
CS162
Operating Systems and
Systems Programming

Lecture 3

Abstractions 1: Threads and Processes
A quick, programmer’s viewpoint

January 23rd, 2024
Prof. John Kubiatowicz

http://cs162.eecs.Berkeley.edu

Lec 3.21/23/24 Kubiatowicz CS162 © UCB Spring 2024

Goals for Today: The Thread Abstraction
• What threads are

– And what they are not
• Why threads are useful (motivation)
• How to write a program using threads
• Alternatives to using threads

Lec 3.31/23/24 Kubiatowicz CS162 © UCB Spring 2024

Recall: Four Fundamental OS Concepts
• Thread: Execution Context

– Fully describes program state
– Program Counter, Registers, Execution Flags, Stack

• Address space (with or w/o translation)
– Set of memory addresses accessible to program (for read or write)
– May be distinct from memory space of the physical machine

(in which case programs operate in a virtual address space)
• Process: an instance of a running program

– Protected Address Space + One or more Threads
• Dual mode operation / Protection

– Only the “system” has the ability to access certain resources
– Combined with translation, isolates programs from each other and

the OS from programs

Lec 3.41/23/24 Kubiatowicz CS162 © UCB Spring 2024

Recall: Illusion of Multiple Processors
• Threads are virtual cores
• Multiple threads: Multiplex hardware in time
• A Thread is executing on a processor when it is

resident in that processor’s registers

• Each virtual core (thread) has:
– Program counter (PC), stack pointer (SP)
– Registers – both integer and floating point

• Where is “it” (the thread)?
– On the real (physical) core, or
– Saved in chunk of memory – called the Thread

Control Block (TCB)

vCPU3vCPU2vCPU1

Shared Memory

Programmer’s View:

vCPU1 vCPU2 vCPU3 vCPU1 vCPU2

Time

On a single physical CPU

Lec 3.51/23/24 Kubiatowicz CS162 © UCB Spring 2024

Recall: Process
• Definition: execution environment with Restricted Rights

– One or more threads in a (protected) Address Space
– Owns memory (address space), file descriptors, network

connections, …
• Instance of a running program

– When you run an executable, it runs in its own process
– Application: one or more processes working together

• Why processes?
– Protected from each other!
– OS Protected from them

• In modern OS, anything that runs outside of the kernel runs in
a process

Multi-Threaded Process

Lec 3.61/23/24 Kubiatowicz CS162 © UCB Spring 2024

Recall: Simple address translation with Base and Bound

code

Static Data

heap

stack

code

Static Data

heap

stack

code

Static Data

heap

stack

0000…

FFFF…

1000…

0000…

Program
address

Base Address

Bound <

1000…

1100…0100…

• Can the program touch OS?
• Can it touch other programs?

0010…
0010…

Addresses translated
on-the-fly

1010…

0100…

Lec 3.71/23/24 Kubiatowicz CS162 © UCB Spring 2024

Simple B&B: User => Kernel

OS

Proc
1

Proc
2

Proc
n…

code

Static Data

heap

stack

code

Static Data

heap

stack

code

Static Data

heap

stack

0000…

FFFF…

1000…

1100…

3000…

3080…

Base 1000 …

0100…Bound

xxxx…uPC

regs

sysmode

…

0

PC

0000…

FFFF…

00FF…
• How to

return to
system?

0000 1234

Lec 3.81/23/24 Kubiatowicz CS162 © UCB Spring 2024

Simple B&B: Interrupt

OS

Proc
1

Proc
2

Proc
n…

code

Static Data

heap

stack

code

Static Data

heap

stack

code

Static Data

heap

stack

0000…

FFFF…

1000…

1100…

3000…

3080…

Base 1000 …

0100 …Bound

0000 1234uPC

regs

sysmode

…

1

PC

0000…

FFFF…

00FF…
• How to save

registers and
set up system
stack?

IntrpVector[i]

Lec 3.91/23/24 Kubiatowicz CS162 © UCB Spring 2024

Simple B&B: Switch User Process

OS

Proc
1

Proc
2

Proc
n…

code

Static Data

heap

stack

code

Static Data

heap

stack

code

Static Data

heap

stack

0000…

FFFF…

1000…

1100…

3000…

3080…

Base 3000 …

0080 …Bound

0000 0248uPC

regs

sysmode

…

1

PC

0000…

FFFF…

00D0…
• How to save

registers and
set up system
stack?

0001 0124

1000 …

0100 …

0000 1234

regs
00FF…

RTU

Lec 3.101/23/24 Kubiatowicz CS162 © UCB Spring 2024

Simple B&B: “resume”

OS

Proc
1

Proc
2

Proc
n…

code

Static Data

heap

stack

code

Static Data

heap

stack

code

Static Data

heap

stack

0000…

FFFF…

1000…

1100…

3000…

3080…

Base 3000 …

0080 …Bound

xxxx xxxxuPC

regs

sysmode

…

0

PC

0000…

FFFF…

00D0…
• How to save

registers and
set up system
stack?

000 0248

1000 …

0100 …

0000 1234

regs
00FF…

RTU

Lec 3.111/23/24 Kubiatowicz CS162 © UCB Spring 2024

Is Simple Base and Bound Enough for General Systems?

• NO: Too simplistic for real systems
• Inflexible/Wasteful:

– Must dedicate physical memory for potential future use
– (Think stack and heap!)

• Fragmentation:
– Kernel has to somehow fit whole processes into contiguous

block of memory
– After a while, memory becomes fragmented!

• Sharing:
– Very hard to share any data between Processes or between

Process and Kernel
– Need to communicate indirectly through the kernel…

Lec 3.121/23/24 Kubiatowicz CS162 © UCB Spring 2024

Prog 1
Virtual
Address
Space 1

Prog 2
Virtual
Address
Space 2

Code
Data
Heap
Stack

Code
Data
Heap
Stack

Data 2

Stack 1

Heap 1

OS heap &
Stacks

Code 1

Stack 2

Data 1

Heap 2

Code 2

OS code

OS dataTranslation Map 1 Translation Map 2

Physical Address Space

Better: Translation through Page Table (More soon!)

Lec 3.131/23/24 Kubiatowicz CS162 © UCB Spring 2024

Recall: Dual Mode Operation
• Processes (i.e., programs you run) execute in user mode

– To perform privileged actions, processes request services from the OS kernel
– Carefully controlled transition from user to kernel mode

• Kernel executes in kernel mode
– Performs privileged actions to support running processes
– … and configures hardware to properly protect them (e.g., address translation)

• Carefully controlled transitions between user mode and kernel mode
– System calls, interrupts, exceptions

Lec 3.141/23/24 Kubiatowicz CS162 © UCB Spring 2024

Adding Protection: CPU Switch From Process A to Process B

Kernel/System ModeUser Mode User Mode

Lec 3.151/23/24 Kubiatowicz CS162 © UCB Spring 2024

Running Many Programs
• We have the basic mechanism to:

– switch between user processes and the kernel,
– the kernel can switch among user processes,
– Protect OS from user processes and processes from each other

• Questions:
– How do we represent user processes in the OS?
– How do we decide which user process to run?
– How do we pack up the process and set it aside?
– How do we get a stack and heap for the kernel?
– Aren’t we wasting are lot of memory?

Lec 3.161/23/24 Kubiatowicz CS162 © UCB Spring 2024

Multiplexing Processes: The Process Control Block
• Kernel represents each process with a process

control block (PCB)
– Status (running, ready, blocked, …)
– Register state (when not ready)
– Process ID (PID), User, Executable, Priority, …
– Execution time, …
– Memory space, translation, …

• Kernel Scheduler maintains a data structure
containing the PCBs

– Give out CPU to different processes
– This is a Policy Decision

• Give out non-CPU resources
– Memory/IO
– Another policy decision

Process
Control
Block

Lec 3.171/23/24 Kubiatowicz CS162 © UCB Spring 2024

Scheduler

• Scheduling: Mechanism for deciding which processes/threads
receive hardware CPU time, when, and for how long

• Lots of different scheduling policies provide …
– Fairness or
– Realtime guarantees or
– Latency optimization or ..

if (readyProcesses(PCBs)) {
nextPCB = selectProcess(PCBs);
run(nextPCB);

} else {
run_idle_process();

}

Lec 3.181/23/24 Kubiatowicz CS162 © UCB Spring 2024

Also Recall: The World Is Parallel: Saphire Rapids (2023)
• Up to 60 cores, 120 threads/package (socket)

– Up to 4 “chiplets” bonded together
• Network:

– On-chip Mesh Interconnect
– Fast off-chip network (UPI):

directly connects 8-chips
– 480 cores/shared memory domain!

• Each Core Has:
– 80 KB L1 Cache
– 2 MB L2 Cache
– Fraction of up to 112.5 MB L3 Cache

• DRAM/chips
– Up to 4 TiB of DDR5 memory

• Many Accellerators of different types
– Graphics, Encryption, AI, Security

Saphire Rapids 4-chiplet single package

Lec 3.191/23/24 Kubiatowicz CS162 © UCB Spring 2024

Simultaneous MultiThreading/Hyperthreading
• Hardware scheduling technique

– Avoids software overhead of multiplexing
– Superscalar processors can execute

multiple instructions that are independent.
– Hyperthreading duplicates register state

to make a second “thread,” allowing
more instructions to run.

• Can schedule each thread as if were
separate CPU

– But, sub-linear speedup!

• Original technique called “Simultaneous Multithreading”
– http://www.cs.washington.edu/research/smt/index.html
– SPARC, Pentium 4/Xeon (“Hyperthreading”), Power 5

Colored blocks show instructions executed

Lec 3.201/23/24 Kubiatowicz CS162 © UCB Spring 2024

Administrivia: Getting started!
• Kubiatowicz Office Hours:

– Tuesday/Thursday 3-4pm, in 673 Soda Hall
• Homework 0: Due Tomorrow!

– Get familiar with the cs162 tools
– configure your VM, submit via git
– Practice finding out information:

» How to use GDB? How to understand output of unix tools?
» We don’t assume that you already know everything!
» Learn to use “man” (command line), “help” (in gdb, etc), google

• Project 0: Started Yesterday!
– Learn about Pintos and how to modify and debug kernel
– Important for getting started on projects!

• Should be going to sections now – Important information there
– Any section will do until groups assigned

Lec 3.211/23/24 Kubiatowicz CS162 © UCB Spring 2024

Administrivia (Con’t)
• THIS Friday is Drop Deadline! HARD TO DROP LATER!

– If you know you are going to drop, do so now to leave room for others on waitlist!
– Why do we do this? So that groups aren’t left without members!

• Group sign up via autograder form next week
– Get finding groups of 4 people ASAP
– Priority for same section; if cannot make this work, keep same TA
– Remember: Your TA needs to see you in section!

• Midterm 1: 2/15
– 8-10PM in person
– We will say more about material when we get closer…

• Midterm 1 conflicts
– We will handle these conflicts after have final class roster
– Watch for queries by HeadTA to collect information

Lec 3.221/23/24 Kubiatowicz CS162 © UCB Spring 2024

CS 162 Collaboration Policy
Explaining a concept to someone in another group
Discussing algorithms/testing strategies with other groups
Discussing debugging approaches with other groups
Searching online for generic algorithms (e.g., hash table)

Sharing code or test cases with another group or individual (including HW!)
Copying OR reading another group’s code or test cases
Copying OR reading online code or test cases from prior years
Helping someone in another group to debug their code

• We compare all project and HW submissions against prior year submissions and
online solutions and will take actions (described on the course overview page)
against offenders

• Don’t put a friend in a bad position by asking for help that they shouldn’t give!

Lec 3.231/23/24 Kubiatowicz CS162 © UCB Spring 2024

More About Threads: What are they?
• Definition from before: A single unique execution context

– Describes its representation

• It provides the abstraction of: A single execution sequence that represents
a separately schedulable task

– Also a valid definition!

• Threads are a mechanism for concurrency (overlapping execution)
– However, they can also run in parallel (simultaneous execution)

• Protection is an orthogonal concept
– A protection domain can contain one thread or many

Lec 3.241/23/24 Kubiatowicz CS162 © UCB Spring 2024

• Operating systems must handle multiple things at once (MTAO)
– Processes, interrupts, background system maintenance

• Networked servers must handle MTAO
– Multiple connections handled simultaneously

• Parallel programs must handle MTAO
– To achieve better performance

• Programs with user interface often must handle MTAO
– To achieve user responsiveness while doing computation

• Network and disk bound programs must handle MTAO
– To hide network/disk latency
– Sequence steps in access or communicatoin

Motivation for Threads

I made this term up!

Lec 3.251/23/24 Kubiatowicz CS162 © UCB Spring 2024

Threads Allow Handling MTAO
• Threads are a unit of concurrency provided by the OS
• Each thread can represent one thing or one task

Lec 3.261/23/24 Kubiatowicz CS162 © UCB Spring 2024

Multiprocessing vs. Multiprogramming
• Some Definitions:

– Multiprocessing: Multiple CPUs(cores)
– Multiprogramming: Multiple jobs/processes
– Multithreading: Multiple threads/processes

• What does it mean to run two threads concurrently?
– Scheduler is free to run threads in any order and interleaving
– Thread may run to completion or time-slice in big chunks or small chunks

A B C

BA ACB C BMultiprogramming

A
B
C

Multiprocessing

Lec 3.271/23/24 Kubiatowicz CS162 © UCB Spring 2024

Concurrency is not Parallelism
• Concurrency is about handling multiple things at once (MTAO)
• Parallelism is about doing multiple things simultaneously

• Example: Two threads on a single-core system...
– … execute concurrently …
– … but not in parallel

• Each thread handles or manages a separate thing or task…
• But those tasks are not necessarily executing simultaneously!

Lec 3.281/23/24 Kubiatowicz CS162 © UCB Spring 2024

Silly Example for Threads
• Imagine the following program:

main() {
ComputePI(“pi.txt”);
PrintClassList(“classlist.txt”);

}

• What is the behavior here?
• Program would never print out class list
• Why? ComputePI would never finish

Lec 3.291/23/24 Kubiatowicz CS162 © UCB Spring 2024

Adding Threads

• Version of program with threads (loose syntax):
main() {

create_thread(ComputePI, “pi.txt”);
create_thread(PrintClassList, “classlist.txt”);

}
• create_thread: Spawns a new thread running the given procedure

– Should behave as if another CPU is running the given procedure

• Now, you would actually see the
class list

CPU1 CPU2 CPU1 CPU2

Time
CPU1 CPU2

Lec 3.301/23/24 Kubiatowicz CS162 © UCB Spring 2024

More Practical Motivation: Compute/IO overlap

Back to Jeff Dean’s
“Numbers Everyone
Should Know”

Handle I/O in
separate thread,
avoid blocking
other progress

Lec 3.311/23/24 Kubiatowicz CS162 © UCB Spring 2024

Threads Mask I/O Latency

• A thread is in one of the following three states:
– RUNNING – running
– READY – eligible to run, but not currently running
– BLOCKED – ineligible to run

• If a thread is waiting for an I/O to finish, the OS marks it as BLOCKED
• Once the I/O finally finishes, the OS marks it as READY

vCPU1 vCPU2 vCPU1 vCPU2

Time
vCPU1 vCPU2

Lec 3.321/23/24 Kubiatowicz CS162 © UCB Spring 2024

Threads Mask I/O Latency
• If no thread performs I/O:

• If thread 1 performs a blocking I/O operation:

vCPU1 vCPU2 vCPU1 vCPU2

Time

vCPU1 vCPU2

vCPU1 vCPU2

Time

vCPU1 vCPU2

vCPU1 starts I/O operation
I/O operation completes

Lec 3.331/23/24 Kubiatowicz CS162 © UCB Spring 2024

A Better Example for Threads
• Version of program with threads (loose syntax):

main() {
create_thread(ReadLargeFile, “pi.txt”);
create_thread(RenderUserInterface);

}
• What is the behavior here?

– Still respond to user input
– While reading file in the background

Lec 3.341/23/24 Kubiatowicz CS162 © UCB Spring 2024

Multithreaded Programs
• You know how to compile a C program and run the executable

– This creates a process that is executing that program

• Initially, this new process has one thread in its own address space
– With code, globals, etc. as specified in the executable

• Q: How can we make a multithreaded process?
• A: Once the process starts, it issues system calls to create new threads

– These new threads are part of the process: they share its address space

Lec 3.351/23/24 Kubiatowicz CS162 © UCB Spring 2024

System Calls (“Syscalls”)

Compilers

Web Servers

Web Browsers

Databases
Email

Word Processing

Portable OS Library
System Call

Interface
Portable OS Kernel

Platform support, Device Drivers

x86 ARMPowerPC

Ethernet (1Gbs/10Gbs) 802.11 a/g/n/ac SCSI ThunderboltGraphics

PCI
Hardware

Software

System

User
OS

Application / Service

“But, I’ve never seen a
syscall!”
• OS library issues

system call
• Language runtime

uses OS library…

Lec 3.361/23/24 Kubiatowicz CS162 © UCB Spring 2024

OS Library Issues Syscalls

OS

Proc
1

Proc
2

Proc
n…

OS

Appln login Window
Manager

…
OS library OS library OS librarylibc

Lec 3.371/23/24 Kubiatowicz CS162 © UCB Spring 2024

OS Library API for Threads: pthreads
Here: the “p” is for “POSIX” which is a part of a standardized API

int pthread_create(pthread_t *thread, const pthread_attr_t *attr,
void *(*start_routine)(void*), void *arg);

– thread is created executing start_routine with arg as its sole argument.
– return is implicit call to pthread_exit

void pthread_exit(void *value_ptr);
– terminates the thread and makes value_ptr available to any successful join

int pthread_join(pthread_t thread, void **value_ptr);
– suspends execution of the calling thread until the target thread terminates.
– On return with a non-NULL value_ptr the value passed to pthread_exit() by

the terminating thread is made available in the location referenced
by value_ptr.

prompt% man pthread
https://pubs.opengroup.org/onlinepubs/7908799/xsh/pthread.h.html

Lec 3.381/23/24 Kubiatowicz CS162 © UCB Spring 2024

Peeking Ahead: System Call Example
• What happens when pthread_create(…) is called in a process?

Library:
int pthread_create(…) {

Do some work like a normal fn…

asm code … syscall # into %eax
put args into registers %ebx, …
special trap instruction

get return values from regs
Do some more work like a normal fn…

};

get args from regs
dispatch to system func
Do the work to spawn the new thread
Store return value in %eax

Kernel:

Lec 3.391/23/24 Kubiatowicz CS162 © UCB Spring 2024

New Idea: Fork-Join Pattern

• Main thread creates (forks) collection of sub-threads passing them args to
work on…

• … and then joins with them, collecting results.

create

exit

join

Lec 3.401/23/24 Kubiatowicz CS162 © UCB Spring 2024

pThreads Example
• How many threads are in this program?
• What function does each thread run?
• One possible result:

• Does the main thread join with the threads in
the same order that they were created?

• Yes: Loop calls Join in thread order
• Do the threads exit in the same order they

were created?
• No: Depends on scheduling order!

• Would the result change if run again?
• Yes: Depends on scheduling order!

• Is this code safe/correct???
• No – threads share are variable that is

used without locking and there is a race
condition!

Lec 3.411/23/24 Kubiatowicz CS162 © UCB Spring 2024

Thread State

• State shared by all threads in process/address space
– Content of memory (global variables, heap)
– I/O state (file descriptors, network connections, etc)

• State “private” to each thread
– Kept in TCB Thread Control Block
– CPU registers (including, program counter)
– Execution stack – what is this?

• Execution Stack
– Parameters, temporary variables
– Return PCs are kept while called procedures are executing

Lec 3.421/23/24 Kubiatowicz CS162 © UCB Spring 2024

Shared vs. Per-Thread State

Lec 3.431/23/24 Kubiatowicz CS162 © UCB Spring 2024

Execution Stack Example

• Stack holds temporary results
• Permits recursive execution
• Crucial to modern languages

A(int tmp) {

if (tmp<2)

B();

printf(tmp);

}

B() {

C();

}

C() {

A(2);

}

A(1);

A:

A+1:

A+2:

B:

B+1:

C:

C+1:

exit:

Lec 3.441/23/24 Kubiatowicz CS162 © UCB Spring 2024

Execution Stack Example

• Stack holds temporary results
• Permits recursive execution
• Crucial to modern languages

A(int tmp) {

if (tmp<2)

B();

printf(tmp);

}

B() {

C();

}

C() {

A(2);

}

A(1);

A: tmp=1
ret=exitStack

PointerA:

A+1:

A+2:

B:

B+1:

C:

C+1:

exit:

Lec 3.451/23/24 Kubiatowicz CS162 © UCB Spring 2024

Execution Stack Example

• Stack holds temporary results
• Permits recursive execution
• Crucial to modern languages

A(int tmp) {

if (tmp<2)

B();

printf(tmp);

}

B() {

C();

}

C() {

A(2);

}

A(1);

A: tmp=1
ret=exitStack

PointerA:

A+1:

A+2:

B:

B+1:

C:

C+1:

exit:

Lec 3.461/23/24 Kubiatowicz CS162 © UCB Spring 2024

Execution Stack Example

• Stack holds temporary results
• Permits recursive execution
• Crucial to modern languages

A(int tmp) {

if (tmp<2)

B();

printf(tmp);

}

B() {

C();

}

C() {

A(2);

}

A(1);

A: tmp=1
ret=exitStack

PointerA:

A+1:

A+2:

B:

B+1:

C:

C+1:

exit:

Lec 3.471/23/24 Kubiatowicz CS162 © UCB Spring 2024

Execution Stack Example

• Stack holds temporary results
• Permits recursive execution
• Crucial to modern languages

A(int tmp) {

if (tmp<2)

B();

printf(tmp);

}

B() {

C();

}

C() {

A(2);

}

A(1);

A: tmp=1
ret=exit

Stack
Pointer

B: ret=A+2
A:

A+1:

A+2:

B:

B+1:

C:

C+1:

exit:

Lec 3.481/23/24 Kubiatowicz CS162 © UCB Spring 2024

Execution Stack Example

• Stack holds temporary results
• Permits recursive execution
• Crucial to modern languages

A(int tmp) {

if (tmp<2)

B();

printf(tmp);

}

B() {

C();

}

C() {

A(2);

}

A(1);

A: tmp=1
ret=exit

Stack
Pointer

B: ret=A+2
A:

A+1:

A+2:

B:

B+1:

C:

C+1:

exit:

Lec 3.491/23/24 Kubiatowicz CS162 © UCB Spring 2024

Execution Stack Example

• Stack holds temporary results
• Permits recursive execution
• Crucial to modern languages

A(int tmp) {

if (tmp<2)

B();

printf(tmp);

}

B() {

C();

}

C() {

A(2);

}

A(1);

A: tmp=1
ret=exit

Stack
Pointer

B: ret=A+2

C: ret=B+1

A:

A+1:

A+2:

B:

B+1:

C:

C+1:

exit:

Lec 3.501/23/24 Kubiatowicz CS162 © UCB Spring 2024

Execution Stack Example

• Stack holds temporary results
• Permits recursive execution
• Crucial to modern languages

A(int tmp) {

if (tmp<2)

B();

printf(tmp);

}

B() {

C();

}

C() {

A(2);

}

A(1);

A: tmp=1
ret=exit

Stack
Pointer

B: ret=A+2

C: ret=B+1

A: tmp=2
ret=C+1

Stack Growth

A:

A+1:

A+2:

B:

B+1:

C:

C+1:

exit:

Lec 3.511/23/24 Kubiatowicz CS162 © UCB Spring 2024

Execution Stack Example

• Stack holds temporary results
• Permits recursive execution
• Crucial to modern languages

A(int tmp) {

if (tmp<2)

B();

printf(tmp);

}

B() {

C();

}

C() {

A(2);

}

A(1);

A: tmp=1
ret=exit

Stack
Pointer

B: ret=A+2

C: ret=B+1

A: tmp=2
ret=C+1

Stack Growth

Output: >2

A:

A+1:

A+2:

B:

B+1:

C:

C+1:

exit:

Lec 3.521/23/24 Kubiatowicz CS162 © UCB Spring 2024

Execution Stack Example

• Stack holds temporary results
• Permits recursive execution
• Crucial to modern languages

A(int tmp) {

if (tmp<2)

B();

printf(tmp);

}

B() {

C();

}

C() {

A(2);

}

A(1);

A: tmp=1
ret=exit

Stack
Pointer

B: ret=A+2

C: ret=B+1

A: tmp=2
ret=C+1

Stack Growth

Output: >2

A:

A+1:

A+2:

B:

B+1:

C:

C+1:

exit:

Lec 3.531/23/24 Kubiatowicz CS162 © UCB Spring 2024

Execution Stack Example

• Stack holds temporary results
• Permits recursive execution
• Crucial to modern languages

A(int tmp) {

if (tmp<2)

B();

printf(tmp);

}

B() {

C();

}

C() {

A(2);

}

A(1);

A: tmp=1
ret=exit

Stack
Pointer

B: ret=A+2

C: ret=B+1

Output: >2

A:

A+1:

A+2:

B:

B+1:

C:

C+1:

exit:

Lec 3.541/23/24 Kubiatowicz CS162 © UCB Spring 2024

Execution Stack Example

• Stack holds temporary results
• Permits recursive execution
• Crucial to modern languages

A(int tmp) {

if (tmp<2)

B();

printf(tmp);

}

B() {

C();

}

C() {

A(2);

}

A(1);

A: tmp=1
ret=exit

Stack
Pointer

B: ret=A+2

Output: >2

A:

A+1:

A+2:

B:

B+1:

C:

C+1:

exit:

Lec 3.551/23/24 Kubiatowicz CS162 © UCB Spring 2024

Execution Stack Example

• Stack holds temporary results
• Permits recursive execution
• Crucial to modern languages

A(int tmp) {

if (tmp<2)

B();

printf(tmp);

}

B() {

C();

}

C() {

A(2);

}

A(1);

A: tmp=1
ret=exitStack

Pointer

Output: >2 1

A:

A+1:

A+2:

B:

B+1:

C:

C+1:

exit:

Lec 3.561/23/24 Kubiatowicz CS162 © UCB Spring 2024

Execution Stack Example

• Stack holds temporary results
• Permits recursive execution
• Crucial to modern languages

A(int tmp) {

if (tmp<2)

B();

printf(tmp);

}

B() {

C();

}

C() {

A(2);

}

A(1);

A: tmp=1
ret=exitStack

Pointer

Output: >2 1

A:

A+1:

A+2:

B:

B+1:

C:

C+1:

exit:

Lec 3.571/23/24 Kubiatowicz CS162 © UCB Spring 2024

Execution Stack Example

• Stack holds temporary results
• Permits recursive execution
• Crucial to modern languages

A(int tmp) {

if (tmp<2)

B();

printf(tmp);

}

B() {

C();

}

C() {

A(2);

}

A(1);

Output: >2 1

Lec 3.581/23/24 Kubiatowicz CS162 © UCB Spring 2024

Execution Stack Example

• Stack holds temporary results
• Permits recursive execution
• Crucial to modern languages

A(int tmp) {

if (tmp<2)

B();

printf(tmp);

}

B() {

C();

}

C() {

A(2);

}

A(1);

A: tmp=2
ret=C+1

Stack Growth

A: tmp=1
ret=exit

B: ret=A+2

C: ret=b+1

Stack
Pointer

Lec 3.591/23/24 Kubiatowicz CS162 © UCB Spring 2024

Memory Layout with Two Threads

• Two sets of CPU registers
• Two sets of Stacks
• Issues:

– How do we position stacks relative to
each other?

– What maximum size should we choose
for the stacks?

– What happens if threads violate this?
– How might you catch violations?

Code
Global Data

Heap

Stack 1

Stack 2

A
ddress Space

0x000…

0xFFF…

Lec 3.601/23/24 Kubiatowicz CS162 © UCB Spring 2024

INTERLEAVING AND NONDETERMINISM
(The beginning of a long discussion!)

Lec 3.611/23/24 Kubiatowicz CS162 © UCB Spring 2024

Thread Abstraction

• Illusion: Infinite number of processors
• Reality: Threads execute with variable “speed”

– Programs must be designed to work with any schedule

Lec 3.621/23/24 Kubiatowicz CS162 © UCB Spring 2024

Programmer vs. Processor View

Lec 3.631/23/24 Kubiatowicz CS162 © UCB Spring 2024

Possible Executions

Lec 3.641/23/24 Kubiatowicz CS162 © UCB Spring 2024

Correctness with Concurrent Threads
• Non-determinism:

– Scheduler can run threads in any order
– Scheduler can switch threads at any time
– This can make testing very difficult

• Independent Threads
– No state shared with other threads
– Deterministic, reproducible conditions

• Cooperating Threads
– Shared state between multiple threads

• Goal: Correctness by Design

Lec 3.651/23/24 Kubiatowicz CS162 © UCB Spring 2024

Race Conditions: Example 1

• Initially x == 0 and y == 0

• What are the possible values of x below after all threads finish?
• Must be 1. Thread B does not interfere

Thread A
x = 1;

Thread B
y = 2;

Lec 3.661/23/24 Kubiatowicz CS162 © UCB Spring 2024

Race Conditions: Example 2
• Initially x == 0 and y == 0

• What are the possible values of x below?
• 1 or 3 or 5 (non-deterministically)
• Race Condition: Thread A races against Thread B!

Thread A
x = y + 1;

Thread B
y = 2;
y = y * 2;

Lec 3.671/23/24 Kubiatowicz CS162 © UCB Spring 2024

Example: Shared Data Structure

Thread A
Insert(3)

Thread B
Insert(4)
Get(6)

Tree-Based Set Data Structure

Lec 3.681/23/24 Kubiatowicz CS162 © UCB Spring 2024

Relevant Definitions

• Synchronization: Coordination among threads, usually regarding shared data

• Mutual Exclusion: Ensuring only one thread does a particular thing at a time
(one thread excludes the others)

– Type of synchronization

• Critical Section: Code exactly one thread can execute at once
– Result of mutual exclusion

• Lock: An object only one thread can hold at a time
– Provides mutual exclusion

Lec 3.691/23/24 Kubiatowicz CS162 © UCB Spring 2024

Locks
• Locks provide two atomic operations:

– Lock.acquire() – wait until lock is free; then mark it as busy
» After this returns, we say the calling thread holds the lock

– Lock.release() – mark lock as free
» Should only be called by a thread that currently holds the lock
» After this returns, the calling thread no longer holds the lock

• For now, don’t worry about how to implement locks!
– We’ll cover that in substantial depth later on in the class

Lec 3.701/23/24 Kubiatowicz CS162 © UCB Spring 2024

Thread A
Insert(3)
• Lock.acquire()
• Insert 3 into

the data
structure

• Lock.release()

Thread B
Insert(4)
• Lock.acquire()
• Insert 4 into

the data
structure

• Lock.release()

Get(6)
• Lock.acquire()
• Check for

membership
• Lock.release()

Tree-Based Set Data Structure

Lec 3.711/23/24 Kubiatowicz CS162 © UCB Spring 2024

OS Library Locks: pthreads

int pthread_mutex_init(pthread_mutex_t *mutex,
const pthread_mutexattr_t *attr)

int pthread_mutex_lock(pthread_mutex_t *mutex);
int pthread_mutex_unlock(pthread_mutex_t *mutex);

You’ll get a chance to use these in Homework 1

Lec 3.721/23/24 Kubiatowicz CS162 © UCB Spring 2024

Our Example

Critical section

Lec 3.731/23/24 Kubiatowicz CS162 © UCB Spring 2024

Recall: UNIX System Structure

User Mode

Kernel Mode

Hardware

Applications

Standard Libs

Lec 3.741/23/24 Kubiatowicz CS162 © UCB Spring 2024

Recall: Life of a Process

User Mode

Kernel Mode

Full HW accessLimited HW access

exec

syscall

exit
rtn

interrupt

rfi

exception

Lec 3.751/23/24 Kubiatowicz CS162 © UCB Spring 2024

3 types of Kernel Mode Transfer
• Syscall

– Process requests a system service, e.g., exit
– Like a function call, but “outside” the process
– Does not have the address of the system function to call
– Like a Remote Procedure Call (RPC) – for later
– Marshall the syscall id and args in registers and exec syscall

• Interrupt
– External asynchronous event triggers context switch
– eg. Timer, I/O device
– Independent of user process

• Trap or Exception
– Internal synchronous event in process triggers context switch
– e.g., Protection violation (segmentation fault), Divide by zero,

…

Lec 3.761/23/24 Kubiatowicz CS162 © UCB Spring 2024

Implementing Safe Kernel Mode Transfers
• Important aspects:

– Controlled transfer into kernel (e.g., syscall table)
– Separate kernel stack!

• Carefully constructed kernel code packs up the user process
state and sets it aside

– Details depend on the machine architecture
– More on this next time

• Should be impossible for buggy or malicious user program to
cause the kernel to corrupt itself!

Lec 3.771/23/24 Kubiatowicz CS162 © UCB Spring 2024

Recall: System Call Interface: A Narrow Waist

Compilers

Web Servers

Web Browsers

Databases
Email

Word Processing

Portable OS Library
System Call

Interface
Portable OS Kernel

Platform support, Device Drivers

x86 ARMPowerPC

Ethernet (1Gbs/10Gbs) 802.11 a/g/n/ac/ax SCSI ThunderboltGraphics

PCI
Hardware

Software

System Mode

User Mode
OS

Application / Service

Lec 3.781/23/24 Kubiatowicz CS162 © UCB Spring 2024

Kernel System Call Handler
• Vector through well-defined syscall entry points!

– Table mapping system call number to handler
• Locate arguments

– In registers or on user (!) stack
• Copy arguments

– From user memory into kernel memory
– Protect kernel from malicious code evading checks

• Validate arguments
– Protect kernel from errors in user code

• Copy results back
– Into user memory

Lec 3.791/23/24 Kubiatowicz CS162 © UCB Spring 2024

Hardware support: Interrupt Control

• Interrupt processing not visible to the user process:
– Occurs between instructions, restarted transparently
– No change to process state
– What can be observed even with perfect interrupt processing?

• Interrupt Handler invoked with interrupts ‘disabled’
– Re-enabled upon completion
– Non-blocking (run to completion, no waits)
– Pack up in a queue and pass off to an OS thread for hard work

» wake up an existing OS thread

Lec 3.801/23/24 Kubiatowicz CS162 © UCB Spring 2024

Interrupt Controller

• Interrupts invoked with interrupt lines from devices
• Interrupt controller chooses interrupt request to honor

– Interrupt identity specified with ID line
– Mask enables/disables interrupts
– Priority encoder picks highest enabled interrupt
– Software Interrupt Set/Cleared by Software

• CPU can disable all interrupts with internal flag
• Non-Maskable Interrupt line (NMI) can’t be disabled

Network

IntID

Interrupt

Interrupt M
ask

ControlSoftware
Interrupt NMI

CPU

Priority Encoder

Tim
er

Int Disable

Lec 3.811/23/24 Kubiatowicz CS162 © UCB Spring 2024

How do we take interrupts safely?
• Interrupt vector

– Limited number of entry points into kernel
• Kernel interrupt stack

– Handler works regardless of state of user code
• Interrupt masking

– Handler is non-blocking
• Atomic transfer of control

– “Single instruction”-like to change:
» Program counter
» Stack pointer
» Memory protection
» Kernel/user mode

• Transparent restartable execution
– User program does not know interrupt occurred

Lec 3.821/23/24 Kubiatowicz CS162 © UCB Spring 2024

Interrupt Vector

• Where else do you see this dispatch pattern?
– System Call
– Exceptions

interrupt number (i)

intrpHandler_i () {
….
}

Address and properties
of each interrupt handler

Lec 3.831/23/24 Kubiatowicz CS162 © UCB Spring 2024

Need for Separate Kernel Stacks
• Kernel needs space to work
• Cannot put anything on the user stack (Why?)
• Two-stack model

– OS thread has interrupt stack (located in kernel memory) plus User stack
(located in user memory)

– Syscall handler copies user args to kernel space before invoking specific
function (e.g., open)

– Interrupts (???)

Lec 3.841/23/24 Kubiatowicz CS162 © UCB Spring 2024

Before

Lec 3.851/23/24 Kubiatowicz CS162 © UCB Spring 2024

During Interrupt/System Call

Lec 3.861/23/24 Kubiatowicz CS162 © UCB Spring 2024

Managing Processes
• How to manage process state?

– How to create a process?
– How to exit from a process?

• Remember: Everything outside of
the kernel is running in a process!

– Including the shell! (Homework 2)

• Processes are created and
managed… by processes!

Lec 3.871/23/24 Kubiatowicz CS162 © UCB Spring 2024

Bootstrapping
• If processes are created by other processes, how does the first

process start?

• First process is started by the kernel
– Often configured as an argument to the kernel before the kernel

boots
– Often called the “init” process

• After this, all processes on the system are created by other
processes

Lec 3.881/23/24 Kubiatowicz CS162 © UCB Spring 2024

Next time: Process Management API
• exit – terminate a process

• fork – copy the current process

• exec – change the program being run by the current process

• wait – wait for a process to finish

• kill – send a signal (interrupt-like notification) to another process

• sigaction – set handlers for signals

Lec 3.891/23/24 Kubiatowicz CS162 © UCB Spring 2024

Conclusion
• Threads are the OS unit of concurrency

– Abstraction of a virtual CPU core
– Can use pthread_create, etc., to manage threads within a process
– They share data → need synchronizaƟon to avoid data races

• Processes consist of one or more threads in an address space
– Abstraction of the machine: execution environment for a program
– Can use fork, exec, etc. to manage threads within a process

• We saw the role of the OS library
– Provide API to programs
– Interface with the OS to request services

