CS 162 HW 1

HW 1. List

In this homework, you will gain familiarity with threads and processes from the perspective of a user

program, which will help you understand how to support these concepts in the operating system.

Along the way, you will gain experience with the Pintos list data structure, but in the context of a
user program running on Linux. We hope that completing this assignment will prepare you to begin
Project Userprog, where you will work with the implementations of these constructs in the Pintos
kernel. In particular, we hope that you gain experience with how to use them for both development

and testing purposes in a contained environment where bugs are relatively easy to catch, before
having to work with them in Pintos.

Getting started

To get started, log in to your development environment and get the starter code.

cd ~/code/personal/
git pull staff main

cd hw-1list

To build the code, run make, which should create four binaries: pthread, words, pwords, and lwords .
Make sure not to commit and push any binaries when submititng to the autograder. You can get rid
of unnecessary binaries using make clean.

Note: You do not have to add the -f flag to run the executable in this assignment.

Skeleton

You'll notice that for some files, only the object files without the source are provided. Part of being
able to program means being able to work with the abstractions you're provided, so we've left out

implementations which are not necessary for you to complete this assignment.s

list.h provides the Pintos list abstraction which is taken directly from the Pintos source code. 1ist.c

provides the implementations, but you should be able to use this library solely based on the API



given in 1list.h. You must not modify these files.

word_count.h defines the APl you will implement. We have already provided necessary data structures

word_count_t and word_count_list_t which you must use.

words.o and word_count.o provide compiled implementations of methods necessary to run the words
program from Homework Intro. You can use the outputs of these programs as sanity checks on what

your other programs that you'll build should output.

word_count_1.c will house your implementation of the the APl in word_count.h using Pintos lists. The
makefile Will provide the macro definition of pintos_rist when compiling. When word_count_1.c is
linked with the driver in 1lwords.o and compiled, it should result in an application 1words that behaves
identically to the frequency mode of words but internally using Pintos lists instead of traditional

linked lists as seen in Homework Intro.

Similarly, word_count_p.c will house your implementation of the API in word count.h using Pintos lists
and proper synchronization of the word count data structure for a multithreaded program. Unlike
lwords , you'll need to write the driver program in pwords.c. When word_count_p.c and pwords.c are put
together and compiled, it should create an application pwords that behaves identically as 1words and

frequency mode of words but internally uses multiple threads.

word_helpers.h provides an API for parsing and counting words. word_helpers.o provides compiled
implementations for these methods.

pthread.c implements an example application that creates multiple threads andprints out certain
memory addresses and values. You may find it helpful to base your pwords.c implementation off of

pthread.c. While you won't be writing any code in pthread.c, you will be reading and analyzing it.

Copyright © 2022 CS 162 staff.



