CS 162 HW 1

powords

TABLE OF CONTENTS
T Implementation
2 Synchronization

3 Gradescope questions

Implementation

words and lwords operate in a single thread, opening, reading, and processing each file one after
another. With pwords, your task is to provide the same end-to-end functionality while using multiple
threads. This means you are not allowed to materialize your intermediate results (i.e. write each
thread’s results to a separate file and aggregate these). Make sure to read through word_count.h and
Makefile tO see what macros are used for pwords. In particular, the word_count_1ist_t will differ from

lwords .

pwords.c Will serve as the driver program, meaning it will manage the creation and upkeep of the
threads you create. Each file should be processed in a separate thread. We recommend you

reference pthread.c to draw inspiration and clues as to how you should structure your code.

Synchronization

When implementing words_count_p.c, keep in mind the functionality of all these methods are
identical to what you did in words_count_1.c. However, you must use synchronization techiques to
ensure coordination amongst different threads to prevent race conditions.

Your synchronization must be fine-grained. Different threads should be able to open and read
their respective files concurrently, serializing only their modifications to shared data. In particular, it
is unacceptable to use a global lock around the call to the count_words function in pwords.c, since it
would prevent multiple threads from concurrently reading files. We reserve the right to deduct
points from such implementations. Instead, you should only synchronize access to the word count
list data structure in word_count_p.c. You will need to ensure all such modifications are complete
before printing the result or terminating the process.



We recommend that you start by just implementing the thread-per-file aspect (i.e. without
synchronization). This will be quite similar to the code you've written in word_count_1.c. Your program
might not even error, since multithreaded programs with synchronization bugs may appear to work
properly much of the time. Once you're confident in the logic of your methods, then add in the
necessary synchronization.

To help you find subtle synchronization bugs in your program, we have provided a decently large
input for your words program in the gutenberg/ directory. These files were generated from select
stories from Project Gutenberg, making sure to choose short stories so that the word count program
does not take too long to run. Make sure to compare the results of running pwords to running words
to check if your output is correct. As stated before, this does not ensure your synchronization is
correct, but it might alert you to subtle synchronization bugs that may not manifest for smaller

inputs.

Gradescope questions

After correctly implementing pwords (i.e. passing autograder tests), compare 1words and pwords by

answering the following questions.

1 Briefly compare the performance of 1words and pwords when run on the Gutenberg dataset. How

might you explain their relative performance?

2 Under what circumstances would pwords perform better than 1words ? Under what circumstances
would 1words perform better than pwords ? Is it possible to use multithreading in a way that

always performs better than 1words ?

Copyright © 2022 CS 162 staff.



