C3162
Operating Systems and
Systems Programming

Lecture 3

Abstractions 1: Threads and Processes
A quick, programmer’s viewpoint

January 237, 2024
Prof. John Kubiatowicz
http://cs162.eecs.Berkeley.edu

Goals for Today: The Thread Abstraction

What threads are
— And what they are not

Why threads are useful (motivation)
How to write a program using threads
Alternatives to using threads

4 . N
operatin

1/23/24 Kubiatowicz CS162 © UCB Spring 2024 Lec 3.2

Recall: Four Fundamental OS Concepts

Thread: Execution Context
— Fully describes program state
— Program Counter, Registers, Execution Flags, Stack
Address space (with or w/o translation)
— Set of memory addresses accessible to program (for read or write)

— May be distinct from memory space of the physical machine
(in which case programs operate in a virtual address space)

Process: an instance of a running program
— Protected Address Space + One or more Threads
Dual mode operation / Protection
— Only the “system” has the ability to access certain resources

— Combined with translation, isolates programs from each other and
the OS from programs

1/23/24 Kubiatowicz CS162 © UCB Spring 2024 Lec 3.3

Recall: lllusion of Multiple Processors

Programmer’s View: * Threads are virtual cores
Multiple threads: Multiplex hardware in time

A Thread is executing on a processor when it is
resident in that processor’s registers

Shared Memory

Each virtual core (thread) has:
— Program counter (PC), stack pointer (SP)
— Registers — both integer and floating point
Where is “it” (the thread)?

vcPu1] vcpuz vcpus| veput fvcpuz — On the real (physical) core, or

. — Saved in chunk of memory — called the Thread
TiMe ey Control Block (TCB)

On a single physical CPU

1/23/24 Kubiatowicz CS162 © UCB Spring 2024 Lec 3.4

Recall: Process

Definition: execution environment with Restricted Rights
— One or more threads in a (protected) Address Space
— Owns memory (address space), file descriptors, network

code data files

registers ||| registers ||| registers

Connections, stack stack stack
* Instance of a running program
— When you run an executable, it runs in its own process g é §<—— thread

— Application: one or more processes working together

Why processes?
— Protected from each other!
— OS Protected from them

In modern OS, anything that runs outside of the kernel runs in
a process

Multi-Threaded Process

1/23/24 Kubiatowicz CS162 © UCB Spring 2024 Lec 3.5

Recall: Simple address translation with Base and Bound

ode 0000... 0000...
Static Data code
L Addresses translated Static Data
on-the-fly heap
stack
0100...
Base Address
0010... 1000... f N\ cae 1000
Program 0010... - Static Data
address U1 010. heap

« Can the program touch OS?
« Can it touch other programs?

1/23/24

e =l 1100

0100...

FFFF...

Kubiatowicz CS162 © UCB Spring 2024

Lec 3.6

Simple B&B: User => Kernel

. . —
2 .
Static Data
0S heap
| stack |
sysmode | 0 1000...
code
Base | 1000 ... 0000... Static Data
Bound | 0100... FFFH... heap
uPC | xxxx...
B ses (14100,
PC | 0000 1234 —]
3000
regs
OOFF... —
 How to
return to
system? 3080

1/23/24 Kubiatowicz CS162 © UCB Spring 2024 Lec 3.7

1/23/24

Simple B&B: Interrupt

How to save
registers and
set up system
stack?

1000 ... /| 0000,
0100 ... Z FEEEH.
0000 1234 -1
IntrpVector(i]

' OOFF...

Kubiatowicz CS162 © UCB Spring 2024

code

Static Data

heap

code

Static Data

heap

1000...

Lec 3.8

Simple B&B: Switch User Process

code | RTU

Static /bata U

1/23/24

———1
1000 ...
Static Data
0100 ...
heap
0000 1234
ogs | sk |
OOFF...
How to save

registers and
set up system
stack? FFFF...

Kubiatowicz CS162 © UCB Spring 2024 Lec 3.9

Simple B&B: “resume”
Proc
B E
OS

~—————— sysmode | O
y code

1000 ...
5100 Base - 0000... Static Data
Bound - FFFF... heap

code | RTU

Static Data

heap

1000...

0000 1234
UPC | XXXX XXXX 1100
ek PC | 000 0248 — N
0OFF... 3000

 How to save
registers and
set up system
stack?

1/23/24 Kubiatowicz CS162 © UCB Spring 2024 Lec 3.10

|s Simple Base and Bound Enough for General Systems?

* NO: Too simplistic for real systems

* Inflexible/Wasteful:
— Must dedicate physical memory for potential future use
— (Think stack and heap!)

* Fragmentation:

— Kernel has to somehow fit whole processes into contiguous
block of memory

— After a while, memory becomes fragmented!
« Sharing:

— Very hard to share any data between Processes or between
Process and Kernel

— Need to communicate indirectly through the kernel...

1/23/24 Kubiatowicz CS162 © UCB Spring 2024 Lec 3.11

Better: Translation through Page Table (More soon!)

Prog 2
Virtual Virtual
Address Address
Space 1 Space 2

Translation Map 1 Translation Map 2

Physical Address Space

1/23/24 Kubiatowicz CS162 © UCB Spring 2024 Lec 3.12

Recall: Dual Mode Operation

* Processes (i.e., programs you run) execute in user mode
— To perform privileged actions, processes request services from the OS kernel
— Carefully controlled transition from user to kernel mode
« Kernel executes in kernel mode
— Performs privileged actions to support running processes
— ... and configures hardware to properly protect them (e.g., address translation)
« Carefully controlled transitions between user mode and kernel mode
— System calls, interrupts, exceptions

user process

user process executing

» calls system call

\

return from system call

=

L}

7

user mode
(mode bit = 1)

LY

7

kernel

trap

mode bit=0

return

mode bit = 1

execute system call

1/23/24 Kubiatowicz CS162 © UCB Spring 2024

kernel mode
(mode bit = 0)

Lec 3.13

Adding Protection: CPU Switch From Process A to Process B

1/23/24

H process P, operating system process P,

interrupt or system call

Lxecuting u

X
save state into PCB,
. idle
reload state from PCB,
-idle interrupt or system call executingf
h 4 A
save state into PCB;
idle
reload state from PCB,

User Mode

User Mode Kernel/System Mode

Kubiatowicz CS162 © UCB Spring 2024

Lec 3.14

Running Many Programs

* We have the basic mechanism to:
— switch between user processes and the kernel,
— the kernel can switch among user processes,
— Protect OS from user processes and processes from each other

* Questions:
— How do we represent user processes in the OS?
— How do we decide which user process to run?
— How do we pack up the process and set it aside?
— How do we get a stack and heap for the kernel?
— Aren’t we wasting are lot of memory?

1/23/24 Kubiatowicz CS162 © UCB Spring 2024 Lec 3.15

Multiplexing Processes: The Process Control Block

« Kernel represents each process with a process
control block (PCB)

— Status (running, ready, blocked, ...)
— Register state (when not ready)

process state

process number

program counter

— Process ID (PID), User, Executable, Priority, ... registers

— Execution time, ...

— Memory space, translation, ... memory limits
 Kernel Scheduler maintains a data structure list of open files

containing the PCBs

— Give out CPU to different processes i}

— This is a Policy Decision Process
« Give out non-CPU resources Control

— Memory/IO Block

— Another policy decision

1/23/24 Kubiatowicz CS162 © UCB Spring 2024 Lec 3.16

Scheduler

if (readyProcesses (PCBs)) {
nextPCB = selectProcess (PCBs) ;
run(nextPCB) ;

} else {
run_idle process();

}

* Scheduling: Mechanism for deciding which processes/threads
receive hardware CPU time, when, and for how long

 Lots of different scheduling policies provide ...
— Fairness or
— Realtime guarantees or
— Latency optimization or ..

1/23/24 Kubiatowicz CS162 © UCB Spring 2024 Lec 3.17

Also Recall: The World |s Parallel: Saphire Rapids (2023)
Up to 60 cores, 120 threads/package (socket) S

“ . » Mesteal 138 GendPClegn 1x16 GenS 1cl6Gens 1xl6Gens D23 A6GT
— Up to 4 “chiplets” bonded together b st v
Network:
— On-chip Mesh Interconnect

— Fast off-chip network (UPI):
directly connects 8-chips

— 480 cores/shared memory domain!
Each Core Has:

— 80 KB L1 Cache

— 2 MB L2 Cache

— Fraction of up to 112.5 MB L3 Cache
DRAM/chips

— Up to 4 TiB of DDR5 memory
Many Accellerators of different types ' kst [

— Graphics, Encryption, Al, Security gt T el el v

2x DDR5

e [[——

2x DDRS

B
=l

Saphire Rapids 4-chiplet single package
1/23/24 Kubiatowicz CS162 © UCB Spring 2024 Lec 3.18

SHaa *Z

5400 XT

Simultaneous MultiThreading/Hyperthreading

« Hardware scheduling technique a) superscalar | 6) multiprocessor 8) Hyper-
architecture architecture Threading
— Avoids software overhead of multiplexing

— Superscalar processors can execute
multiple instructions that are independent.

— Hyperthreading duplicates register state
to make a second “thread,” allowing
more instructions to run.

|
 Can schedule each thread as if were - F
separate CPU

— But, sub-linear speedup!

Time (CPU cycles)

2

o

Colored blocks show instructions executed

Thread 0 B Thread 1

 Original technique called “Simultaneous Multithreading”
— http://www.cs.washington.edu/research/smt/index.html
— SPARC, Pentium 4/Xeon (“Hyperthreading”), Power 5

1/23/24 Kubiatowicz CS162 © UCB Spring 2024 Lec 3.19

Administrivia: Getting started!

Kubiatowicz Office Hours:
— Tuesday/Thursday 3-4pm, in 673 Soda Hall

Homework 0: Due Tomorrow!
— Get familiar with the cs162 tools
— configure your VM, submit via git
— Practice finding out information:
» How to use GDB? How to understand output of unix tools?

» We don’t assume that you already know everything!
» Learn to use “man” (command line), “help” (in gdb, etc), google

Project 0: Started Yesterday!
— Learn about Pintos and how to modify and debug kernel
— Important for getting started on projects!

Should be going to sections now — Important information there
— Any section will do until groups assigned

1/23/24 Kubiatowicz CS162 © UCB Spring 2024 Lec 3.20

Administrivia (Con’t)

THIS Friday is Drop Deadline! HARD TO DROP LATER!
— If you know you are going to drop, do so now to leave room for others on waitlist!
— Why do we do this? So that groups aren’t left without members!
Group sign up via autograder form next week
— Get finding groups of 4 people ASAP
— Priority for same section; if cannot make this work, keep same TA
— Remember: Your TA needs to see you in section!
Midterm 1: 2/15
— 8-10PM in person
— We will say more about material when we get closer...
Midterm 1 conflicts
— We will handle these conflicts after have final class roster
— Watch for queries by HeadTA to collect information

1/23/24 Kubiatowicz CS162 © UCB Spring 2024 Lec 3.21

CS 162 Collaboration Policy

Explaining a concept to someone in another group
» Discussing algorithms/testing strategies with other groups
Y Discussing debugging approaches with other groups
Searching online for generic algorithms (e.g., hash table)

Sharing code or test cases with another group or individual (including HW!)
X Copying OR reading another group’s code or test cases

Copying OR reading online code or test cases from prior years

Helping someone in another group to debug their code

* We compare all project and HW submissions against prior year submissions and
online solutions and will take actions (described on the course overview page)
against offenders

« Don’t put a friend in a bad position by asking for help that they shouldn’t give!

1/23/24 Kubiatowicz CS162 © UCB Spring 2024 Lec 3.22

More About Threads: What are they?

Definition from before: A single unique execution context
— Describes its representation

It provides the abstraction of: A single execution sequence that represents
a separately schedulable task

— Also a valid definition!

Threads are a mechanism for concurrency (overlapping execution)
— However, they can also run in parallel (simultaneous execution)

Protection is an orthogonal concept
— A protection domain can contain one thread or many

1/23/24 Kubiatowicz CS162 © UCB Spring 2024 Lec 3.23

Motivation for Threads

Operating systems must handle multiple things at once (MTAQO)
— Processes, interrupts, background system maintenance
Networked servers must handle MTAO | made this term up!
— Multiple connections handled simultaneously
Parallel programs must handle MTAO
— To achieve better performance
Programs with user interface often must handle MTAO
— To achieve user responsiveness while doing computation
Network and disk bound programs must handle MTAO
— To hide network/disk latency
— Sequence steps in access or communicatoin

1/23/24 Kubiatowicz CS162 © UCB Spring 2024 Lec 3.24

Threads Allow Handling MTAO

« Threads are a unit of concurrency provided by the OS
« Each thread can represent one thing or one task

1/23/24 Kubiatowicz CS162 © UCB Spring 2024 Lec 3.25

Multiprocessing vs. Multiprogramming

« Some Definitions:
— Multiprocessing: Multiple CPUs(cores)
— Multiprogramming: Multiple jobs/processes
— Multithreading: Multiple threads/processes
« What does it mean to run two threads concurrently?
— Scheduler is free to run threads in any order and interleaving
— Thread may run to completion or time-slice in big chunks or small chunks

Multi ing< B
ultiprocessing c
—
— A B C
ﬁ #
Multiprogramming—= A B C A B C B
o] |
—

1/23/24 Kubiatowicz CS162 © UCB Spring 2024

Lec 3.26

Concurrency is not Parallelism

Concurrency is about handling multiple things at once (MTAO)
Parallelism is about doing multiple things simultaneously

Example: Two threads on a single-core system...
— ... execute concurrently ...
— ... but not in parallel

Each thread handles or manages a separate thing or task...
But those tasks are not necessarily executing simultaneously!

1/23/24 Kubiatowicz CS162 © UCB Spring 2024 Lec 3.27

Silly Example for Threads

Imagine the following program:

main() {
ComputePI(“pi.txt”);
PrintClassList(“classlist.txt”);

What is the behavior here?
Program would never print out class list
Why? ComputePI would never finish

1/23/24 Kubiatowicz CS162 © UCB Spring 2024 Lec 3.28

Adding Threads

 Version of program with threads (loose syntax):

main() {
create thread(ComputePI, “pi.txt”);

create_thread(PrintClassList, “classlist.txt”);
}
e create_thread: Spawns a new thread running the given procedure
— Should behave as if another CPU is running the given procedure

« Now, you would actually see the

, CPU1 CPU2 CPU1 CPU2 CPU1
class list

Time —p

1/23/24 Kubiatowicz CS162 © UCB Spring 2024

CPU2

Lec 3.29

More Practical Motivation: Compute/lO overlap

Back to Jeff Dean’s

“Numbers Everyone

Should Know”

1/23/24

Handle 1/O in
separate thread,
avoid blocking
other progress

L1 cache reference 0.5 ns
Branch mispredict 5 ns
L2 cache reference 7 ns
Mutex lock/unlock 25 ns
Main memory reference 100 ns
Compress 1K bytes with Zippy 3,000 ns
Send 2K bytes over 1 Gbps network 20,000 ns
Read 1 MB sequentially from memory 250,000 ns
Round trip within same datacenter 500,000 ns

Disk seek 10,000,000

Read 1 MB sequentially from disk 20,000,000
Send packet CA->Netherlands->CA 150,000,000

Kubiatowicz CS162 © UCB Spring 2024

Lec 3.30

Threads Mask |/O Latency

« Athread is in one of the following three states:
— RUNNING - running
— READY - eligible to run, but not currently running
— BLOCKED - ineligible to run

« If a thread is waiting for an I/O to finish, the OS marks it as BLOCKED
* Once the I/O finally finishes, the OS marks it as READY

vCPUl1 vCPUZ2 vCPU1l vCPU2 vCPU1 vCPU2

Time ———

1/23/24 Kubiatowicz CS162 © UCB Spring 2024 Lec 3.31

Threads Mask 1/O Latency

* |f no thread performs I/O:

Time —

* |f thread 1 performs a blocking I/O operation:

vCPU1 starts 1/0O operation
I/0 operation completes

Time —

1/23/24 Kubiatowicz CS162 © UCB Spring 2024 Lec 3.32

A Better Example for Threads

« Version of program with threads (loose syntax):
main() {
create thread(ReadLargeFile, “pi.txt”);
create_thread(RenderUserInterface);

}
 What is the behavior here?

— Still respond to user input
— While reading file in the background

1/23/24 Kubiatowicz CS162 © UCB Spring 2024

Lec 3.33

Multithreaded Programs

You know how to compile a C program and run the executable
— This creates a process that is executing that program

Initially, this new process has one thread in its own address space
— With code, globals, etc. as specified in the executable

Q: How can we make a multithreaded process?

A: Once the process starts, it issues system calls to create new threads
— These new threads are part of the process: they share its address space

1/23/24 Kubiatowicz CS162 © UCB Spring 2024 Lec 3.34

System Calls ("Syscalls™)

_ Word Processin%v
Compilers eb Browsers

“But, I've never seen a

syscall” _ Web Servers o _
* OS library issues Application / Service
system call

« Language runtime

: OS
uses OS library...

Portable OS Library

System Call
Interface

Portable OS Kernel

User

System

Software Platform support, Device Drive

Hardware x86 PowerPC ARM \
PC

Ethernet (1Gbs/10Gbs) 802.11 a/g/infac SCSIGraphics Thunderbolt

1/23/24 Kubiatowicz CS162 © UCB Spring 2024 Lec 3.35

OS Library Issues Syscalls

Proc
2 [N
O

login

libc ROENIF1Y

OS library OS library

_____/
OS

1/23/24 Kubiatowicz CS162 © UCB Spring 2024 Lec 3.36

OS Library API for Threads: pthreads
Here: the “p” is for “POSIX” which is a part of a standardized API

int pthread create(pthread t *thread, const pthread attr t *attr,
void *(*start_routine)(void*), void *arg);

— thread is created executing start_routine with arg as its sole argument.
— return is implicit call to pthread_exit

void pthread exit(void *value ptr);
— terminates the thread and makes value ptr available to any successful join

int pthread join(pthread t thread, void **value ptr);
— suspends execution of the calling thread until the target thread terminates.

— On return with a non-NULL value ptr the value passed to pthread exit() by
the terminating thread is made available in the location referenced
by value ptr.

prompt% man pthread
https:/Ipubs.opengroup.org/onlinepubs/7908799/xsh/pthread.h.html
1/23/24 Kubiatowicz CS162 © UCB Spring 2024 Lec 3.37

Peeking Ahead: System Call Example

« What happens when pthread create(..) is called in a process?
Library:

int pthread_create(..) {
Do some work like a normal fn..

asm code .. syscall # into %eax
put args into registers Z%ebx, ..
special trap instruction

Kernel:
get args from regs
dispatch to system func
Do the work to spawn the new thread
Store return value in Z%eax

get return values from regs
Do some more work like a normal fn..

}s

1/23/24 Kubiatowicz CS162 © UCB Spring 2024

Lec 3.38

New |ldea: Fork-Join Pattern

« Main thread creates (forks) collection of sub-threads passing them args to
work on...

» ... and then joins with them, collecting results.

1/23/24 Kubiatowicz CS162 © UCB Spring 2024 Lec 3.39

e <stdio.h>
& <stdlib.h>
& <pthread.h=

pThreads Example

CCECE Y |
e e e

& <string.h=

* How many threads are in this program? int common = 152/ —~
 What function does each thread run? e d athresdtun(vold sthresdid)
4 One pOSSibIe reSUIt: { long tid = ‘]L.f’ ()threadid- \
(base) CullerMacl9:code@4 culler$./pthread 4 printf(“Thread #%1x sta:k: %1x common: %lx INdlin® tid
Main stack: 7ffee2c6b6b8, common: 10cf95048 (162) (unsigned long) &tid, (unsigned Mww;“(ommon, common++) ;
Thread #1 stack: 70000d83bef8 common: 10cf95048 (162) pthread_exit(NULL);
Thread #3 stack: 70000d941ef8 common: 10cf95048 (164) } \\
Thread #2 stack: 70000d8beef8 common: 10cf95048 (165)
Thread #0 stack: 70000d7b8ef8 common: 10cf95048 (163) tr"- main (int argc, char #argv(]
* Does the main thread join with the threads in AT —
the same order that they were created? - farge v i
LT, nthreads = 1{argv :
* Yes: Loop calls Join in thread order)
iy ox pthreage® *threads = lloc{nthreads*sizeof(pth t)):
« Do the threads exit in the same order they ; b ool L b fotob s
were Created? 2 rtt:e:u.riu;rcv:ﬁ ;;l x;i*.i:';:i(wilc;rv;-c long) &common/ common) ;
° NO Depends on Schedullng Order! ;.!;""’c) pthread_create(&threads([t], NULL, threadfun, (void =*)t);
 Would the result Change if run again? printf(“ERROR; return code from pthread_create() is %d\n", rc);
. exit(-1);
* Yes: Depends on scheduling opg€r! }

. |s this code safe/correct??? :

* No —threads share are variable that is

used without locking and there is a race } _ L
. pthread_exit(NULL); /* last thing in the main thread =/
condition!

}
1/23/24 Kubiatowicz CS162 © UCB Spring 2024 Lec 3.40

PEPREE ST W 4
C & B 7Tt

pthread_join(threads[t], NULL);

Thread State

» State shared by all threads in process/address space
— Content of memory (global variables, heap)
— 1/O state (file descriptors, network connections, etc)

» State “private” to each thread
— Kept in TCB = Thread Control Block
— CPU registers (including, program counter)
— Execution stack — what is this?

» Execution Stack
— Parameters, temporary variables

— Return PCs are kept while called procedures are executing

1/23/24 Kubiatowicz CS162 © UCB Spring 2024 Lec 3.41

1/23/24

Shared vs. Per-Thread State

Shared
State

Heap

Global
Variables

Code

Per—Thread
State

Thread Control
Block (TCB)

Stack
Information

Saved
Registers

Thread
Metadata

Kubiatowicz CS162 © UCB Spring 2024

Per—Thread
State

Thread Control
Block (TCB)

Stack
Information

Saved
Registers

Thread
Metadata

Execution Stack Example

A+1:
A+2:

B+1:

C+1:

exit:

1/23/24

A(int tmp) {

if (tmp<2)
BO);

printf(tmp);

}

BO) {
cO);

}

cO) {
A(2);

}

« Stack holds temporary results
* Permits recursive execution
« Crucial to modern languages

Kubiatowicz CS162 © UCB Spring 2024

Lec 3.43

Execution Stack Example

A:
A+1:
A+2:

B+1:

C+1:

exit:

1/23/24

A(1nt tmp

if (tmp<2)
B();
printf(tmp);
}
BO) {
cO);
}
cO |
A(2);

}
A(1);

Stack

A: tmp=1
ret=exit

Pointer

« Stack holds temporary results
* Permits recursive execution
« Crucial to modern languages

Kubiatowicz CS162 © UCB Spring 2024

Lec 3.44

Execution Stack Example

A+1:
A+2:

B+1:

C+1:

exit:

1/23/24

A(int tmp) {

A: if (tmp<2)

BO);
printf(tmp);
}
BO) {
cO);
}
cO) {
A(2);

}
A(1);

Kubiatowicz CS162 © UCB Spring 2024

A: tmp=1
ret=exit

Ste}ck —
Pointer

« Stack holds temporary results
* Permits recursive execution
« Crucial to modern languages

Lec 3.45

Execution Stack Example

A: tmp=1

A(int tmp) { ret=exit

Stack
. ﬁ
All - 1f (tmp<2) Pointer

mul B0;]

A+2: printf(tmp);

}
B(O) {
B:il - CO);
B+1:| }
c: C(Z(;; « Stack holds temporary results
c1:f 3 . Permits recursive execution
ACL): « Crucial to modern languages

exit:

1/23/24 Kubiatowicz CS162 © UCB Spring 2024 Lec 3.46

Execution Stack Example

A: if (tmp<2)
A+1: B();
A+2: printf(tmp);

}

Bl €O

B+1:| }
cO) {

C:l A2);
C+1:| }

A(1);
exit:

1/23/24

A(int tmp) {

Kubiatowicz CS162 © UCB Spring 2024

Stack
Pointer

« Stack holds temporary results
* Permits recursive execution
« Crucial to modern languages

A: tmp=1

ret=exit

B:

ret=A+2

Lec 3.47

Execution Stack Example

A: if (tmp<2)
A+1: B();
A+2: printf(tmp);
}
B() {
& IO
B+1:| }
cO) {
C:l A2);
C+1:| }
A(1);
exit:

1/23/24

A(int tmp) {

Kubiatowicz CS162 © UCB Spring 2024

Stack
Pointer

« Stack holds temporary results
* Permits recursive execution
« Crucial to modern languages

A: tmp=1

ret=exit

B:

ret=A+2

Lec 3.48

Execution Stack Example

A+1:
A+2:

B+1:

C+1:

exit:

1/23/24

A(int tmp) {

if (tmp<2)
B();

printf(tmp);

}

BO) {
cO);

}

cO |

Ll a@;]

}
A(1);

A: tmp=1
ret=exit
B: ret=A+2
C: ret=B+1
Stack
Pointer

« Stack holds temporary results
* Permits recursive execution
« Crucial to modern languages

Kubiatowicz CS162 © UCB Spring 2024

Lec 3.49

Execution Stack Example

A

A+2:

B+1:

C+1:

exit:

1/23/24

A(int tmp) {

BO);
printf(tmp);
}
BO) {
cO);
}
cO) {
A(2);

}
A(1);

: if (tmp<2)

A+1:

Stack
Pointer

« Stack holds temporary results
* Permits recursive execution
« Crucial to modern languages

A: tmp=1
ret=exit

B: ret=A+2

C: ret=B+1

A: tmp=2
ret=C+1

!

Stack Growth

Kubiatowicz CS162 © UCB Spring 2024

Lec 3.50

Execution Stack Example

A+1:
A+2

B+1:

C+1:

exit:

1/23/24

: printf(tmp);

A(int tmp) {
if (tmp<2)
BO);

H'-‘I

B() {
CO);

}

c() {
A(2);

}
A(1);

Stack
Pointer

Output i

A: tmp=1
ret=exit

B: ret=A+2

C: ret=B+1

A: tmp=2
ret=C+1

!

Stack Growth

« Stack holds temporary results
* Permits recursive execution
 Crucial to modern languages

Kubiatowicz CS162 © UCB Spring 2024

Lec 3.51

Execution Stack Example

A+1:
A+2:

B+1:

C+1:

exit:

1/23/24

A(int tmp) {
if (tmp<2)
BO);
printf(tmp);
b]
BO) {
cO);
}
cO) {
A(2);

}
A(1);

Stack
Pointer

Output i

A: tmp=1
ret=exit

B: ret=A+2

C: ret=B+1

A: tmp=2
ret=C+1

!

Stack Growth

« Stack holds temporary results
* Permits recursive execution
 Crucial to modern languages

Kubiatowicz CS162 © UCB Spring 2024

Lec 3.52

Execution Stack Example

A+1:
A+2:

B+1:

C:

exit:

1/23/24

A(int tmp) {

if (tmp<2)
B();

printf(tmp);

}

BO) {
cO);

}

c() {
A(2);

A(1);

Stack

A: tmp=1
ret=exit

B: ret=A+2

C: ret=B+1

Pointer

Output i

« Stack holds temporary results
* Permits recursive execution
 Crucial to modern languages

Kubiatowicz CS162 © UCB Spring 2024

Lec 3.53

Execution Stack Example

. A: tmp=1
A(int tmp) { ret=exit
A: if (tmp<2) B: pet=A+2
A+1: B(); Stack ey
A+2: printf(tmp); Pointer
}
B(O) {
B:if C();
c() { output B
Cl AR « Stack holds temporary results
C+1:f 3 * Permits recursive execution
A(1); Crucial to modern languages
exit:

1/23/24 Kubiatowicz CS162 © UCB Spring 2024

Lec 3.54

Execution Stack Example

A: if (tmp<2)
A+1: B();
}

BO) {
B:l €O
B+1:| }
cO) {
Cl A2);
C+1:| }
A(1);
exit:

A(int tmp) {

1/23/24

A: tmp=1

ret=exit

Ste}ck —
Pointer

« Stack holds temporary results
* Permits recursive execution
 Crucial to modern languages

Kubiatowicz CS162 © UCB Spring 2024

Lec 3.55

Execution Stack Example

A+1:
A+2:

B+1:

C+1:

exit:

1/23/24

A(int tmp) {
if (tmp<2)
BO);
printf(tmp);
b]
BO) {
cO);
}
cO) {
A(2);

}
A(1);

Stack

A: tmp=1

ret=exit

Pointer

« Stack holds temporary results
* Permits recursive execution
 Crucial to modern languages

Kubiatowicz CS162 © UCB Spring 2024

Lec 3.56

Execution Stack Example

A(int tmp) {

if (tmp<2)

B();

printf(tmp);
}
B() {

CO);
}
c() { Output:

A(2); « Stack holds temporary results
} « Permits recursive execution
A(1); Crucial to modern languages

1/23/24 Kubiatowicz CS162 © UCB Spring 2024 Lec 3.57

Execution Stack Example

) A: tmp=1
A(int tmp) { Stack —_ ret=exit

if (tmp<2) Pointer B: ret=A+2

B();

printf(tmp); C: ret=b+1l
} A: tmp=2
B() { ret=C+1

Cc(); 1
} Stack Growth
C(Z(;; « Stack holds temporary results

* Permits recursive execution

) « Crucial to modern languages

1/23/24 Kubiatowicz CS162 © UCB Spring 2024 Lec 3.58

Memory Layout with Two Threads

OxFFF...
» Two sets of CPU registers
» Two sets of Stacks
 Issues: >
— How do we position stacks relative to N
each other? ®
— What maximum size should we choose 7
for the stacks? _g\
— What happens if threads violate this? 8
— How might you catch violations? Global Datd ®
Code
0x000...

1/23/24 Kubiatowicz CS162 © UCB Spring 2024 Lec 3.59

INTERLEAVING AND NONDETERMINISM
(The beginning of a long discussion!)

1/23/24 Kubiatowicz CS162 © UCB Spring 2024 Lec 3.60

1/23/24

Thread Abstraction

Programmer Abstraction
- T -1 - o
Threads|SI S S, S S

I
112 13 g 5!
| I I I I |
I
I

Processors')mn':)mn':)mn':)mn': Jrr?
"1 2 3,4, 5

L — - - Z 4

* lllusion: Infinite number of processors
» Reality: Threads execute with variable “speed”

Physical Reality

Running
Threads

— Programs must be designed to work with any schedule

Kubiatowicz CS162 © UCB Spring 2024

Ready
Threads

Lec 3.61

Programmer vs. Processor View

Programmer’s
View

X=x+1;

y=y+x
Z=X+5y;

1/23/24

Possible Possible
Execution Execution
#1 #2
X=X+ 1; X=Xx+1
Y=Y +X e
Z =X+ 5y; thread is suspended

other thread(s) run
thread is resumed

Kubiatowicz CS162 © UCB Spring 2024

Possible
Execution
#3

X=X+1
y=y+X
thread is suspended
other thread(s) run
thread is resumed

Lec 3.62

Possible Executions

Thread 1 (] Thread 1 | |

Thread 2 — Thread 2 | |

Thread 3 — Thread 3 | |
a) One execution b) Another execution

Thread1) 0O OJOI
Thread2 [0 0O

Thread 3 0O OC_—1

c) Another execution

1/23/24 Kubiatowicz CS162 © UCB Spring 2024 Lec 3.63

Correctness with Concurrent Threads

Non-determinism:

— Scheduler can run threads in any order

— Scheduler can switch threads at any time

— This can make testing very difficult
Independent Threads

— No state shared with other threads

— Deterministic, reproducible conditions
Cooperating Threads

— Shared state between multiple threads

Goal: Correctness by Design

1/23/24 Kubiatowicz CS162 © UCB Spring 2024 Lec 3.64

Race Conditions: Example 1

 |nitially x == © and y == 0
Thread A Thread B
x = 1; y = 2;

« What are the possible values of x below after all threads finish?
* Must be 1. Thread B does not interfere

1/23/24 Kubiatowicz CS162 © UCB Spring 2024 Lec 3.65

Race Conditions: Example 2

Initially x == @ and y ==

Thread A Thread B
X=y+1; y-=2;
y =y * 2;

What are the possible values of x below?
1 or 3 or 5 (non-deterministically)
Race Condition: Thread A races against Thread B!

1/23/24 Kubiatowicz CS162 © UCB Spring 2024 Lec 3.66

1/23/24

Example: Shared Data Structure

Thread A Thread B
Insert(3) Insert(4)
Get(6)
< sugn

Tree-Based Set Data Structure

Kubiatowicz CS162 © UCB Spring 2024

Lec 3.67

1/23/24

Relevant Definitions

Synchronization: Coordination among threads, usually regarding shared data

Mutual Exclusion: Ensuring only one thread does a particular thing at a time

(one thread excludes the others)
— Type of synchronization

Critical Section: Code exactly one thread can execute at once
— Result of mutual exclusion

Lock: An object only one thread can hold at a time
— Provides mutual exclusion

Kubiatowicz CS162 © UCB Spring 2024

Lec 3.68

Locks

* Locks provide two atomic operations:

— Lock.acquire() — wait until lock is free; then mark it as busy
» After this returns, we say the calling thread holds the lock

— Lock.release() — mark lock as free
» Should only be called by a thread that currently holds the lock
» After this returns, the calling thread no longer holds the lock

* For now, don’t worry about how to implement locks!
— WEe'll cover that in substantial depth later on in the class

1/23/24 Kubiatowicz CS162 © UCB Spring 2024

Lec 3.69

Thread A Thread B

Insert(3) Insert(4)
e Lock.acquire() e Lock.acquire()

e Insert 3 into e Insert 4 into
the data the data
structure AL | structure

e Lock.release() e Lock.release()

e Lock.acquire()

Tree-Based Set Data Structure -« check for
membership

e Lock.release()

1/23/24 Kubiatowicz CS162 © UCB Spring 2024 Lec 3.70

OS Library Locks: pthreads

int pthread mutex_init(pthread mutex_t *mutex,
const pthread mutexattr_t *attr)

int pthread mutex_lock(pthread mutex_t *mutex);
int pthread mutex_unlock(pthread mutex_t *mutex);

You'll get a chance to use these in Homework 1

1/23/24 Kubiatowicz CS162 © UCB Spring 2024 Lec 3.71

1/23/24

Our Example

Critical section —

{
-
.

[
}

int common = 162;
pthread_mutex_t common_lock = PTHREAD_MUTEX_INITIALIZER;

void *threadfun(void *threadid)

long tid = (long)threadid;
pthread_mutex_lock(&common_lock);
int my_common = common++;
pthread_mutex_unlock(&common_lock);

printf("“Thread #%1x stack: %lx common: %lx (%d)\n", tid,
(unsigned long) &tid,
(unsigned long) &common, my_common);
pthread_exit(NULL);

Kubiatowicz CS162 © UCB Spring 2024

Lec 3.72

Recall: UNIX System Structure

Applications (the users)
User Mode

. shells and commands
Standard Libs compilers and interpreters

szstem libraries

system-call interface to the kernel

— signals terminal file system CPU scheduling
Kernel Mode g d handling swapping block I/O page replacement
2 character /O system system demand paging

terminal drivers disk and tape drivers virtual memory

kernel interface to the hardware

terminal controllers device controllers memory controllers
Hardware terminals disks and tapes physical memory

1/23/24 Kubiatowicz CS162 © UCB Spring 2024 Lec 3.73

Life of a Process

Recall

Full HW access

ted HW access

imi

L

Lec 3.74

Kubiatowicz CS162 © UCB Spring 2024

1/23/24

3 types of Kernel Mode Transfer

« Syscall
— Process requests a system service, e.g., exit
— Like a function call, but “outside” the process
— Does not have the address of the system function to call
— Like a Remote Procedure Call (RPC) — for later
— Marshall the syscall id and args in registers and exec syscall
* Interrupt
— External asynchronous event triggers context switch
—eg. Timer, 1/O device
— Independent of user process
« Trap or Exception
— Internal synchronous event in process triggers context switch
— e.g., Protection violation (segmentation fault), Divide by zero,

1/23/24 Kubiatowicz CS162 © UCB Spring 2024 Lec 3.75

Implementing Safe Kernel Mode Transfers

* Important aspects:
— Controlled transfer into kernel (e.g., syscall table)
— Separate kernel stack!

 Carefully constructed kernel code packs up the user process
state and sets it aside

— Details depend on the machine architecture
— More on this next time

« Should be impossible for buggy or malicious user program to
cause the kernel to corrupt itself!

1/23/24 Kubiatowicz CS162 © UCB Spring 2024

Lec 3.76

Recall: System Call Interface: A Narrow Waist

_ Word Processinc\;N
Compilers eb Browsers

Web Servers o _
Application / Service

Portable OS Library OS

User Mode

System Mode
Portable OS Kernel

Software Platform support, Device Driv

Hardware x86 PowerPC ARM \
PC

Ethernet (1Gbs/10Gbs) 802.11 a/g/n/ac/ax SCSI Graphics Thunderbolt

1/23/24 Kubiatowicz CS162 © UCB Spring 2024

Lec 3.77

Kernel System Call Handler

Vector through well-defined syscall entry points!
— Table mapping system call number to handler
Locate arguments
— In registers or on user (!) stack
Copy arguments
— From user memory into kernel memory
— Protect kernel from malicious code evading checks
Validate arguments
— Protect kernel from errors in user code
Copy results back
— Into user memory

1/23/24 Kubiatowicz CS162 © UCB Spring 2024 Lec 3.78

Hardware support: Interrupt Control

* Interrupt processing not visible to the user process:
— Occurs between instructions, restarted transparently
— No change to process state
— What can be observed even with perfect interrupt processing?

* Interrupt Handler invoked with interrupts ‘disabled’
— Re-enabled upon completion
— Non-blocking (run to completion, no waits)

— Pack up in a queue and pass off to an OS thread for hard work
» wake up an existing OS thread

1/23/24 Kubiatowicz CS162 © UCB Spring 2024 Lec 3.79

Interrupt Controller

Network

)Se\ 1dnuiaju|

Japoou] Aloud

IntIiD

CPU

[]int Disable

Software
Interrupt

Control

NMI

 Interrupts invoked with interrupt lines from devices
* Interrupt controller chooses interrupt request to honor

— Interrupt identity specified with ID line

— Mask enables/disables interrupts
— Priority encoder picks highest enabled interrupt
— Software Interrupt Set/Cleared by Software

« CPU can disable all interrupts with internal flag

* Non-Maskable Interrupt line (NMI) can’t be disabled

1/23/24

Kubiatowicz CS162 © UCB Spring 2024

Lec 3.80

How do we take interrupts safely?

Interrupt vector
— Limited number of entry points into kernel
Kernel interrupt stack
— Handler works regardless of state of user code
Interrupt masking
— Handler is non-blocking
Atomic transfer of control
— “Single instruction”-like to change:
» Program counter
» Stack pointer
» Memory protection
» Kernel/user mode
Transparent restartable execution
— User program does not know interrupt occurred

1/23/24 Kubiatowicz CS162 © UCB Spring 2024 Lec 3.81

1/23/24

Interrupt Vector

interrupt number (i) _

e NS

_ Address and properties

of each interrupt handler

intrpHandler i () {

}

* Where else do you see this dispatch pattern?

— System Call
— Exceptions

Kubiatowicz CS162 © UCB Spring 2024

Lec 3.82

Need for Separate Kernel Stacks

« Kernel needs space to work
« Cannot put anything on the user stack (Why?)

 Two-stack model

— OS thread has interrupt stack (located in kernel memory) plus User stack
(located in user memory)

— Syscall handler copies user args to kernel space before invoking specific
function (e.g., open)

279 running ready to run waiting for I/O
— Interrupts (?77?) __ —— —_
User Stack procl procl procl
proc2 proc2 proc2
E N \] syscall
7| user CPU user CPU
state state
Kernel Stack % syscall
handler
1/0 driver
> top half

1/23/24 Kubiatowicz CS162 © UCB Spring 2024 Lec 3.83

1/23/24

Before

User-level

Registers Kernel
Process
code: SS: ESP code:
- CS:EIP
while(..) { other pusha
X=X+1; registers:
) y-2; EAX, EBX, }
}
Exception
stack: Stack

Kubiatowicz CS162 © UCB Spring 2024

Lec 3.84

1/23/24

During Interrupt/System Call

User-level
Process

code:

foo () {
while(...) {
X=X+1;
y=y-2;
}
}

stack:

Kubiatowicz CS162 © UCB Spring 2024

Registers

SS: ESP

CS: EIP

EFLAGS

other
registers:
EAX, EBX,

Kernel

code:

handler() {
pusha

Exception
Stack

SS

ESP

EFLAGS

CS

EIP

error

Lec 3.85

Managing Processes

 How to manage process state?
— How to create a process?
— How to exit from a process?

« Remember: Everything outside of
the kernel is running in a process!

— Including the shell! (Homework 2)

* Processes are created and
managed... by processes!

code

data

files

code

data

files

registers

stack

registers

registers

registers

thread — ;

stack

stack

stack

?

3

3‘_

— thread

single-threaded process

multithreaded process

1/23/24 Kubiatowicz CS162 © UCB Spring 2024

Lec 3.86

Bootstrapping

* If processes are created by other processes, how does the first
process start?

 First process is started by the kernel

— Often configured as an argument to the kernel before the kernel
boots

— Often called the “init” process

 After this, all processes on the system are created by other
processes

1/23/24 Kubiatowicz CS162 © UCB Spring 2024

Lec 3.87

Next time: Process Management API

e exit —terminate a process

e fork — copy the current process

e exec — change the program being run by the current process

e wait — wait for a process to finish

e kill — send a signal (interrupt-like notification) to another process

e sigaction — set handlers for signals

1/23/24 Kubiatowicz CS162 © UCB Spring 2024 Lec 3.88

Conclusion

* Threads are the OS unit of concurrency
— Abstraction of a virtual CPU core
— Can use pthread_create, etc., to manage threads within a process
— They share data - need synchronization to avoid data races
* Processes consist of one or more threads in an address space
— Abstraction of the machine: execution environment for a program
— Can use fork, exec, etc. to manage threads within a process
e We saw the role of the OS library
— Provide API to programs
— Interface with the OS to request services

1/23/24 Kubiatowicz CS162 © UCB Spring 2024 Lec 3.89

