CS162
Operating Systems and
Systems Programming

Lecture 4

Abstractions 2: Process Management,
Files and 1/O
A quick programmer’s viewpoint

January 26t 2023
Prof. John Kubiatowicz
http://cs162.eecs.Berkeley.edu

Recall: OS Library API for Threads: pthreads
Here: the “p” is for “POSIX” which is a part of a standardized API

int pthread_create(pthread_t *thread, const pthread_attr_t *attr,
void *(*start_routine)(void*), void *arg);

—thread is created executing start_routine with arg as its sole argument.
—return is implicit call to pthread_exit

void pthread_exit(void *value_ptr);
— terminates the thread and makes value_ptr available to any successful join

int pthread_join(pthread_t thread, void **value_ptr);
— suspends execution of the calling thread until the target thread terminates.

— On return with a non-NULL value_ptr the value passed to pthread exit() by
the terminating thread is made available in the location referenced

by value_ptr.

1/26/2023 Kubiatowicz CS162 ©UCB Spring 2023 Lec4.2
. | .
Recall: pThreads Example - Recall: Locks
* How many threads are in this program? + Locks provide two atomic operations:
» What function does each thread run? Lock Acaui it until lock is free: th Kitasb
- One possible result: L N — Lock.Acquire() — wait until lock is free; then mark it as busy
(base) CullerMac19:coded4 cullers ./pthread 4 0 #%1x stack: ¥lx co » After this returns, we say the calling thread holds the lock
Main stack: 7ffee2c6b6b8, common: 10cf95048 (162) d long) &tid, (unsigned long
Thread #1 stack: 70000d83bef8 common: 10cf95048 (162) i - Lock.ReIease() — mark lock as free
Thread #3 stack: 70000d941ef8 common: 10cf95048 (164)
Thread #2 stack: 7000@dBbeef8 common: 10cf95048 (165) » Should only be called by a thread that currently holds the lock
Thread #@ stack: 70000d7b8ef8 common: 10cf95048 (163)) .
- Does the main thread join with the threads in » After this returns, the calling thread no longer holds the lock
the same order that they were created?
* Yes: Loop calls Join in thread order S——— oo] * For now, don’t worry about how to implement locks!
» Do the threads exit in the same order the: r L — —) : : :
o y 7 (unsigned long) &t (or ong) &common| common) ; — We’ll cover that in substantial depth later on in the class
were Created' for(t=0; tsnthreads: t++){ 1
* No: Depends on SChedUIing order! ir ; pthread_create(&threads(t], NULL, threadfun, (void *)t);
f(re){
+« Would the result Change if run again? pu;\(n;')'wkok; return code from pthread_createl d rc)
. exiti(- H
* Yes: Depends on scheduling ogd€r!
* Is this code safe/correct??? y
» No — threads share are variable that is ' [hread Jointthreads [t], NULL);
used without locking and there is a race i . S
" pthread_exit(N); * las hing in the main thread
condition! -)
Lec4.3 1/26/2023 Kubiatowicz CS162 ©UCB Spring 2023 Lec4.4

1/26/2023

Kubiatowicz CS162 ©UCB Spring 2023

OS Library Locks: pthreads Our Example: Fixing the Race Condition for increment (++)

int common = 162;
int pthread mutex_init(pthread mutex t *mutex, pthread_mutex_t common_lock = PTHREAD_MUTEX_INITIALIZER;
const pthread_mutexattr_t *attr) void *threadfun(void *threadid)
{
long tid = (long)threadid;

int pthread_mutex_lock(pthread_mutex_t *mutex); pthread_nutex_lock(&common_lock);

int pthread_mutex_unlock(pthread_mutex_t *mutex); Critical Secmn{ int my_common = common++;
pthread_mutex_unlock(&common_lock);

You'll get a chance to use these in Homework 1 printf("Thread #%1x stack: %lx common: %lx (%d)\n", tid,
(unsigned long) &tid,
i (unsigned long) &common, my_common);
pthread_exit(NULL);
}
1/26/2023 Kubiatowicz CS162 ©UCB Spring 2023 Lec 4.5 1/26/2023 Kubiatowicz CS162 ©UCB Spring 2023 Lec 4.6
Recall: Adding locking to a Red/Black tree Recall: Dual Mode Operation
Thread A Thread B » Hardware provides at least two modes (at least 1 mode bit):
Insert(3) Insert(4) 1. Kernel Mode (or “supervisor” mode)
. . 2. User Mode
e Lock.acquire() e Lock.acquire() . . L .
. Insert 3 into . Insert 4 into * Certain o_peratlonS are proh|p|ted V\{hen.run_nmg in us_er mod_e _
the data the data — Changing the page table pointer, disabling interrupts, interacting directly w/
structure structure hardware, writing to kernel memory
e Lock.release() e Lock.release() Carefully controlled transitions between user mode and kernel mode
Get(6) — System calls, interrupts, exceptions
e Lock.acquire()
user process
Tree-Based Set Data Structure - check for wermote |
membe rs h ip l user process executing H calls sys\tem call ‘ [return Yror:'system call -
o Lock.release() = —7
kernel mode bit= 0 mode bit = 1

kemel mode

execute system call (mode bit = 0)

1/26/2023 Kubiatowicz CS162 ©UCB Spring 2023 Lec4.7 1/26/2023 Kubiatowicz CS162 ©UCB Spring 2023 Lec 4.8

Implementing Safe Kernel Mode Transfers

* Important aspects:
— Controlled transfer into kernel (e.g., syscall table)
— Separate kernel stack!

 Carefully constructed kernel code packs up the user process
state and sets it aside

— Details depend on the machine architecture
— More on this next time

» Should be impossible for buggy or malicious user program to
cause the kernel to corrupt itself!

1/26/2023 Kubiatowicz CS162 ©UCB Spring 2023

Lec4.9

3 types of Kernel Mode Transfer

» Syscall
— Process requests a system service, e.g., exit
— Like a function call, but “outside” the process
— Does not have the address of the system function to call
— Like a Remote Procedure Call (RPC) — for later
— Marshall the syscall id and args in registers and exec syscall
¢ Interrupt
— External asynchronous event triggers context switch
—eg. Timer, 1/0O device
— Independent of user process
» Trap or Exception
— Internal synchronous event in process triggers context switch
— e.g., Protection violation (segmentation fault), Divide by zero, ...
1/26/2023

Kubiatowicz CS162 ©UCB Spring 2023 Lec 4.10

Handling System Calls safely

* Vector through well-defined syscall entry points!
— Table mapping system call number to handler
— Atomicly set to kernel mode at same time as jump to systemcall code in kernel
— Separate Kernel Stack in kernel memory during syscall execution
+ System call handler must never trust user and must validate everything!
* On entry: Copy arguments
— From user memory/registers/stack into kernel memory
— Protect kernel from malicious code evading checks
* On entry: Validate arguments
— Protect kernel from errors in user code
— Protect kernel from invalid values and addresses
+ On exit: Copy results back
— Into user memory

1/26/2023 Kubiatowicz CS162 ©UCB Spring 2023

Lec4.11

How do we take interrupts safely?

« Interrupt processing not visible to the user process:
— Occurs between instructions, restarted transparently
— No change to process state
— What can be observed even with perfect interrupt processing?
* Interrupt vector
— Limited number of entry points into kernel
» Kernel interrupt stack
— Handler works regardless of state of user code
* Interrupt masking
— Handler is non-blocking
* Atomic transfer of control
— “Single instruction”-like to change:
» Program counter
» Stack pointer
» Memory protection
» Kernel/user mode
» Exceptions handled similarly, except synchronously (attached to particular instruction)
1/26/2023

Kubiatowicz CS162 ©UCB Spring 2023 Lec 4.12

Interrupt Controller

Control

Network
* Interrupts invoked with interrupt lines from devices
Interrupt controller chooses interrupt request to honor

— Interrupt identity specified with ID line

— Mask enables/disables interrupts

— Priority encoder picks highest enabled interrupt

— Software Interrupt Set/Cleared by Software
* CPU can disable all interrupts with internal flag
» Non-Maskable Interrupt line (NMI) can’t be disabled

Interrupt Vector

Address and properties

interrupt number (i) of each interrupt handler

intrpHandler i () {

}

* Where else do you see this dispatch pattern?
— System Call
— Exceptions

1/26/2023 Kubiatowicz CS162 ©UCB Spring 2023 Lec4.13 1/26/2023 Kubiatowicz CS162 ©UCB Spring 2023 Lec4.14
Need for Separate Kernel Stacks Before
» Kernel needs space to work
.) User-level Registers Kernel
+ Cannot put anything on the user stack (Why?) Process
» Two-stack model code: — code:
— OS thread has interrupt stack (located in kernel memory) plus User stack S mp
(located in user memory) foo }?I(EFLAGS handlzr(){
. . . e while(...) { pusha
— Syscall handler copies user args to kernel space before invoking specific X=xt; :’e‘;gm
function (e.g., open) » d . }y=y-2: EAX, EBX, }
_ Interrupts (,7?,7) n:;:g rea my::‘mn wal(l:‘ga‘:r\/o
User Stack procl procl procl }
proc2 proc Sso;z” Exception
— — — stack: Stack
user CPU user CPU
state state
Kernel Stack syscall
handler
1/O driver
% top half
Lec4.15 1/26/2023 Kubiatowicz CS162 ©UCB Spring 2023 Lec 4.16

1/26/2023 Kubiatowicz CS162 ©UCB Spring 2023

During Interrupt/System Call

User-level

Registers Kernel
Process
code: SSESP code:
CS: EIP
00 { EFLAGS handler(
while(..){ other pusha
X=x+1; registers:
}y =y-2; EAX, EBX, !
}
Exception
stack: Stack
SS
ESP
EFLAGS
[
EIP
error

1/26/2023 Kubiatowicz CS162 ©UCB Spring 2023

Lec4.17

Administrivia

» Kubiatowicz Office Hours
— 3pm-4pm, Tuesday/Thursday

TOMORROW (Friday) is Drop Deadline! VERY HARD TO DROP LATER!
* Recommendation: Read assigned readings before lecture

* You should be going to sections — Important information covered in section

— Any section will do until groups assigned
» Get finding groups of 4 people ASAP

— Priority for same section; if cannot make this work, keep same TA

— Remember: Your TA needs to see you in section!

1/26/2023

Kubiatowicz CS162 ©UCB Spring 2023 Lec 4.18
Administrivia (Con’t) Managing Processes
« Starting next week, we will be adhering to strict slip-day policies for non- » How to manage process state? [Ccode |[aata |[fies | [Ccode |[aata |[fles |
DSP students — How to create a process? , " < . .
— Slip days are no-questions asked (or justification needed) extensions _ How to exit from a process? [regsers] [stack | registers | registers | [registers
— Anything beyond this requires documentation (i.e. doctor’s note, etc) ’ stack || stack J| stack
— If you run out of slip days, assignments will be discounted
» 10% first day, 20% second day, 40% third day, 80% fourth day * Remember: Everything outside of ,h,ead_,g ; ; ;.__m,ead
+ You get 4 slip days for homework and 5 slip days for group projects the kernel is running in a process!
— No project extensions on design documents, since we need to keep design — Including the shell! (Homework 2)
reviews on track
— Conserve your slip days! « Processes are created and single-threaded process multithreaded process
* Midterm 1 will be on 2/15 from 8-10pm managed... by processes!
— No class on day of midterm (extra office hours!)
— Closed book
— One page of handwritten notes — both sides
1/26/2023 Kubiatowicz CS162 ©UCB Spring 2023 Lec 4.19 1/26/2023

Kubiatowicz CS162 ©UCB Spring 2023

Lec4.20

1/26/2023

Bootstrapping

If processes are created by other processes, how does the first
process start?

First process is started by the kernel

— Often configured as an argument to the kernel before the kernel
boots

— Often called the “init” process

After this, all processes on the system are created by other
processes

Process Management API

» exit —terminate a process

« fork — copy the current process

» exec — change the program being run by the current process

» wait — wait for a process to finish

e kill — send a signal (interrupt-i

ke notification) to another process

e sigaction — set handlers for signals

Kubiatowicz CS162 ©UCB Spring 2023 Lec 4.21 1/26/2023 Kubiatowicz CS162 ©UCB Spring 2023 Lec 4.22
Process Management API pid.c
exit — terminate a process #:!.nclude <std%1b.h> Q: What if we let main return
#include <stdio.h> . . .
fork — copy the current process ginclude <string.h> without ever calling exit?
exec — change the program being run by the current process #include <unistd.h> * The OS Library calls exit() for us!
] _ o #include <sys/types.h> » The entrypoint of the executable is
wait — wait for a process to finish int main(int argc, char *argv[]) in the OS library
kill — send a signal (interrupt-like notification) to another process e oIp * * OSlibrary calls main _
. /* get current processes / « If main returns, OS library calls exit
sigaction — set handlers for signals pid_t pid = getpid(); - You'll see this in Project 0: init.c
printf("My pid: %d\n", pid); ’ ’
exit(0);
}
1/26/2023 Kubiatowicz CS162 ©UCB Spring 2023 Lec4.23 1/26/2023 Kubiatowicz CS162 ©UCB Spring 2023 Lec4.24

Process Management API

exit —terminate a process

fork — copy the current process

exec — change the program being run by the current process
wait — wait for a process to finish

kill — send a signal (interrupt-like notification) to another process

sigaction — set handlers for signals

Kubiatowicz CS162 ©UCB Spring 2023 Lec 4.25

Creating Processes

e pid_t fork() — copy the current process
— New process has different pid
— New process contains a single thread
* Return value from fork(): pid (like an integer)
— When > 0:
» Running in (original) Parent process
» return value is pid of new child
— When =0:
» Running in new Child process
— When < 0:
» Errorl Must handle somehow
» Running in original process
» State of original process duplicated in both Parent and Child!
— Address Space (Memory), File Descriptors (covered later), etc...

1/26/2023 Kubiatowicz CS162 ©UCB Spring 2023

forkl.c

#include <stdlib.h>
#include <stdio.h>
#tinclude <unistd.h>
#include <sys/types.h>

int main(int argc, char *argv[]) {
pid_t cpid, mypid;
pid_t pid = getpid();
printf("Parent pid: %d\n", pid);
cpid = fork();
if (cpid > @) {
mypid = getpid();
printf("[%d] parent of [%d]\n", mypid, cpid);
} else if (cpid == @) { /* Child Process */
mypid = getpid();
printf("[%d] child\n", mypid);
} else {
perror("Fork failed");

}

} Kubiatowicz CS162 ©UCB Spring 2023

/* get current processes PID */

/* Parent Process */

Lec4.27

forkl.c

#include <stdlib.h>
#include <stdio.h>
#include <unistd.h>
#include <sys/types.h>

int main(int argc, char *argv[]) {
pid_t cpid, mypid;
pid_t pid = getpid();
printf("Parent pid: %d\n", pid);

m cpid = fork();
if (cpid > 0) {

mypid = getpid();
printf("[%d] parent of [%d]\n", mypid, cpid);
} else if (cpid == @) { /* Child Process */
mypid = getpid();
printf("[%d] child\n", mypid);
} else {
perror("Fork failed");

/* Parent Process */

}

1/26/2023 } Kubiatowicz CS162 ©UCB Spring 2023

/* get current processes PID */

forkl.c

#include <stdlib.h>
#include <stdio.h>
#include <unistd.h>
#include <sys/types.h>

int main(int argc, char *argv[]) {
pid_t cpid, mypid;
pid_t pid = getpid();
printf("Parent pid: %d\n", pid);
cpid = fork();
if (cpid > 0) { /* Parent Process */

W) mrid = getpid);
printf("[%d] parent of [%d]\n", mypid, cpid);

} else if (cpid == @) { /* Child Process */

/* get current processes PID */

Mystery: fork_race.c

int i;
pid_t cpid = fork();
if (cpid > @) {
for (i = 0; i < 10; i++) {

Recall: a process consists of one or more
threads executing in an address space

printf("Parent: %d\n", i); * Here, each process has a single thread

// sleep(1); + These threads execute concurrently

}
} else if (cpid == @) {
for (i = 0; i > -10; i--) {
printf("Child: %d\n", i);
// sleep(1);
}
}

.» mypid = getpid(); » What does this print?
X P;i"tj:(“[%d] child\n", mypid); * Would adding the calls to sieep() matter?
else
perror("Fork failed");
}
1/26/2023 } Kubiatowicz CS162 ©UCB Spring 2023 Lec 4.29 1/26/2023 Kubiatowicz CS162 ©UCB Spring 2023 Lec 4.30
Process Management API Starting new Program: variants of exec
exit —terminate a process cpid = fork();
if (cpid > @) { /* Parent Process */
fork — copy the current process tepid = wait(&status);
. 1 if id == * Child P *
exec — change the program being run by the current process } ih:i iargﬁdz {2{ f,_l,,,/NUf,_;;d rocess */
wait — wait for a process to finish execv(/bin/1s”, args);
. /* execv doesn’t return when it works.
kill — send a signal (interrupt-like notification) to another process So, if we got here, it failed! */
sigaction — set handlers for signals ,, .
perror(“execv”);
exit(1);
}
1/26/2023 Kubiatowicz CS162 ©UCB Spring 2023 Lec 4.31 1/26/2023 Kubiatowicz CS162 ©UCB Spring 2023 Lec 4.32

fork2.c — parent waits for child to finish

int status;
pid_t tcpid;

cpid = fork();

if (cpid > 9) {
mypid = getpid();
printf("[%d] parent of [%d]\n", mypid, cpid);
tcpid = wait(&status);

printf("[%d] bye %d(%d)\n", mypid, tcpid, status);
else if (cpid == 0) { /* Child Process */
mypid = getpid();

printf("[%d] child\n", mypid);

exit(42);

}

/* Parent Process */

-

Process Management

: The Shell pattern

child

pid=Ffork();
if (pid==0)
exec(..);

wait(&stat)

pid=fork();

if (pid==0)
exec(..);

else
wait(&stat) parent

main() {
exec

\— pid=fork();
fork if (pid==0)

exec(..);
else

|wait2&stati|

wait

i

1/26/2023 Kubiatowicz CS162 ©UCB Spring 2023 Lec 4.33 1/26/2023 Kubiatowicz CS162 ©UCB Spring 2023 Lec4.34
Process Management API inf_loop.c
» exit —terminate a process #include <stdlib.h>)
#include <stdio.h> Q: What would happen if the process
« fork — copy the current process :i:ziﬁg: zzzz:zpﬁim receives a SIGINT signal, but does
« exec — change the program being run by the current process #include <signal.h> not register a Slgrjal handler?
. . - A: The process dies!
e wait — wait for a process to finish void signal_callback_handler(int signum) {
. .) " . printf(“Caught signal!\n”); . .
« kill — send a signal (interrupt-like notification) to another process exit(1); For each signal, there is a default
. . . handler defined by the system

e sigaction — set handlers for signals int main() {
struct sigaction sa;
sa.sa_flags = 0;
sigemptyset(&sa.sa_mask);
sa.sa_handler = signal_callback_handler;
sigaction(SIGINT, &sa, NULL);
while (1) {}

}
1/26/2023 Kubiatowicz CS162 ©UCB Spring 2023 Lec 4.35 1/26/2023 Kubiatowicz CS162 ©UCB Spring 2023 Lec 4.36

Common POSIX Signals
e SIGINT - control-C

e SIGTERM — default for kill shell command
o SIGSTP — control-Z (default action: stop process)

e SIGKILL, SIGSTOP — terminate/stop process

— Can’t be changed with sigaction
— Why?

1/26/2023

Recall: UNIX System Structure

Applications
User Mode

(the users)

; shells and commands
Standard Libs compilers and interpreters

system libraries

system-call interface to the kernel

Kernel Mode

_ signals terminal file system CPU scheduling
g) handling swapping block /O page replacement
2 character I/O system system
terminal drivers

demand paging

disk and tape drivers virtual memory

kernel interface to the hardware

terminal controllers
Hardware

device controllers memory controllers
terminals disks and tapes physical memory
Kubiatowicz CS162 ©UCB Spring 2023 Lec 4.37 1/26/2023 Kubiatowicz CS162 ©UCB Spring 2023 Lec 4.38
A Kind of Narrow Waist Recall: OS Library (libc) Issues Syscalls
Proc
. Word Processing;N 2
Compilers eb Browsers
(O]
Web Servers o .
Application / Service
Portable OS Library oS
[I.I-W OS library | OS library OS library
Portable OS Kernel "
Software Platform support, Device Driv 0Ss
Hardware x86 PowerPC ARM
_ P » OS Library: Code linked into the user-level application that provides a clean or
Ethernet (1Gbs/10Gbs$02.11 a/g/n/acSCSIGraphics Thunderbolt more functional API to the user than just the raw sysca”s
1/26/2023 Kubiatowicz CS162 ©UCB Spring 2023 Lec 4.39 1/26/2023

— Most of this code runs at user level, but makes syscalls (which run at kernel level)
Kubiatowicz CS162 ©UCB Spring 2023

Lec4.40

Unix/POSIX Idea: Everything is a “File”

Identical interface for:
— Files on disk
— Devices (terminals, printers, etc.)
— Regular files on disk
— Networking (sockets)
— Local interprocess communication (pipes, sockets)
Based on the system calls open(), read(), write(), and close()
Additional: ioct1() for custom configuration that doesn’t quite fit
Note that the “Everything is a File” idea was a radical idea when proposed

— Dennis Ritchie and Ken Thompson described this idea in their seminal paper
on UNIX called “The UNIX Time-Sharing System” from 1974

— | posted this on the resources page if you are curious

Kubiatowicz CS162 ©UCB Spring 2023 Lec 4.41

1/26/2023

Aside: POSIX interfaces

+ POSIX: Portable Operating System Interface (for uniX?)
— Interface for application programmers (mostly)
— Defines the term “Unix,” derived from AT&T Unix
— Created to bring order to many Unix-derived OSes, so applications are portable
» Partially available on non-Unix OSes, like Windows
— Requires standard system call interface

Kubiatowicz CS162 ©UCB Spring 2023

Lec4.42

The File System Abstraction

* File

— Named collection of data in a file system
— POSIX File data: sequence of bytes
» Could be text, binary, serialized objects, ...
— File Metadata: information about the file
» Size, Modification Time, Owner, Security info, Access control

 Directory

— “Folder” containing files & directories
— Hierachical (graphical) naming
» Path through the directory graph
» Uniquely identifies a file or directory
 /home/ff/cs162/public_html/fa14/index.html
— Links and Volumes (later)

Kubiatowicz CS162 ©UCB Spring 2023 Lec 4.43

1/26/2023

Connecting Processes, File Systems, and Users

* Every process has a current working directory (CWD)

— Can be set with system call:
int chdir(const char *path); //change CWD

» Absolute paths ignore CWD
— /home/oski/cs162
+ Relative paths are relative to CWD
—index.html, ./index.html
» Refers to index.html in current working directory
— ../index.html
» Refers to index.html in parent of current working directory
— ~/index.html, ~cs162/index.html
» Refers to index.html in the home directory

Kubiatowicz CS162 ©UCB Spring 2023

Lec4.44

I/O and Storage Layers

Application / Service

Streams (buffered I/0)
File Descriptors
Syscall open(), read(), write(), close(), ...

Open File Descriptions

File System Files/Directories/Indexes

1/0 Driver Commands and Data Transfers

Disks, Flash, Controllers, DMA

C High-Level File APl — Streams

» Operates on “streams” — unformatted sequences of bytes (wither text or

binary data), with a position:

#include <stdio.h>
FILE *fopen(const char *filename, const char)i
int fclose(FILE *fp);

r b Open existing file for reading

w wb Open for writing; created if does not exist

a ab Open for appending; created if does not exist

r+ rb+ Open existing file for reading & writing.

w+ wb+ Open for reading & writing; truncated to zero if exists, create otherwise

a+ ab+ Open for reading & writing. Created if does not exist. Read from beginning, write

as append

» Open stream represented by pointer to a FILE data structure
— Error reported by returning a NULL pointer

1/26/2023 Kubiatowicz CS$162 ©UCB Spring 2023 Lec 4.45 1/26/2023 Kubiatowicz CS$162 ©UCB Spring 2023 Lec 4.46
C API Standard Streams — stdio.h C High-Level File API
» Three predefined streams are opened implicitly when the program is // character oriented
executed. int fputc(int ¢, FILE *fp); // rtn c or EOF on err
. . int fput t ch * FILE *f 5 t EOF
~ FILE *stdin — normal source of input, can be redirected int fputs(const char *s, P s // rtn > 8 or EO
- FILE *stdout — normal source of output, can too int fgetc(FILE * fp);
- FILE *stderr — diagnostics and errors char *fgets(char *buf, int n, FILE *fp);
// block oriented
+ STDIN / STDOUT enable composition in Unix size_t fread(void *ptr, size_t size_of_elements,
size_t number_of_elements, FILE *a_file);
. size_t fwrite(const void *ptr, size_t size_of_elements,
L]
All can be redirected size_t number_of_elements, FILE *a_file);
- cat hello.txt | grep “World!”
- cat’s stdout goes to grep’s stdin // formatted
int fprintf(FILE *restrict stream, const char *restrict format, ...);
int fscanf(FILE *restrict stream, const char *restrict format, ...);
1/26/2023 Kubiatowicz CS$162 ©UCB Spring 2023 Lec 4.47 1/26/2023 Kubiatowicz CS$162 ©UCB Spring 2023 Lec4.48

C Streams: Char-by-Char I/O

int main(void) {
FILE* input = fopen(“input.txt”, “r”);
FILE* output = fopen(“output.txt”, “w”);
int c;

c = fgetc(input);

while (c != EOF) {
fputc(output, c);
c = fgetc(input);

C High-Level File API

// character oriented
int fputc(int c, FILE *fp);
int fputs(const char *s, FILE *fp);

// rtn c or EOF on err
// rtn > @ or EOF

int fgetc(FILE * fp);
char *fgets(char *buf, int n, FILE *fp);

// block oriented
size_t fread(void *ptr, size_t size_of_elements,

size_t number_of_elements, FILE *a_file);
size_t fwrite(const void *ptr, size_t size_of_elements,

¥ size_t number_of_elements, FILE *a_file);
fclose(input);
fclose(output); // formatted
} int fprintf(FILE *restrict stream, const char *restrict format, ...);
int fscanf(FILE *restrict stream, const char *restrict format, ...);
1/26/2023 Kubiatowicz CS162 ©UCB Spring 2023 Lec4.49 1/26/2023 Kubiatowicz CS162 ©UCB Spring 2023 Lec 4.50
C Streams: Block-by-Block I/0 Aside: Check your Errors!
#define BUFFER_SIZE 1024 » Systems programmers should always be paranoid!
int main(void) { — Otherwise you get intermittently buggy code
FILE* input = fopen("input.txt", "r"); * We should really be writing things like:
FILE* output = fopen("output.txt", "w"); FILE* input = fopen(“input.txt”, “r”);
char buffer[BUFFER_SIZE]; if (input == NULL) {
size_t length; // Prints our string and error msg.
- ’ « 3 2] »
length = fread(buffer, sizeof(char), BUFFER_SIZE, input); perror(“Failed to open input file”)
while (length > 0) { }
fwrite(buffer, sizeof(char), length, output); Be th h about checki t I .
length = fread(buffer, sizeof(char), BUFFER_SIZE, input); e oroug about chec '“9 return vajues: .
} — Want failures to be systematically caught and dealt with
fclose(input); * I may be a bit loose with error checking for examples in class (to keep short)
fclose(output); — Do as | say, not as | show in class!
1/26/2023 Kubiatowicz CS162 ®UCB Spring 2023 Lec 4.51 1/26/2023 Kubiatowicz CS162 ©UCB Spring 2023 Lec 4.52

C High-Level File API: Positioning The Pointer

int fseek(FILE *stream, long int offset, int whence);
long int ftell (FILE *stream)
void rewind (FILE *stream)

* For fseek(), the offset is interpreted based on the whence argument
(constants in stdio.h):

- SEEK_SET: Then offset interpreted from beginning (position 0)
- SEEK_END: Then offset interpreted backwards from end of file
- SEEK_CUR: Then offset interpreted from current position

offset (SEEK_SET) offset (SEEK_END)

whence

offset (SEEK_CUR)
» Overall preserves high-level abstraction of a uniform stream of objects

I/O and Storage Layers

Application / Service

Streams (buffered I/0)

Low Level /O File Descriptors

Syscall open(), read(), write(), close(), ...
Open File Descriptions

File System Files/Directories/Indexes

1/0 Driver Commands and Data Transfers

Disks, Flash, Controllers, DMA

1/26/2023 Kubiatowicz CS162 ©UCB Spring 2023 Lec 4.53 1/26/2023 Kubiatowicz CS162 ©UCB Spring 2023 Lec 4.54
Low-Level File I/O: The RAW system-call interface C Low-Level (pre-opened) Standard Descriptors

#include <fentl.h> . .
#include <unistd.h> #include <unistd.h>
#include <sys/types.h> STDIN_FILENO - macro has value ©

STDOUT_FILENO - macro has value 1
:i.nt open (const char *fiI'Lena.me int flags‘ [, h\ode t modej) STDERR FILENO - macro has value 2
int creat (const char *fi ame, mode_t mode) -
int close (int filed

// Get file descriptor inside FILE *
Bit vector of: y I . . .
- Access modes (Rd, Wr, ...) Bit vectoGr of Pe(r)mlssmn Bits: int fileno (FILE *stream)
. 0 Flags (Create, ...) * User|Group|Other X R|W|X

pen Flag]
*_Operating modes (Appends, ...) // Make FILE * from descriptor
. . . FILE * fdopen (int filedes, const char *opentype)
* Integer return from open() is a file descriptor
— Error indicated by return < 0: the global errno variable set with error (see man pages)
» Operations on file descriptors:
— Open system call created an open file description entry in system-wide table of open files
— Open file description object in the kernel represents an instance of an open file
— Why give user an integer instead of a pointer to the file description in kernel?
1/26/2023 Kubiatowicz CS162 ©UCB Spring 2023 Lec 4.55 1/26/2023 Kubiatowicz CS162 ©UCB Spring 2023 Lec 4.56

Low-Level File API

» Read data from open file using file descriptor:

ssize_t read (int filedes, void *buffer, size_t maxsize)

— Reads up to maxsize bytes — might actually read less!
—returns bytes read, 0 => EOF, -1 => error

» Write data to open file using file descriptor
ssize_t write (int filedes, const void *buffer, size_t size)

—returns number of bytes written

* Reposition file offset within kernel (this is independent of any position held by
high-level FILE descriptor for this file!

off_t lseek (int filedes, off_t offset, int whence)

Example: lowio.c

int main() {
char buf[1000];

int fd = open("lowio.c", O RDONLY, S _IRUSR | S_IWUSR);
ssize_t rd = read(fd, buf, sizeof(buf));
int err = close(fd);
ssize_t wr = write(STDOUT_FILENO, buf, rd);
}

* How many bytes does this program read?

1/26/2023 Kubiatowicz CS162 ©UCB Spring 2023 Lec 4.57 1/26/2023 Kubiatowicz CS162 ©UCB Spring 2023 Lec 4.58
POSIX I/0O: Design Patterns POSIX I/0O: Kernel Buffering
* Open before use » Reads are buffered inside kernel
— Access control check, setup happens here — Part of making everything byte-oriented
« Byte-oriented — Process is blocked while waiting for device
_ Least common denominator — Let other processes run while gathering result
— OS responsible for hiding the fact that real devices may not work this way " Writes are bgffered inside kernel
(e.g. hard drive stores data in blocks) — Complete in background (more later on)
- Explicit close — Return to user when data is “handed off” to kernel
+ This buffering is part of global buffer management and caching for block
devices (such as disks)
— Items typically cached in quanta of disk block sizes
— We will have many interesting things to say about this buffering when we dive
into the kernel
1/26/2023 Kubiatowicz CS162 ©UCB Spring 2023 Lec 4.59 1/26/2023 Kubiatowicz CS162 ©UCB Spring 2023 Lec 4.60

Low-Level I/O: Other Operations

» Operations specific to terminals, devices, networking, ...

—e.g., ioctl
Duplicating descriptors
- int dup2(int old, int new);
- int dup(int old);
* Pipes — channel
- int pipe(int pipefd[2]);

- Writes to pipefd[1] can be read from pipefd[@]

File Locking
* Memory-Mapping Files
* Asynchronous I/O

Low-Level vs High-Level file API

Low-level direct use of syscall interface:
open(), read(), write(), close()

Opening of file returns file descriptor:
int myfile = open(..);
File descriptor only meaningful to kernel
— Index into process (PDB) which holds
pointers to kernel-level structure (“file
description”) describing file.
Every read() orwrite() causes
syscall no matter how small (could read
a single byte)
Consider loop to get 4 bytes at a time
using read():
— Each iteration enters kernel for 4 bytes.

+ High-level buffered access:

fopen(), fread(), fwrite(), fclose()
Opening of file returns ptr to FILE:
FILE *myfile = fopen(..);
FILE structure is user space contains:
— a chunk of memory for a buffer
— the file descriptor for the file (fopen() will
call open() automatically)
Every fread() or fwrite() filters
through buffer and may not call read()
orwrite() on every call.
Consider loop to get 4 bytes at a time
using fread():

— First call to fread() calls read() for block of
bytes (say 1024). Puts in buffer and returns
first 4 to user.

— Subsequent fread() grab bytes from buffer

1/26/2023 Kubiatowicz CS162 ©UCB Spring 2023 Lec 4.61 172672023 Kubiatowicz CS162 ©UCB Spring 2023 Lec4.62
Low-Level vs. High-Level File API High-Level vs. Low-Level File API
Low-Level Operation: High-Level Operation: » Streams are buffered in user memory:
ssize_tread(...) { ssize_t fread(...) { printf("Beginning of line ");
Check buffer for contents sleep(10); // sleep for 1@ seconds
Return data to caller if available printf("and end of line\n");
asm code ... syscall # into %eax asm code ... syscall # into %eax Prints out everything at once
put args into registers %ebx, ... put args into registers %ebyx, ...
special trap instruction special trap instruction
Ke”:e'i . Kemte'i . « Operations on file descriptors are visible immediately
get args from regs get args from regs . et s R .
dispatch to system func dispatch to system func write(STDOUT_FILENO, "Beginning of line ", 18);
Do the work to read from the file Do the work to read from the file sleep(10);
Store return value in %eax Store return value in %eax write("and end of line \n", 16);
get return values from regs get return values from regs Outputs "Beginning of line" 10 seconds earlier than “and end of line”
Return data to caller Update buffer with excess data
Return data to caller
h b
1/26/2023 Kubiatowicz CS$162 ©UCB Spring 2023 Lec 4.63 1/26/2023 Kubiatowicz CS$162 ©UCB Spring 2023 Lec 4.64

1/26/2023

Conclusion

System Call Interface is “narrow waist” between user programs and kernel

— Must enter kernel atomically by setting PC to kernel routine at same time that
CPU enters kernel mode

Processes consist of one or more threads in an address space
— Abstraction of the machine: execution environment for a program
— Can use fork, exec, etc. to manage threads within a process

We saw the role of the OS library
— Provide API to programs
— Interface with the OS to request services

Streaming 10: modeled as a stream of bytes
— Most streaming I/O functions start with “f’ (like “fread”)

— Data buffered automatically by C-library function

Low-level 1/O:

— File descriptors are integers
— Low-level I/0O supported directly at system call level

Kubiatowicz CS162 ©UCB Spring 2023

Lec 4.65

