CS 162 Project 0

Tasks / Debug

Debug

The faulting instruction you observed in GDB should match the one you found in #3. Now that you

have determined the faulting instruction, understood the purpose of the instruction, and walked

through how the kernel initializes a user process, you are in a position to modify the kernel so that

do-nothing runs correctly.

1

Modify the Pintos kernel so that do-nothing no longer crashes. Your change should be in the
Pintos kernel, not the userspace program (do-nothing.c) or libraries in proj-pregame/src/1ib . This
should not involve extensive changes to the Pintos source code. Our staff solution solves this
with a single-line change to process.c. Explain the change you made to Pintos and why it was
necessary. After making this change, the do-nothing test should pass but all others will likely fail.
Note: It is okay if your change seems like a hack. You will implement a better fix in the user

programs project.

It is possible that your fix also works for the stack-align-e test, but there are solutions for do-
nothing that do not. Take a look at the stack-align-e test. It behaves similarly to do-nothing, but it
returns the value of esp % 16. Write down what this program should return (Hint: this can be
found in stack-align-e.ck) as well as why this is the case. You may wish to review stack alignment
from Discussion 0. Then modify your fix if necessary so that both do-nothing and stack-align-e
pass.

Re-run GDB as before. Execute the 1oadusersymbols command, set a breakpoint at start, and
continue, to skip directly to the beginning of userspace execution. Using the disassemble and
stepi commands, execute the do-nothing program instruction by instruction until you reach the
int $ex3e instruction in proj-pregame/src/lib/user/syscall.c. At this point, print the top two words

at the top of the stack by examining memory (Hint: x/2xw gesp) and copy the output.

The int $ex3e instruction switches to kernel mode and pushes an interrupt stack frame onto the
kernel stack for this process. Continue stepping through instruction-by-instruction until you
reach syscall_handler. What are the values of argsfe] and args[1], and how do they relate to your

answer to the previous question?

Now, you can continue stepping through Pintos. Having completed running do-nothing, Pintos will

proceed to shut down because we provided the -q option on the kernel command line. You can

step through this in GDB if you're curious how Pintos shuts down.

Congratulations! You've walked through Pintos starting up, running a user program to completion,
and shutting down, in GDB. Hopefully this guided exercise helped you get acquainted with Pintos.
Be sure to push your code to GitHub with the small change you made in order to make the do-
nothing and stack-align-e tests pass. Check that the autograder gives you a full score on the coding

portion.

Note: Your written answers will be graded by the readers, not by the autograder.

Copyright © 2022 CS 162 staff.

