agenda is the presence of ubiquitous, secure

and mobile bundles of data: DataCapsules
– Provably authentic and self-consistent
– Only authorized writers can add information; anyone with possession can verify integrity

• The power of DataCapsules are in standardization
– If everyone uses DataCapsules, then everyone reaps the benefits—

No malicious information, no fake news, no breached passwords
– Eliminate rampant “roll-your-own” philosophy that yields data breaches

• Naturally Coupled with Secure Edge Computing (Enclaves)
• Burden of standardization reduced through careful design:

– Incremental, flat-address-space routing (no IP addresses!)
– Efficient refactoring of communication around storage
– Familiar storage patterns (facades): File Systems, DataBases, Key-Value Stores, Streams,…

• Exciting new applications: Robotics and Machine Learning

Lec 27.1044/30/24 Kubiatowicz CS162 © UCB Spring 2024

Thank you!

• Thanks for all your great questions!
• Good Bye! You have all been great!

intro

