
C Review Session

Zoom Logistics

● This presentation will be recorded, so please have your videos off
● If you have any questions, please post them in chat!
● We’ll also try to leave some time for Q&A after the presentation for any

other questions

Disclaimer

● These slides are not a comprehensive overview of everything you need
from 61C to succeed in 162

○ Other concepts not mentioned will likely be brought up when relevant

● This class has A LOT of C coding
○ If you choose to take this class you are committing to that workload
○ Almost everyone taking this class is rusty in C but this review alone will not make you

comfortable enough for this class

Other Resources

● CS 162 Ladder
○ Overview of C and 61C topics

● CS 61C Resources Page
○ C staff notes, GDB reference card

● Python Tutor C
○ Just like CS 61A’s Python Tutor, but for C

https://cs162.eecs.berkeley.edu/ladder/
https://cs61c.org/fa21/resources/
https://pythontutor.com/c.html#mode=edit

Outline

● We’ll do brief conceptual review on topics and then do a review section.
We’ll close with notes on Git and other tips.

● Topics List:
○ C Basic Syntax
○ C Pointers and Arrays
○ C Structs
○ C Memory Layout
○ Review
○ Git

C Basics

Types in C

● C is a statically typed language
○ Type is known at compile-time (instead of at run-time)

● All types are numerical or a composition of other types:
○ Ex. int, char, struct, union, typedef, pointer

● Every variable in C has a type:
○ int i; // Declares i to be an integer.

int j = 5; // Defines j to be an integer initialized to 5.

● All variables in C are just bytes under the hood with some length
○ Ex: int32_t is a 4 byte integer interpreted as a signed 2’s complement number

● There is no built-in bool
○ Must import stdbool.h with #include <stdbool.h>

Basic Operations

● Adding (+), subtracting (-), dividing (/), multiplying (*).
● Pre-increment and post-increment for numeric types:

○ Ex: int, long, char, size_t

int i = 0;
printf("%d\n", ++i); // Increments and then returns the value of i.
printf("%d\n", i++); // Increments i but returns the value before increment.
printf("%d\n", i);

1
1
2

Multiple Declarations

● You can declare/define multiple variables in the same line.

int x, y;
char c = 'a', d;
float f, g = 3.0, h = 162.0;

Conditionals and Loops

● Change control flow/iterate. Basic syntax:
if-else if-else blocks:
int i = 5;
if (i == 5) {
 i = 6;
 printf("This is executed.\n");
} else if (i == 6) {
 printf("This is not
executed.\n");
} else {
printf("Not executed either.\n");
}
if (i == 6) {
 printf("This will be executed,
however.\n");
}

For loops:
for (int i = 0; i <= 162; i++) {
 printf("%d\n", i);
}

// Not limited to integers!
for (char c = fgetc(infile); c !=
EOF; c = fgetc(infile)) {
 putchar(c);
}

While loops:
int i = 0;
while (i <= 162) {
 printf("%d\n", i);
 ++i;
}

Do-while loops:
int i = 0;
do {
 printf("%d\n", i);
 ++i;
} while (i <= 162);

Switch Statements
Switch statements are a nice way to do conditional logic based on the value of
an expression: char c = 'c';

printf("Make sure to break out of your
cases!\n");
switch (c) {
 case 'a':
 printf("Why?\n");
 break;
 case 'c':
 printf("Otherwise you will ");
 case 'b':
 printf("fall through!\n");
 break;
 default:
 break;
}

Type Casting

● We can convert between types with casting either implicitly or explicitly
○ Ex: unsigned int i = -1;
○ Ex: long s = (unsigned int) -1;

● C does not have the concept of generics the way other languages do
● Instead C uses void * and char * to generalize pointer types. Can use

char * to modify data at the byte level.
● It’s easy to cast to fix compilation errors but break your program as a

result.

Truthiness in C

● In C, the only false values are things that evaluate to 0
○ 0, NULL, false (w/ #include <stdbool.h>)

● All other values are truthy.

● It’s not uncommon in C to see while (1) { ... }
○ This is an infinite loop in C. (Can also do for(;;) {})

Pointers
Memory Manipulation

Pointer Syntax

● Denote variables as pointers with *
○ int* my_pointer means a pointer to an integer
○ char** my_db_pointer means a pointer to a pointer to a character

● & – Address operator: get the memory address of a variable
○ int x = 5;
○ int* my_pointer = &x;

● * – Dereference operator: get the value of the variable that is pointed to
○ int my_int = *my_pointer; // Gets the value of integer pointed to by my_pointer.
○ *my_pointer = 7; // Changes the value of the integer pointed to by my_pointer.

● Pitfall with Multiple Pointer Declarations in one line:
○ int *x, y; declares x to be a pointer to int but y to be an int . Use int *x, *y instead.

Pointers in C and Memory

61C Fa17 Notes

● Can think of memory as one big
array

● A memory address is just the
index of the memory array

● Each memory address holds one
byte of data (byte addressing)

● Q: Is this a 32-bit or 64-bit
system?

● A: 32-bit (memory addresses)

https://cs61c.org/resources/pdf?file=C_and_Memory_Notes.pdf

Pointers in C

● The value of a pointer is the memory address of what it’s pointing to

int x = 1564;
int y = 42;
...
int* p = ______;
int** db_p = ______;

Task: Make p point to y,
and make db_p be pointer
that points to p.

*The stack grows down.

61C Fa19 Discussion 2

Pointers in C

● The value of a pointer is the memory address of what it’s pointing to

int x = 1564;
int y = 42;
...
int* p = &y;
int** db_p = &p;

*The stack grows down.

Pointers in C

● The value of a pointer is the memory address of what it’s pointing to

int x = 1564;
int y = 42;
...
int* p = &y;
int** db_p = &p;

What do the following evaluate to?

● &db_p

● db_p

● *db_p

● **db_p

Pointers in C

● The value of a pointer is the memory address of what it’s pointing to

int x = 1564;
int y = 42;
...
int* p = &y;
int** db_p = &p;

What do the following evaluate to?

● &db_p — 0xF9320900

● db_p — 0xF9320904

● *db_p — 0xF93209AC

● **db_p — 0x2A

Pointers in C

● Think of “*” as the inverse of “&” and vice versa.

● NULL is used as the value for an invalid/uninitialized pointer

● Just passing an address doesn’t make it valid
○ Using memory that is not legal/in scope can lead to program crashes (segfaults)

sizeof

● In C, the sizes of types may depend on the system you’re targeting:
○ Ex: Size of a pointer. Could be 4 bytes (32-bit) or 8 bytes (64-bit).

● In C, we use sizeof to determine the size
○ Ex: sizeof(int) == # bytes in an integer
○ sizeof(int*) == sizeof(char*) == # bytes in a pointer

● sizeof is important to use for memory allocation
○ Malloc calls should include sizeof somewhere
○ Ex: int* x = malloc(sizeof(int))

Writeable Function Parameters

● When a function is called, its parameters are copied onto its stack
○ C is a pass by value language, like Java

● Changes to these values will be lost when the function returns
● Solution:

○ pass in a pointer as a parameter
○ function receives copy of pointer
○ function uses this pointer to access/edit the contents it points to
○ the changes will persist after the function returns

Writeable Function Parameters Example

Writeable Function Parameters Example

Writeable Function Parameters Example

Writeable Function Parameters Example

Writeable Function Parameters Example

Writeable Function Parameters Example

Writeable Function Parameters Example

Writeable Function Parameters Example

Arrays in C

● An array is a contiguous region of memory of fixed size
○ int array[3];

● Either static or allocated on the stack.
● Referenced by an address to their first element

○ array == &array[0]

● Access elements via pointer arithmetic
○ array[i] == *(array + i)

● Arrays don’t have an end marker
○ programmer’s responsibility to keep track of the size of an array

Pointer Arithmetic

● int lottery_numbers[3] = {62, 55, 30};
● lottery_numbers[0] == *lottery_numbers == 62

● Q: *(lottery_numbers + 2) or *(lottery_numbers + 2*sizeof(int))?
● A: *(lottery_numbers + 2)

The compiler knows to multiply by 2*sizeof(int), and does it for you.
● This is valid for any type-defined pointer, the compiler will automatically

advance the correct number of bytes based on the pointer’s type

Arrays are not Pointers!

Arrays and pointers share a few characteristics, but they are not the same.

1. Pointers can point to anything. Even invalid memory. Arrays are either static or on
on the stack (valid by definition).

2. Arrays are not reassignable. Ex: int arr[10]; arr = arr + 1; will error. Similar
to const pointers in that regard. Non const pointers can be reassigned.

3. Arrays include size in their type. An int array of 9 elements is a different type than
an int array of 10 elements, for example.

4. Arrays that have their size determined at compile time can have their size queried
using sizeof.

Arrays Carry Size Information

int arr[10];
int *p = arr;
printf("%lu\t%lu\n", sizeof(arr), sizeof(p));

40 8

Pointers to Arrays

int lottery_numbers[3] = {62, 55, 30}; (pointer w/ space for 3 integers)

Q: Which of the following gives a pointer to the lottery_numbers array?

void* ptr_one = lottery_numbers;
void* ptr_two = &lottery_numbers;
void* ptr_tre = &lottery_numbers[0];

Pointers to Arrays

int lottery_numbers[3] = {62, 55, 30}; (pointer w/ space for 3 integers)

Q: Which of the following gives a pointer to the lottery_numbers array?

void* ptr_one = lottery_numbers;
void* ptr_two = &lottery_numbers;
void* ptr_tre = &lottery_numbers[0];

A: All of them are correct and equivalent to each other!

For more information read here.

https://stackoverflow.com/questions/35442414/dynamic-vs-static-array-in-c

Pointers to Arrays

● int lottery_numbers[3] = {62, 55, 30};
How can lottery_numbers == &lottery_numbers?

○ lottery_numbers -> gives you the address of lottery_numbers[0]
○ &lottery_numbers -> gives you the address of the entire array, which is the same thing

● &lottery_numbers and lottery_numbers evaluate to pointers to different
things

○ lottery_numbers decays to an int *
○ &lottery_numbers points to an int array of size 3
○ Try adding 1 to each pointer!

Data Structures in C
structs, typedefs.

Typedef

● typedef creates a new type that has the exact same structure as a data type

● Syntax for typedef
○ typedef <data type name> <new data type name>;
○ typedef int my_int;
○ typedef long long LL;

● Commonly used to create new types from structs

Structs

● structs allow us to create groups of different types (arrays, int, char)
● struct syntax

○ struct my_struct { int x; char* y; };
● Usually used in conjunction with typedef

○ typedef struct { int x; char* y; } my_struct;
○ my_struct instance;

● structs DO NOT have methods, constructors, or destructors
● Alternate notation when accessing fields of structs via pointers:

○ my_struct* instance_ptr = &instance;
○ (*instance_ptr).x == instance_ptr->x
○ (*struct_instance).field == struct_insance->field

Initializing a struct
typedef struct my_struct {

int my_int;
char my_char;

} my_struct_t;
// typedef means “my_struct_t” is equivalent to
“struct my_struct”

// Method 1: declare struct on stack
// initialize fields manually
void main() {

my_struct_t s1;
s1.my_int = 1;
s1.my_char = ‘a’;

}

// Method 2: malloc and initialize manually
// (most common, especially if struct
// ptr is being returned)
// Note the use of -> instead of .
my_struct_t* s2 = malloc(sizeof(my_struct_t));
s2->my_int = 3;
s2->my_char = ‘c’;

// The following is incorrect
my_struct s3;

// The following is correct
struct my_struct s4;

Ex: Using typedef

(1)

struct ListNode {
char* value;
struct ListNode* next;

};

typedef struct ListNode LinkNode;

(2)

typedef struct ListNode {
char* value;
struct ListNode* next;

} LinkNode;

types.h

off_t: signed integer, used for file offsets
pid_t: signed integer, used for process IDs
pthread_t: unsigned integer, used to identify a thread
size_t: unsigned integer, used for sizes of objects

Why so many types? Can’t we have int instead of pid_t?
● This is for accommodating different types of devices.

Some devices may be 32-bit machines vs 64-bits.

Pointers and Structs

● Alternate notation when dealing with pointers to structs.
○ (*struct_pointer).value == struct_pointer->value

Working with C Data Structures + Pointers!

● Complete the example function that adds a new node to the back of the
list.

void add_node_to_back (LinkNode* head, char* str) {

while (head->next != NULL) { // Iterate through list to find end

_____________________;

}

_______________________;

_______________________;

_______________________;

_______________________;

}

typedef struct ListNode {
char* value;
struct ListNode* next;

} LinkNode;

Working with C Data Structures + Pointers!

void add_node_to_back (LinkNode* head, char* str) {

while (head->next != NULL) { // Iterate through list to find end

head = head->next;

}

LinkNode* new_node = (LinkNode*) malloc(sizeof(LinkNode));

// +1 copies over null terminator

new_node->value = (char*) malloc(sizeof(char)*(strlen(str)+1));

strncpy(new_node->value, str, strlen(str)+1);

new_node->next = NULL;

head->next = new_node;

}

C Basics

The following code has undefined behavior. Identify all of the following bugs in
the code.

Pointer Basics

// Print out all array elements,
// each element on a newline

void print_array (int* arr) {
while (*arr != NULL) {

 printf ("%d\n", *arr);
 arr += sizeof (int);

}
}

int main () {
// Array intended to consist of

 // 1, 2, 0, 5
int a[] = {1, 2, 0, 5, NULL};
// Should print:
// 1
// 2
// 0
// 5
print_array (a);

}

basics.c

Pointer Basics

// Print out all array elements,
// each element on a newline

void print_array
(int* arr, size_t size) {
 int* endpoint = arr + size;

while (arr < endpoint) {
 printf ("%d\n", *arr);
 arr += 1;

}
}

int main () {
// Array intended to consist of

 // 1, 2, 0, 5
 // No need for NULL

int a[] = {1, 2, 0, 5};
// Should print:
// 1
// 2
// 0
// 5
print_array (a, 4);

}

basics.c

Strings in C

● A string in C is just an array of characters (type is char*)
○ A proper string always ends with a null terminator ‘\0’

● C Library functions assume proper strings (e.g. strlen, strcpy, strcmp)
○ very unsafe assumption, errors can occur

● Functions that have length as a parameter are safer (still not good though)
○ ex) strncpy, strncat, etc.

C Memory Layout

Memory Layout

Memory Layout (explained)

● Text: Actual instructions of the Program
● Data (+ BSS): Statically allocated data

(global and static variables, Strings,
constants)

● Stack: Local variables for each function call
● Heap: Dynamic memory that persists

beyond function calls (malloc)

C Memory (Global)

● Global variables can be accessed by all functions and exist throughout the
duration of a program’s lifetime

● Convenient, but dangerous
○ no access control, namespace pollution, testing/confinement issues (hard to unit test),

concurrency issues, etc.
○ bad practice in large-scale software engineering projects

C Memory (Stack)

● Stores local arguments and function parameters in a stack frame
● When a function is invoked, a stack frame is pushed to the stack
● When a function returns, its stack frame is removed from the stack

Do not return a pointer to the stack.
Instead, store and return data on the heap (with malloc/calloc) or make them
global if it’s appropriate.

C Memory (Heap)

● Memory on the heap is requested with the alloc series of functions

● void* malloc (size_t nbytes)
○ Return a pointer to n bytes of data

● void* calloc (size_t nelems, size_t elemsize)
○ Return a pointer to elemsize * nelems bytes of data (recommended for arrays, strings)
○ Data is zeroed-out

● void* realloc (void* ptr, size_t nbytes)
○ Resizes a block of memory that was previously allocated (without losing old data)
○ Realloc can return a NEW pointer–be sure to update any references to the old pointer after

● Release heap-allocated memory with free (void* ptr)
Helpful Tip: Use malloc(sizeof(<insert type>)) instead of malloc(<number>)

Avoid padding issues!

C Memory (Heap) String Example

malloc((5+1)*sizeof(char))

calloc(5+1, sizeof(char))

Note how calloc zeroes out the
memory.

The +1 represents the null terminator.

C Memory (Heap)

● Heap data is requested with the alloc series of functions
○ You saw malloc, calloc, and realloc

● void* malloc (size_t nbytes)
○ Return a pointer to n bytes of data

● void* calloc (size_t elemsize, size_t nelems)
○ Return a pointer to elemsize * nelems bytes of data

● void* calloc (void *ptr, size_t nbytes)
○ Return a pointer to n bytes of data resizing the existing ptr (possibly moving it)

● Memory is returned with free (void* ptr)

WARNING: For strings:
calloc “provides” null-terminators (because it zeros out all allocated
memory); however, malloc does not provide null-terminators. You will
need to set the null terminator appropriately. Good practice to put null
terminator manually anyway.

For both malloc and calloc, be sure to request one additional byte for the
null-terminator. For malloc, be sure to actually set that byte to the
null-terminator.

About Free

● Every time you add a malloc/calloc, think about where you will free that
data so it happens every time.

○ But of course, don’t free memory that will be used in other places :)

● We will explicitly check for memory leaks (Unfreed, unused heap
allocations) in projects

○ Run valgrind!

Let’s take a break!

Review/Examples

C Memory

In the following program we have provided 5 print statements. State which print
statements will not always succeed and why. Assume all necessary includes.

C Memory

char global[] = {'h', 'e', 'l', 'l', 'o'};
int main () {

printf ("%s\n", f1());
printf ("%s\n", f2());
printf ("%s\n", f3());
printf ("%s\n", f4());
printf ("%s\n", f5());

}

char* f3 () {
char hello[] = "hello";
return hello;

}

char* f1 () {
return "hello";

}

char* f4 () {
return malloc (strlen ("hello") + 1);

}

char* f2 () {
return global;

}

char* f5 () {
char* arr = calloc(strlen("hello") + 1,

 sizeof (char));
for (int i = 0; i < 5; i++) {

arr[i] = "hello"[i];
}
return arr;

}

C Memory

char global[] = {'h', 'e', 'l', 'l', 'o'};
int main () {

printf ("%s\n", f1());
printf ("%s\n", f2());
printf ("%s\n", f3());
printf ("%s\n", f4());
printf ("%s\n", f5());

}

char* f5 () {
char* arr = calloc(strlen("hello") + 1,

 sizeof (char));
for (int i = 0; i < 5; i++) {

arr[i] = "hello"[i];
}
return arr;

}

char* f1 () {
// string literals stored in data segment
// (null termination is done by compiler)
return "hello";

}

char* f3 () {
char hello[] = "hello";
return hello;

}

char* f2 () {
return global;

}

char* f4 () {
return malloc (strlen ("hello") + 1);

}

C Memory

char global[] = {'h', 'e', 'l', 'l', 'o'};
int main () {

printf ("%s\n", f1());
printf ("%s\n", f2());
printf ("%s\n", f3());
printf ("%s\n", f4());
printf ("%s\n", f5());

}

char* f5 () {
char* arr = calloc(strlen("hello") + 1,

 sizeof (char));
for (int i = 0; i < 5; i++) {

arr[i] = "hello"[i];
}
return arr;

}

char* f1 () {
// string literals stored in data segment
// (null termination is done by compiler)
return "hello";

}

char* f3 () {
char hello[] = "hello";
return hello;

}

char* f2 () {
return global; // no null terminator
// would work if global had a null terminator

}

char* f4 () {
return malloc (strlen ("hello") + 1);

}

C Memory

char global[] = {'h', 'e', 'l', 'l', 'o'};
int main () {

printf ("%s\n", f1());
printf ("%s\n", f2());
printf ("%s\n", f3());
printf ("%s\n", f4());
printf ("%s\n", f5());

}

char* f5 () {
char* arr = calloc(strlen("hello") + 1,

 sizeof (char));
for (int i = 0; i < 5; i++) {

arr[i] = "hello"[i];
}
return arr;

}

char* f1 () {
// string literals stored in data segment
// (null termination is done by compiler)
return "hello";

}

char* f3 () {
char hello[] = "hello";
return hello; // cannot return stack array

}

char* f2 () {
return global; // no null terminator
// would work if global had a null terminator

}

char* f4 () {
return malloc (strlen ("hello") + 1);

}

C Memory

char global[] = {'h', 'e', 'l', 'l', 'o'};
int main () {

printf ("%s\n", f1());
printf ("%s\n", f2());
printf ("%s\n", f3());
printf ("%s\n", f4());
printf ("%s\n", f5());

}

char* f5 () {
char* arr = calloc(strlen("hello") + 1,

 sizeof (char));
for (int i = 0; i < 5; i++) {

arr[i] = "hello"[i];
}
return arr;

}

char* f1 () {
// string literals stored in data segment
// (null termination is done by compiler)
return "hello";

}

char* f3 () {
char hello[] = "hello";
return hello; // cannot return stack array

}

char* f2 () {
return global; // no null terminator
// would work if global had a null terminator

}

char* f4 () {
return malloc (strlen ("hello") + 1);
// no null terminator

}

C Memory

char global[] = {'h', 'e', 'l', 'l', 'o'};
int main () {

printf ("%s\n", f1());
printf ("%s\n", f2());
printf ("%s\n", f3());
printf ("%s\n", f4());
printf ("%s\n", f5());

}

char* f5 () {
char* arr = calloc(strlen("hello") + 1,

 sizeof (char));
for (int i = 0; i < 5; i++) {

arr[i] = "hello"[i];
}
return arr; // calloc adds null terminator

}

char* f1 () {
// string literals stored in data segment
// (null termination is done by compiler)
return "hello";

}

char* f3 () {
char hello[] = "hello";
return hello; // cannot return stack array

}

char* f2 () {
return global; // no null terminator
// would work if global had a null terminator

}

char* f4 () {
return malloc (strlen ("hello") + 1);
// no null terminator

}

libc
string manipulation, file i/o

Useful Functions to Know

● strlen - returns the length of a string (not including the null terminator)
● strcpy - copies the characters from src string to dest string
● strcmp - compares two strings lexicographically; returns an integer
● fprintf - print formatted strings to a specified file
● fopen - opens a FILE*
● fclose - close a FILE*
● fread - read contents from a FILE*
● fwrite - write contents to a FILE*

File I/O Example

int write_char(char* filename, char c) {

FILE* file = fopen(filename, "w");

if (file == NULL) return 0;

if (fwrite(&char, 1, 1, file) != 1) {

fclose(file);

return 0;

}

fclose(file);

return 1;

}

(void* ptr, size_t size, size_t
nmemb, FILE* stream)

strcpy Implementation

char* strcpy(char* dest, const char* src) {
 if (dest == NULL) {
 return NULL;
 }
 while (*src != '\0') {
 *dest = *src;
 dest++;
 src++;
 }
 return dest;
}

strcpy() copies the string
pointed to by src into the buffer
pointed to by dest, and returns
the pointer to dest.

What’s the issue with this
solution?

strcpy Implementation

char* strcpy(char* dest, const char* src) {
 if (dest == NULL) {
 return NULL;
 }
 char* ptr = dest;
 while (*src != '\0') {
 *dest = *src;
 dest++;
 src++;
 }
 *dest = '\0';
 return ptr;
}

strcpy() copies the string
pointed to by src into the buffer
pointed to by dest, and returns
the pointer to dest.

strlen Implementation

long int strlen_staff(const char* src) {

 /* INSERT CODE HERE */

}

strlen() returns how many
characters are in the string
pointed to by *src.

strlen Implementation (sol'n)

long int strlen_staff(const char* src) {

 long int count = 0;

 while(*src != '\0') {

 count++;

 src += 1;

 }

 return count;

}

strlen() returns how many
characters are in the string
pointed to by *src.

fprintf formatting

● Prints a formatted string to the specified FILE*
● For each conversion specification (%[char]), provide an argument to be

printed
○ fprintf(file1, “Line %d: %s”, 1, “Segmentation Fault”)

● Some common specifications: %d [decimal], %u [unsigned decimal], %c
[character], %s [string], %f [double], %p [address]

● printf(...) = fprintf(stdout, ...)

Swap

void swap(int *a, int *b) {
int* temp;
temp = a;
a = b;
b = temp;

}

int main () {
int a = 1;
int b = 2;
swap(&a, &b);
printf("%d %d\n", a, b);

}

What does the following print?

Swap

void swap(int *a, int *b) {
int* temp;
temp = a;
a = b;
b = temp;

}

int main () {
int a = 1;
int b = 2;
swap(&a, &b);
printf("%d %d\n", a, b);

}

What does the following print?

1 2

While we are swapping the pointers, these changes are
only applicable inside the swap function. To persist
them to main, we can swap the values instead.

int temp;
temp = *a;
*a = *b;
*b = temp;

Strings

char* create_reversed_string(char* str) {
int length = _________;
char* new_str = malloc(____);
for (int i = ____; i < ____; ____) {

new_str[i] = str[____];
}
________;
return new_str;

}

Fill in the blanks to create a reversed string.

Do not reverse the string in-place, use malloc to
create a new string instead.

Strings

char* create_reversed_string(char* str) {
int length = strlen(str);
char* new_str = malloc(length+1);
for (int i = 0; i < length; i++) {

new_str[i] = str[length-i-1];
}
new_str[length] = '\0';
return new_str;

}

Important Notes

● Allocate space for null-terminator
● Set null-terminator after reversing string
● Followup: Do we need to set the null

terminator if we use calloc?

Git
Everyone’s Favorite Version Control

git checkout

● I want to go back (temporarily) to a previous commit!
○ Git checkout <commit hash> or HEAD

● You can also checkout to remotes
○ Git checkout staff main

■ Checkout staff skeleton codes!

● What if I mess up? Git reset to the rescue!
● Go back to a specific commit and preserve changes as unstaged edits

○ $ git reset <commit>

● Different from git checkout
○ Git checkout: Go back to the commit but keep the entire history intact
○ Git reset: unstage the edits and remove the commits before

● Please do not use –hard with git reset, if possible!

git reset

git log
● Sometimes we need to look at the project's history

● The commit history, or git log, shows us all of the commits that preceded the

most recent commit

● To view it, use the git log command (depending on your terminal, you may

need to press "q" to return to the command line)

● To show an abbreviated version, add the --oneline option:

○ git log --oneline

● Notice our new commit appearing in the log!

git diff <commit1> <commit2>

● We've used the log to confirm that a new commit was made, but how
do we know that the new commit contains the changes that we want?

● Use the git diff <commit1> <commit2> command! ("diff" = difference)
● It shows us the difference between the two provided commits
● Usually, we are comparing the latest commit to some other commit

○ The latest commit is always called HEAD
○ The commit immediately prior to HEAD is HEAD~1
○ The commit immediately prior to HEAD~1 is HEAD~2 (two commits before HEAD)

● To compare the latest commit and the one prior to that:
○ git diff HEAD~1 HEAD

A Few Pieces of Advice

● Make sure to git pull before working on any files
● Let people know what and what files you are working on to avoid merge

conflicts
○ Make new branches for portions of your project
○ Pair programming and VSCode Liveshare!
○ If encountered merge conflicts, resolve them carefully

● Be careful when working off of previous commits (ie. git checkout)
○ Can result in diverges in history and messy git stuff

More Advice

● Use 'git checkout staff/main -- file_name' to replace your version with the
staff version.

○ Particularly useful when you accidentally modify a test file in projects!

● Avoid using 'git push -f'

