Discussion 1

Fundamentals, Processes, Pintos Lists

01/26/24

Announcements

Sunday Monday Tuesday Wednesday Thursday Friday Saturday
Group Formation
Project O Release Homework O Due Homework 1 Release Early Drop Deadline Deadline
Project O Due Project 1 Release

Homework 1 Due

Fundamentals

Operating systems

Operating systems (OS) provide hardware abstractions (e.g. file systems,
processes) to software applications and manage hardware resources (e.g.
memory, CPU).
° Not a well-defined term!
° Special layer of software that provides application software access
to hardware resources.
Plays three roles.
° Referee: manage protection, isolation, and sharing of resources.
° lllusionist: provide clean, easy-to-use abstractions of physical
resources.

° Glue: provide common services.

Address Space

Address space is the set of accessible addresses and associated states.

e 32-bit processor has 2%2 = 4 billion addresses.

° Entire address space isn’t real locations but potential spaces.

° Exception/fault (e.g. segfault) if trying to access restricted memory.
Programs operate with virtual memory.

° Instead of accessing physical memory directly, programs request a

virtual address which is translated into a physical address.
° Examples include base and bound (shown on right), segmentation,

page tables

0000...

- 0000...
—>| Static Data code
e Addresses translated Static Data
on-the-fly heap
stack |
0100...
Base Address
- 1000...
0010... | tooo.. k-
Program 0010...
address
Bound
1100...

FFFF...

Dual Mode Operation

Hardware provides two modes.

Kernel/supervisor/privileged mode has the most privileges (i.e.
kernel and other parts of OS operate in this mode).

User mode prohibits certain operations (i.e. user programs execute)
Restricted user mode is important to make sure user process cannot

maliciously corrupt the system.

Three main ways of mode transfers (switch from user to kernel mode).

Processes request a system service through a system call (syscall)
which encompass functionality that require kernel mode privileges.
Interrupts (hardware interrupts) are external asynchronous events
(e.g. timer, I/O) that trigger a mode switch.

Traps (software interrupts or exceptions) are internal synchronous

events (e.g. segfault, divide by zero) that trigger a mode switch.

All three modes known as unprogrammed control transfer.

Process doesn’t identify the specific address but rather an index into
the interrupt vector table (IVT) which contains the address and

properties of each interrupt handler.

interrupt number (i)

Address and properties of
each interrupt handler

intrpHandler i () {

}

Concept Check

1. What is the importance of address translation?

2. Similar to what’s done in the prologue at calling convention, what needs to happen before a mode transfer occurs?

Concept Check

1. What is the importance of address translation?
Necessary for idea of virtual memory
a. Isolation/protection between different processes’ address spaces

b. Illusion to processor as sole user of address space

2. Similar to what’s done in the prologue at calling convention, what needs to happen before a mode transfer occurs?

Concept Check

1. What is the importance of address translation?
Necessary for idea of virtual memory
a. Isolation/protection between different processes’ address spaces

b. Illusion to processor as sole user of address space

2. Similar to what’s done in the prologue at calling convention, what needs to happen before a mode transfer occurs?

Need to save processor state (e.g. registers) in the thread control block (TCB) since kernel may overwrite it.

Concept Check

3. How does the syscall handler protect the kernel from corrupt or malicious user code?

4, Trivia: Contrary to the answer above, in Linux the /dev/kmem file, which contains the entirety of kernel virtual memory, can be read. Why dowe let a

user program read kernel memory?

Concept Check

3. How does the syscall handler protect the kernel from corrupt or malicious user code?
User program specifies an index instead of direct address of the handler.

Arguments are validated and copied over to kernel stack to prevent time-of-check to time-of-use (TOCTTOU) attacks.

After the syscall finishes, the results are copied back in to user memory.

The user process is not allowed to access the results stored in kernel memory for security reasons.

4, Trivia: Contrary to the answer above, in Linux the /dev/kmem file, which contains the entirety of kernel virtual memory, can be read. Why dowe let a

user program read kernel memory?

Concept Check

3. How does the syscall handler protect the kernel from corrupt or malicious user code?
User program specifies an index instead of direct address of the handler.
Arguments are validated and copied over to kernel stack to prevent time-of-check to time-of-use (TOCTTOU) attacks.
After the syscall finishes, the results are copied back in to user memory.

The user process is not allowed to access the results stored in kernel memory for security reasons.

4. Trivia: Contrary to the answer above, in Linux the /dev/kmem file, which contains the entirety of kernel virtual memory, can be read. Why do we let
a user program read kernel memory?
This isn't violating any of the OS principles of memory protection. Opening and reading files is a privileged operation, and you need to be running as

auser with root privileges in the first place (‘sudo’ or superuser) that can make a syscall to read /dev/kmem.

Processes

Process Control Block

OS needs to run many programs, meaning it needs mechanisms such as
° Switching between user processes and the kernel.
° Switching among user processes through the kernel.
° Protecting the OS from user processes and protecting processes
from each other.

Kernel represents each process with a process control block (PCB).

Syscall

OS provides library/API that implements process management syscalls. int main() {
° Unix puts it as part of C standard library (libc). pid_t fork_ret = fork();
° Use man pages for full documentation. if (fork_ret > 0) {
void exit(int status) terminates calling process with exit code /* parent process logic x/
status. } else if (fork_ret == 0) {
. Exit code O = no errors, nonzero means otherwise. /* child process logic */
° Usually not explicitly called by ma-in since OS implicitly calls it once } else {
ma-in returns. /* error handling */
pid_t fork(void) creates anew process by copying the current process. }
° Process created from fork is child process, process calling fork is }
parent process. Typical fork workflow

° Parent and child are identical (e.g. same address space) except for
PID and a few other things.
° Return type is pid_t (signed integer).
o >0 means current process is parent.
o =0 means current process is child.

o -1 means error has occurred

Syscall

exec changes the program being run by the current process.
° Does not create a new process like fork.
° exec is a family of functions with different signatures.
pid_t wait(int *wstatus) waits for achild process to finish.
° Returns PID of terminated child process if successful, -1 on error.
e Storestatusinformationinwstatus if not NULL.
int kill(pid_t pid, int sig) sendsasignal (interrupt-like
notification) to another process.
e SIGINT(Ctrl-C),SIGKILL (killoncommand line), SIGSTOP
(Ctrl - 2).
° Signal handler defines the behavior when a process receives a signal.
° Custom signal handler can be written for most signals except

SIGKILL and SIGSTOP using sigaction.

Concept Check

int main(void) { 1. Willthe parent and child print the same value for a?
int a = 1;
pid_t fork_ret = fork();
if (fork_ret) > 0 {

at+; 2. Will they print the same address for a?

fprintf(stdout, "Parent: int a is %d at %p\n", a, &a);

} else if (fork_ret == 0) {
a++;
fprintf(stdout, "Child: int a is %d at %p\n", a, &a);

} else { 3. Willthey even write to the same STDOUT?
printf("Oedipus");

}

return 0;

Concept Check

int main(void) { 1. Will the parent and child print the same value for a?
int a = 1; Yes. Processes do not share the same memory space, so ais 2 for
pid_t fork_ret = fork(); both.

if (fork_ret) > 0 {

a++;

fprintf(stdout, "Parent: int a is %d at %p\n", a, &a); 2. Willthey print the same address for a?
} else if (fork_ret == 0) {
a++;

fprintf(stdout, "Child: int a is %d at %p\n", a, &a);

} else {
printf("0edipus"); 3. Will they even write to the same STDOUT?

}

return 0;

Concept Check

int main(void) {
int a = 1;
pid_t fork_ret = fork();
if (fork_ret) > 0 {
at++;
fprintf(stdout, "Parent: int a is %d at %p\n", a, &a);
} else if (fork_ret == 0) {
a++;
fprintf(stdout, "Child: int a is %d at %p\n", a, &a);
} else {
printf("Oedipus");
}

return 0;

Will the parent and child print the same value for a?

Yes. Processes do not share the same memory space, so ais 2 for both

Will they print the same address for a?

Yes. Fork copies the address space of the parent to the child.

Will they even write to the same STDOUT?

Concept Check

int main(void) { 1. Willthe parent and child print the same value for a?
int a = 1; Yes. Processes do not share the same memory space, so ais 2 for both
pid_t fork_ret = fork();
if (fork_ret) > 0 {

at+; 2. Will they print the same address for a?

fprintf(stdout, "Parent: int a is %d at %p\n", a, &a); Yes. Fork copies the address space of the parent to the child.
} else if (fork_ret == 0) {

a++:

M

fprintf(stdout, "Child: int a is %d at %p\n", a, &a);

} else { 3. Will they even write to the same STDOUT?
printf("Oedipus"); Yes. File descriptors are copied over to the new process, so both

} STDOUTs will reference the same "file".

return 0;

Fork and Friends

int main(void) {
for (int i = 0; i < 3; i++)
pid_t fork_ret = fork();

return 0;

1

How many new processes (not including the original process) are
created when the following program is run? Assume all fork calls

succeed.

Fork and Friends

int main(void) {
for (int i = 03 1 < 33 i++)
pid_t fork_ret = fork();

return 0;

Original Process

1 0

fork_ret

1

How many new processes (not including the original process) are

created when the following program is run? Assume all fork calls
succeed.

Fork and Friends

int main(void) {
for (int i = 0; i < 3; i++)
pid_t fork_ret = fork();

return 0;

Process 8

i 0

fork_ret (0]

Original Process

1 0

fork_ret 8

1

How many new processes (not including the original process) are
created when the following program is run? Assume all fork calls

succeed.

Fork and Friends

int main(void) {
for (int i = 03 1 < 33 i++)
pid_t fork_ret = fork();

return 0;

Original Process

1 0

fork_ret 8

Process 8

_i

fork_ret

1

How many new processes (not including the original process) are

created when the following program is run? Assume all fork calls
succeed.

Fork and Friends

int main(void) { 1. How many new processes (not including the original process) are
for (int i = 03 3 < 3; d++) created when the following program is run? Assume all fork calls
pid_t fork_ret = fork(); succeed.
return 0;
}
Process 23
i 1
Process 8 fork_ret 0
i 1
fork_ret 23

Original Process

1 0

fork_ret 8

Fork and Friends

int main(void) {

1. How many new processes (not including the original process) are
for (int i = 03 1 < 33 1i++) created when the following program is run? Assume all fork calls
pid_t fork_ret = fork(); succeed.
return 0;
}
Process 23
i 2
Process 8 fork_ret 0]
i 1
fork_ret 23

Original Process

1 0

fork_ret 8

Fork and Friends

int main(void) {
for (int i = 0; i < 3; i++)
pid_t fork_ret = fork();

return 0;

Original Process

1 0

fork_ret 8

How many new processes (not including the original process) are

created when the following program is run? Assume all fork calls

Process 8

Process 25

_i

succeed.
Process 23
i 2
fork_ret 25

_i

2

fork_ret

23

fork_ret

0

Fork and Friends

int main(void) {
for (int i = 03 1 < 33 i++)
pid_t fork_ret = fork();

return 0;

Original Process

1 0

fork_ret 8

How many new processes (not including the original process) are

created when the following program is run? Assume all fork calls

succeed.

Process 23

Process 8

_i

2

Process 25

_i

fork_ret

25

_i

3

fork_ret

23

fork_ret

0

Fork and Friends

int main(void) {
for (int i = 0; 1 < 33 1i++)
pid_t fork_ret = fork();

return 03

Original Process

1 0

fork_ret 8

How many new processes (not including the original process) are

created when the following program is run? Assume all fork calls

Process 8

Process 25

_i

succeed.
Process 23
i 2
fork_ret 25

_i

3

fork_ret

23

fork_ret

0

Fork and Friends

int main(void) {

1. How many new processes (not including the original process) are
for (int i = 03 1 < 33 1i++) created when the following program is run? Assume all fork calls
pid_t fork_ret = fork(); succeed.
return 0;
}
Process 23 Process25
i 3 F 3
Process 8 fork_ret 25 fork—ret 8
i 1
fork_ret 23

Original Process

1 0

fork_ret 8

Fork and Friends

int main(void) { 1. How many new processes (not including the original process) are
for (int i = 0; i < 3; i++) created when the following program is run? Assume all fork calls
pid_t fork_ret = fork(); succeed.
return 03
}
Process 23 Process25
i 3 F 3
Process 8 fork_ret 25 fork—ret 8
i 1
fork_ret 23

Original Process

1 0

fork_ret 8

Fork and Friends

int main(void) {

1. How many new processes (not including the original process) are
for (int i = 03 1 < 33 1i++) created when the following program is run? Assume all fork calls
pid_t fork_ret = fork(); succeed.
return 0;
}
Process23 Process25
+ 3 + 3
Process 8 fork—ret 25 fork—ret 8
i 2
fork_ret 23

Original Process

1 0

fork_ret 8

Fork and Friends

int main(void) { 1. How many new processes (not including the original process) are
for (int i = 03 3 < 3; d++) created when the following program is run? Assume all fork calls
pid_t fork_ret = fork(); succeed.
return 0;
}
Process23 Process25
F 3 F 3
Process 8 fork—ret 25 fork—ret 8
i 2
fork_ret 5 Process 5
i 2
fork_ret 0]

Original Process

1 0

fork_ret 8

Fork and Friends

int main(void) {

1. How many new processes (not including the original process) are
for (int i = 03 1 < 33 1i++) created when the following program is run? Assume all fork calls
pid_t fork_ret = fork(); succeed.
return 0;
}
Process23 Process25
F 3 F 3
Process 8 fork—ret 25 fork—ret 8
i 2
fork_ret 5 Process 5
i 3
fork_ret 0]

Original Process

1 0

fork_ret 8

Fork and Friends

int main(void) { 1. How many new processes (not including the original process) are
for (int i = 03 3 < 3; d++) created when the following program is run? Assume all fork calls
pid_t fork_ret = fork(); succeed.
return 03
}
Process23 Process25
F 3 + 3
Process 8 Fork—ret 25 Fork—ret 8
i 2
fork_ret 5 Process 5
i 3
fork_ret 0]

Original Process

1 0

fork_ret 8

Fork and Friends

int main(void) {

1. How many new processes (not including the original process) are
for (int i = 03 1 < 33 1i++) created when the following program is run? Assume all fork calls
pid_t fork_ret = fork(); succeed.
return 0;
}
Process23 Process25
+ 3 F 3
Process 8 fork—ret 25 fork—ret o
i 3
fork_ret 5 PrecessS
+ 3
fork—ret)

Original Process

1 0

fork_ret 8

Fork and Friends

int main(void) {
for (int i = 0; 1 < 33 1i++)
pid_t fork_ret = fork();

return 03

How many new processes (not including the original process) are

created when the following program is run? Assume all fork calls

Process 8

i 3

fork_ret 5

Original Process

1 0

fork_ret 8

succeed.
Proeess23 Proeess25
+ 3 + 3
Ffork—ret 25 fork—ret o
Preeess5
+ 3
Ffork—ret 8

Fork and Friends

int main(void) {

1. How many new processes (not including the original process) are
for (int i = 03 1 < 33 1i++) created when the following program is run? Assume all fork calls
pid_t fork_ret = fork(); succeed.
return 0;
}
Process23 Process25
+ 3 F 3
Preeess 8 fork—ret 25 fork—ret 8
Sr 3
fork—ret 5 PrecessS
+ 3
fork—ret)

Original Process

1 1

fork_ret 8

Fork and Friends

int main(void) {
for (int i

pid_t fork_ret

return 0;

= 03 1 < 3; i++)

How many new processes (not including the original process) are

created when the following program is run? Assume all fork calls

succeed.
Proeess23 Proeess25
+ 3 + 3
Ffork—ret 25 fork—ret o
Preeess5
+ 3
Ffork—ret o

Original Process

Process 16

q

1

_i

fork_ret

16

fork_ret

Fork and Friends

int main(void) {

1. How many new processes (not including the original process) are
for (int i = 03 1 < 33 1i++) created when the following program is run? Assume all fork calls
pid_t fork_ret = fork(); succeed.
return 0;
}
Process23 Process25
+ 3 + 3
Preeess 8 fork—ret 25 fork—ret 8
Sr 3
fork—ret 5 PrecessS
+ 3
fork—ret 8
Original Process Process 16
i 1 i 2
fork_ret 16 fork_ret 0

Fork and Friends

int main(void) { 1. How many new processes (not including the original process) are

for (int i = 03 i < 335 i++) created when the following program is run? Assume all fork calls

pid_t fork_ret = fork(); succeed.
return 0;
}
Preeess23 Preecess25
+ 3 F 3
ProeessS fork—ret 25 fork—ret Y
+ 3
fork—ret 5 Proecess5
+ 3
ferk—tret 9
Original Process Process 16 Process 19
i 1 i 2 i 2
fork_ret 16 fork_ret 19 fork_ret 0

Fork and Friends

int main(void) { 1. How many new processes (not including the original process) are
for (int 1 = 03 1 < 33 i++) created when the following program is run? Assume all fork calls
pid_t fork_ret = fork(); succeed.

return 0;

}
Preeess23 Preecess25
F 3 5 3
ProeessS fork—ret 25 fork—ret Y
+ 3
£fork—tet 5 Proecess5
+ 3
ferk—tret 9
Original Process Process 16 Process 19
i 1 i 2 L 9
fork_ret 16 fork_ret 19 fork_ret 0

Fork and Friends

int main(void) { 1. How many new processes (not including the original process) are

for (int i = 03 i < 335 i++) created when the following program is run? Assume all fork calls

pid_t fork_ret = fork(); succeed.
return 03
}
Process23 Process25
5 3 F 3
Preeess 8 fork—ret 25 fork—ret 8
5 3
fork—ret 5 PrecessS
S5 3
fork—ret 8
Original Process Process 16 Process 19
i 1 i 2 i 3
fork_ret 16 fork_ret 19 fork_ret 0

Fork and Friends

int main(void) {
for (int i = 03 1 < 33 i++)
pid_t fork_ret = fork();

return 0;

How many new processes (not including the original process) are

created when the following program is run? Assume all fork calls

succeed.

}
PrecessS
Sr 3
ferk—ret 5
Original Process Process 16
i 1 i 3
fork_ret 16 fork_ret 19

Fork and Friends

int main(void) {
for (int i = 0; 1 < 33 1i++)

pid_t fork_ret = fork();

How many new processes (not including the original process) are

created when the following program is run? Assume all fork calls

return 03
}
Proecess8
+ 3
fork—ret 5
Original Process Process 16
i 1 i 3

fork_ret 16 fork_ret 19

succeed.
Proeess23 Proeess25
+ 3 + 3
Ffork—ret 25 fork—ret o
Preeess5
+ 3
Ffork—ret o
Proeess19
+ 3
Ffork—ret o

Fork and Friends

int main(void) {

1. How many new processes (not including the original process) are
for (int i = 03 1 < 33 1i++) created when the following program is run? Assume all fork calls
pid_t fork_ret = fork(); succeed.
return 0;
}
Process23 Process25
+ 3 + 3
Preeess 8 fork—ret 25 fork—ret 8
+ 3
fork—ret 5 PrecessS
S5 3
fork—ret 8
Original Process Precess 16 Process 12
i 2 + 3 + =
fork_ret 16 ferk—ret 19 fork—ret <3

Fork and Friends

int main(void) {
for (int i

pid_t fork_ret

= 03 1 < 3; i++)

How many new processes (not including the original process) are

created when the following program is run? Assume all fork calls

return 0;
+
Original Process
i 2
fork_ret 98

succeed.
Proeess23 Proeess25
+ 3 + 3
Ffork—ret 25 fork—ret o
Preeess5
+ 3
Ffork—ret o
Proeess19
+ 3
Ffork—ret o

Process 98

_i

2

fork_

ret

0

Fork and Friends

int main(void) {

1. How many new processes (not including the original process) are
for (int 1 = 03 1 < 33 i++) created when the following program is run? Assume all fork calls
pid_t fork_ret = fork(); succeed.
return 0;
}
Process23 Process25
+ 3 + 3
Preeess 8 fork—ret 25 fork—ret 8
+ 3
fork—ret 5 PrecessS
S5 3
fork—ret 8
Original Process Precess 16 Process 12
i 2 + 3 + =
fork_ret 98 ferk—ret 19 fork—ret <3
Process 98
i 3
fork_ret 0]

Fork and Friends

int main(void) {
for (int i = 0; 1 < 33 1i++)

pid_t fork_ret = fork();

return 03
+
Original Process
i 2
fork_ret 98

How many new processes (not including the original process) are

created when the following program is run? Assume all fork calls

succeed.
Proeess23 Proeess25
+ 3 + 3
Ffork—ret 25 fork—ret o
Preeess5
+ 3
Ffork—ret o
Proeess19
+ 3
Ffork—ret o

Process 98

_i

3

fork_

ret

0

Fork and Friends

int main(void) {

1. How many new processes (not including the original process) are
for (int i = 03 1 < 33 1i++) created when the following program is run? Assume all fork calls
pid_t fork_ret = fork(); succeed.
return 0;
}
Process23 Process25
+ 3 + 3
Preeess 8 fork—ret 25 fork—ret 8
+ 3
fork—ret 5 PrecessS
S5 3
fork—ret 8
Original Process Precess 16 Process 12
i 2 + 3 + =
fork_ret 98 ferk—ret 19 fork—ret <3
Process 28
+ 3
fork—ret)

Fork and Friends

int main(void) {
for (int i = 0; 1 < 33 1i++)

pid_t fork_ret = fork();

return 03
+
Original Process
i 3
fork_ret 98

How many new processes (not including the original process) are

created when the following program is run? Assume all fork calls

succeed.
Proeess23 Proeess25
+ 3 + 3
Ffork—ret 25 fork—ret o
Preeess5
+ 3
Ffork—ret o
Proeess19
+ 3
Ffork—ret o

Fork and Friends

int main(void) {
for (int i = 0; 1 < 33 1i++)

pid_t fork_ret = fork();

return 0;
}
Orisinalp
F 3

How many new processes (not including the original process) are

created when the following program is run? Assume all fork calls

succeed.
Proeess23 Proeess25
+ 3 + 3
Ffork—ret 25 fork—ret o
Preeess5
+ 3
Ffork—ret o
Proeess19
+ 3
Ffork—ret o

Fork and Friends

int main(void) { 1. How many new processes (not including the original process) are
for (int i = 0; i < 3; i++) created when the following program is run? Assume all fork calls
pid_t fork_ret = fork(); succeed.
return 0; 7 process in addition to the original process.
}
Process23 Process25
+ 3 + 3
Preeess 8 fork—ret 25 fork—ret 8
+ 3
fork—ret 5 PrecessS
S5 3
fork—ret 8
OriginatPrecess Precess 16 Process 12
+ 3 + 3 T 3
fork—ret 58 fork—ret 15 fork—ret 8
Process 28
+ 3

Fork and Friends

int main(void) { 3. What are the possible outputs when the following program is run?
int* stuff = malloc(sizeof(int));
*stuff = 5;
pid_t fork_ret = fork();
printf("The last digit of pi is %d\n", *stuff);
if (fork_ret == 0)
xstuff = 6;

return 0;

Fork and Friends

int main(void) { 3. What are the possible outputs when the following program is run?

int* stuff = malloc(sizeof(int));

xstuff = 5; Heap is part of the address space like the stack, so output is the same as

pid_t fork_ret = fork(); previous question.
printf("The last digit of pi is %d\n", *stuff);
if (fork_ret == 0)

*stuff = 6; The last digit of pi 1is 5.

If fork succeeds, then

return 0; The last digit of pi 1is 5.

Otherwise, only one line is printed.

Fork and Friends

int main(void) { 4, What are the possible outputs when the following program is run?
pid_t fork_ret = fork(); Assume the child process has PID 162162.
int exit;

if (fork_ret != 0)
wait(&exit);
printf("Hello World: %d\n'", fork_ret);

return 0;

Fork and Friends

int main(void) { 4, What are the possible outputs when the following program is run?
pid_t fork_ret = fork(); Assume the child process has PID 162162.
int exit;
if (fork_ret != 0) Parent process will wait until child process completes, so it won't print
wait(&exit); before child prints.
printf("Hello World: %d\n'", fork_ret);
return 0; Hello World: ©
} Hello World: 162162

If fork fails, then program will print

Hello World: -1

since fork will return -1. Note that wait(&exit) when fork() fails will return

immediately.

Fork and Friends

int main(void) {
charx*x argv = (charxx)malloc(3 * sizeof(charx));

"/bin/1ls";

argv([0]
argv[1l] = ".";
argv[2] = NULL;
for (int i = 0; 1 < 10; d++) {
printf("%d\n", 1);
if (i == 3) {

execv("/bin/ls", argv);

}

return 0;

5.

Does the following program print all numbers from O to 9 as well as
the output of running 1s? If not, what is the minimal code change to

accomplish this? Assume all syscalls succeed.

Fork and Friends

int main(void) {
charx*x argv = (charxx)malloc(3 * sizeof(charx));

"/bin/1ls";

argv([0]
argv[1l] = ".";
argv[2] = NULL;
for (int i = 0; 1 < 10; d++) {
printf("%d\n", 1);
if (i == 3) {

execv("/bin/ls", argv);

}

return 0;

5. Does the following program print all numbers from O to 9 as well as
the output of running 1s? If not, what is the minimal code change to

accomplish this? Assume all syscalls succeed.

Currently, program stops after printing 3, giving an output of
(0]

1

2

3

<output of 1s>

since execv overwrites the entire process image (i.e. rest of loop will not

execute).

Fork and Friends

int main(void) {
charx*x argv = (charxx)malloc(3 * sizeof(charx));

"/bin/1ls";

argv[0]
argv[1l] = ".";
argv[2] = NULL;
for (int i = 0; 1 < 10; d++) {
printf("%d\n", 1);
if (i == 3) {
pid_t fork_ret = fork();
if (fork_ret == 0)

execv("/bin/ls", argv);

}

return 0;

5. Does the following program print all numbers from O to 9 as well as
the output of running 1s? If not, what is the minimal code change to

accomplish this? Assume all syscalls succeed.

Currently, program stops after printing 3, giving an output of
(0]

1

2

3

<output of 1s>

since execv overwrites the entire process image (i.e. rest of loop will not

execute).

Fork and exec in child to make sure parent process continues the loop

Signal Handling

Action

Comment

SIGHUP

SIGINT
SIGQUIT
SIGILL
SIGABRT
SIGFPE
SIGKILL
SIGSEGV
SIGPIPE

SIGALRM
SIGTERM
SIGUSR1
SIGUSR2
SIGCHLD
SIGCONT
SIGSTOP
SIGTSTP
SIGTTIN
SIGTTOU

14
15
30,10,16
31,12,17
20,17,18
19,18,25
17,19,23
18,20,24
21,21,26
22,22,27

Terminate

Terminate
Core Dump
Core Dump
Core Dump
Core Dump
Terminate
Core Dump
Terminate

Terminate
Terminate
Terminate
Terminate
Ignore
Continue
Stop

Stop

Stop

Stop

Hangup detected on controlling terminal
or death of controlling process
Interrupt from keyboard (Ctrl - c)
Quit from keyboard (Ctrl - \)
Illegal Instruction

Abort signal from abort(3)
Floating point exception

Kill signal

Invalid memory reference

Broken pipe: write to pipe with no
readers

Timer signal from alarm(2)
Termination signal

User-defined signal 1

User-defined signal 2

Child stopped or terminated
Continue if stopped

Stop process

Stop typed at tty

tty input for background process
tty output for background process

Signal Handling

1. Overriding SIGSTOP and SIGKILL is disabled. Why?

Signal Handling

1. Overriding SIGSTOP and SIGKILL is disabled. Why?

If a process were to override their signal handlers to ignore SIGSTOP and SIGKILL, it can run a malicious process forever.

Signal Handling

void sigquit_handler(int sig) { 2. What are the different ways you can use the keyboard to cause the
if (sig == SIGINT || sig == SIGQUIT) program to exit? Assume program is runin a bash cell.
exit(1l);
}

void sigint_handler(int sig) {
if (sig == SIGINT)
signal (SIGINT, sigquit_handler);
}
int main() {
signal(SIGQUIT, sigquit_handler);
signal(SIGINT, sigint_handler);
while (1) {
printf("Sleeping for a second ...\n");

sleep(1);

Signal Handling

void sigquit_handler(int sig) {
if (sig == SIGINT || sig == SIGQUIT)
exit(l);
}
void sigint_handler(int sig) {
if (sig == SIGINT)
signal(SIGINT, sigquit_handler);
}
int main() {
signal(SIGQUIT, sigquit_handler);
signal(SIGINT, sigint_handler);
while (1) {

printf("Sleeping for a second ...\n");

sleep(1);

2. What are the different ways you can use the keyboard to cause the

program to exit? Assume program is runin a bash cell.
maininitialized SIGINT and SIGQUIT to custom handlers
Ctrl -\ will be routed to sigquit_handler which exits program upon SIGQUIT.
Ctrl - C will be routed to sigint_handler which redefines SIGINT handler to
sigquit_handler.

° Pressing Ctrl - C or Ctrl -\ after Ctrl-C will exit program.

SIGSTOP handler is not redefined — Ctrl-Z will exit program.

Pintos Lists

Regular Linked Lists

struct 1l_node {
int value;
struct 1l_nodex next;

s

/* Returns the sum of a linked list. x/
int 1l1_sum(1ll_nodex start) {
1l_nodex -dter;

int total = 0;
for (iter = start; diter != NULL; iter = iter->next)
total += 1diter->value;

return total;

}

Pintos (Doubly) Linked Lists

/* List element. x/

struct list_elem {
struct list_elem* prev; /* Previous list element. x/
struct list_elem* next; /* Next list element. */

s

/* List. x/

struct list {
struct list_elem head; /x List head. x/
struct list_elem tail; /x List tail. x/

s

/* Given a struct list, returns a reference to the
first list_elem in the list. %/
struct list_elemx list_begin(struct listx 1lst);

/* Given a struct list, returns a reference to the
last list_elem in the list. x/
struct list_elemx list_end(struct listx 1lst);

/* Given a liter = list_begin(lst)ist_elem, finds the next
list_elem in the 1list. */
struct list_elemx list_next(struct list_elemx elem);

/* Converts pointer to list element LIST_ELEM -1into
a pointer to the structure that LIST_ELEM 1s
embedded inside. You must also provide the name
of the outer structure STRUCT and the member
name MEMBER of the list element. x/

STRUCT* list_entry(LIST_ELEM, STRUCT, MEMBER);

Pintos (Doubly) Linked Lists

Empty Pintos list:

B—

prev next prev next

\ i

head tail

Pintos (Doubly) Linked Lists

B [S N S

prev next prev next prev next prev next
head list_begin tatil
list_end

Technically, both “list_begin® and “list_end" will give you the tail for the empty Pintos list

Pintos (Doubly) Linked Lists

i e 8 s) e

prev next prev next prev next prev next
head list_begin tatil
list_end

Technically, both “list_begin® and “list_end" will give you the tail for the empty Pintos list

Anyway, how is this useful?

Pintos (Doubly) Linked Lists

struct node

int data_int;
I charx data_str;

I struct list_elem elem;

N [e

prev next " prev next . prev next prev next
i . | {
head i - tail

Pintos (Doubly) Linked Lists

struct node

===

. int data_int; L]
-l_'l_st_entry I charx data_str; I
n
ruct list_elem elem; I
n | | I
orev — . prev next . prev next prev next
: : ' *
head | : =

: l
n
l n —_— n _— n —_— L J

1. Avoid having to allocate memory for a separate data structure
2. Generic, easy-to-use interface (we’ll demonstrate this in the problem)

Pintos Lists

struct list_data {
charx name;
struct list pl_list;
15

struct pl_node {
int value;
struct list_elem elem;

s

/* Returns the sum of a pintos-style list of pl_nodes.

int pl_sum(struct list_datax data) {
struct list_elem*x -dter;
struct pl_nodex temp;
struct listx 1st = ____________ H

int total = 0;

for (5 H

*/

temp = list_entry()

}

return total;

) 1

Fill in the blanks to sum up the elements of a Pintos list.

/* Given a struct list, returns a reference to the
first list_elem in the list. %/
struct list_elemx list_begin(struct listx 1lst);

/* Given a struct list, returns a reference to the
last list_elem in the list. %/
struct list_elemx list_end(struct listx 1lst);

/* Given a list_elem, finds the next list_elem 1in
the list. %/
struct list_elemx list_next(struct list_elemx elem);

/* Converts pointer to list element LIST_ELEM -1into
a pointer to the structure that LIST_ELEM 1s
embedded inside. You must also provide the name
of the outer structure STRUCT and the member
name MEMBER of the list element. x/

STRUCT* list_entry(LIST_ELEM, STRUCT, MEMBER);

Pintos Lists

struct list_data {
charx name;
struct list pl_list;
15

struct pl_node {
int value;
struct list_elem elem;

s

/* Returns the sum of a pintos-style list of pl_nodes.

int pl_sum(struct list_datax data) {
struct list_elem*x -dter;
struct pl_nodex temp;
struct list*x lst = &data->pl_list;

int total = 0;

for (5 H

*/

temp = list_entry()

}

return total;

) 1

Fill in the blanks to sum up the elements of a Pintos list.

/* Given a struct list, returns a reference to the
first list_elem in the list. %/
struct list_elemx list_begin(struct listx 1lst);

/* Given a struct list, returns a reference to the
last list_elem in the list. %/
struct list_elemx list_end(struct listx 1lst);

/* Given a list_elem, finds the next list_elem 1in
the list. %/
struct list_elemx list_next(struct list_elemx elem);

/* Converts pointer to list element LIST_ELEM -1into
a pointer to the structure that LIST_ELEM 1s
embedded inside. You must also provide the name
of the outer structure STRUCT and the member
name MEMBER of the list element. x/

STRUCT* list_entry(LIST_ELEM, STRUCT, MEMBER);

Pintos Lists

struct list_data {
charx name;
struct list pl_list;
15

struct pl_node {
int value;
struct list_elem elem;

s

/* Returns the sum of a pintos-style list of pl_nodes.

int pl_sum(struct list_datax data) {
struct list_elem*x -dter;
struct pl_nodex temp;
struct listx 1st = &data->pl_list;

int total = 0;

for (iter = list_begin(lst); H

*/

temp = list_entry()

}

return total;

)

{

Fill in the blanks to sum up the elements of a Pintos list.

/* Given a struct list, returns a reference to the
first list_elem in the list. %/
struct list_elemx list_begin(struct listx 1lst);

/* Given a struct list, returns a reference to the
last list_elem in the list. %/
struct list_elemx list_end(struct listx 1lst);

/* Given a liter = list_begin(lst)ist_elem, finds the
next list_elem 1in

the list. %/
struct list_elemx list_next(struct list_elemx elem);

/* Converts pointer to list element LIST_ELEM -1into
a pointer to the structure that LIST_ELEM 1s
embedded inside. You must also provide the name
of the outer structure STRUCT and the member
name MEMBER of the list element. x/

STRUCT* list_entry(LIST_ELEM, STRUCT, MEMBER);

Pintos Lists

struct list_data {
charx name;
struct list pl_list;
15

struct pl_node {
int value;
struct list_elem elem;

s

/* Returns the sum of a pintos-style list of pl_nodes.

int pl_sum(struct list_datax data) {
struct list_elem*x -dter;
struct pl_nodex temp;
struct listx 1st = &data->pl_list;

int total = 0;

for (iter = list_begin(lst); H

*/

temp = list_entry()

}

return total;

)

{

Fill in the blanks to sum up the elements of a Pintos list.

/* Given a struct list, returns a reference to the
first list_elem in the list. %/
struct list_elemx list_begin(struct listx 1lst);

/* Given a struct list, returns a reference to the
last list_elem in the list. %/
struct list_elemx list_end(struct listx 1lst);

/* Given a liter = list_begin(lst)ist_elem, finds the
next list_elem 1in

the list. %/
struct list_elemx list_next(struct list_elemx elem);

/* Converts pointer to list element LIST_ELEM -1into
a pointer to the structure that LIST_ELEM 1s
embedded inside. You must also provide the name
of the outer structure STRUCT and the member
name MEMBER of the list element. x/

STRUCT* list_entry(LIST_ELEM, STRUCT, MEMBER);

Pintos Lists

struct list_data {
charx name;
struct list pl_list;
15

struct pl_node {
int value;
struct list_elem elem;

s

/* Returns the sum of a pintos-style list of pl_nodes.

int pl_sum(struct list_datax data) {
struct list_elem*x -dter;
struct pl_nodex temp;
struct listx 1st = &data->pl_list;

int total = 0;

for (iter = list_begin(lst); dter != list_end(1lst);
temp = list_entry()

}

return total;

*/

) 1

Fill in the blanks to sum up the elements of a Pintos list.

/* Given a struct list, returns a reference to the
first list_elem in the list. %/
struct list_elemx list_begin(struct listx 1lst);

/* Given a struct list, returns a reference to the
last list_elem in the list. %/
struct list_elemx list_end(struct listx 1lst);

/* Given a liter = list_begin(lst)ist_elem, finds the
next list_elem 1in

the list. %/
struct list_elemx list_next(struct list_elemx elem);

/* Converts pointer to list element LIST_ELEM -1into
a pointer to the structure that LIST_ELEM 1s
embedded inside. You must also provide the name
of the outer structure STRUCT and the member
name MEMBER of the list element. x/

STRUCT* list_entry(LIST_ELEM, STRUCT, MEMBER);

Pintos Lists

struct list_data { Fill in the blanks to sum up the elements of a Pintos list.
charx name;

struct list pl_list;
15

struct pl_node { . .
int V21ue; /* Given a struct list, returns a reference to the

struct list_elem elem; first'list_elem Tn the ¥ist. *x/)
}; struct list_elemx list_begin(struct listx 1lst);

/* Returns the sum of a pintos-style list of pl_nodes. %/ /* Given a struct list, returns a reference to the

int pl_sum(struct list_datax data) { last ¥ist_elem i? the list. x/ .
struct list_elemx iter; struct list_elemx list_end(struct listx 1lst);

struct pl_nodex temp;

struct list* 1lst = &data->pl_list; /* Given a liter = list_begin(lst)ist_elem, finds the
- ’ next list_elem 1in
int total = 0; the list. */

struct list_elemx list_next(struct list_elem* elem);

for (iter = list_begin(lst); iter != list_end(lst); iter = list_next(iter)) { . . .

temp = list_entry(Y3 /* Converts pointer to list element LIST_ELEM -1into
- ’ a pointer to the structure that LIST_ELEM 1s

1 embedded inside. You must also provide the name

of the outer structure STRUCT and the member

return total: name MEMBER of the list element. x/

} ’ STRUCT* list_entry(LIST_ELEM, STRUCT, MEMBER);

Pintos Lists

struct list_data {
charx name;
struct list pl_list;
15

struct pl_node {
int value;
struct list_elem elem;

s

/* Returns the sum of a pintos-style list of pl_nodes.

int pl_sum(struct list_datax data) {
struct list_elem*x -dter;
struct pl_nodex temp;
struct listx 1st = &data->pl_list;

int total = 0;

for (iter = list_begin(lst); iter != list_end(lst); 1iter

temp = list_entry(iter, struct pl_node, elem);

)

}

return total;

list_next(iter)) {

Fill in the blanks to sum up the elements of a Pintos list.

/* Given a struct list, returns a reference to the
first list_elem in the list. %/
struct list_elemx list_begin(struct listx 1lst);

/* Given a struct list, returns a reference to the
last list_elem in the list. %/
struct list_elemx list_end(struct listx 1lst);

/* Given a liter = list_begin(lst)ist_elem, finds the
next list_elem 1in

the list. %/
struct list_elemx list_next(struct list_elemx elem);

/* Converts pointer to list element LIST_ELEM -1into
a pointer to the structure that LIST_ELEM 1s
embedded inside. You must also provide the name
of the outer structure STRUCT and the member
name MEMBER of the list element. x/

STRUCT* list_entry(LIST_ELEM, STRUCT, MEMBER);

Pintos Lists

struct list_data {
charx name;
struct list pl_list;
15

struct pl_node {
int value;
struct list_elem elem;

s

/* Returns the sum of a pintos-style list of pl_nodes.

int pl_sum(struct list_datax data) {
struct list_elem*x -dter;
struct pl_nodex temp;
struct listx 1st = &data->pl_list;

int total = 0;

for (iter = list_begin(lst); diter != list_end(lst); -iter

temp = list_entry(iter, struct pl_node, elem);
total += temp->value;

}

return total;

list_next(iter)) {

Fill in the blanks to sum up the elements of a Pintos list.

/* Given a struct list, returns a reference to the
first list_elem in the list. %/
struct list_elemx list_begin(struct listx 1lst);

/* Given a struct list, returns a reference to the
last list_elem in the list. %/
struct list_elemx list_end(struct listx 1lst);

/* Given a liter = list_begin(lst)ist_elem, finds the
next list_elem 1in

the list. %/
struct list_elemx list_next(struct list_elemx elem);

/* Converts pointer to list element LIST_ELEM -1into
a pointer to the structure that LIST_ELEM 1s
embedded inside. You must also provide the name
of the outer structure STRUCT and the member
name MEMBER of the list element. x/

STRUCT* list_entry(LIST_ELEM, STRUCT, MEMBER);

