CS162
Operating Systems and
Systems Programming

Lecture 5

Abstractions 3: Files and I/0, Sockets and IPC

January 309!, 2024
Prof. John Kubiatowicz
http://cs162.eecs.Berkeley.edu

Recall: Process Creating New Processes

e pid_t fork() — copy the current process
— New process has different pid
— New process contains a single thread
* Return value from fork(): pid (like an integer)
— When > 0:
» Running in (original) Parent process
» return value is pid of new child
— When = 0:
» Running in new Child process
— When < 0:
» Error! Must handle somehow
» Running in original process
» State of original process duplicated in both Parent and Child!
— Address Space (Memory), File Descriptors (covered later), etc...
— For now—your mental model of fork() should be complete duplication of Parent

1/30/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 5.2

Recall: Unix/POSIX Idea: Everything is a “File”

|ldentical interface for:

— Files on disk

— Devices (terminals, printers, etc.)

— Regular files on disk

— Networking (sockets)

— Local interprocess communication (pipes, sockets)
Based on the system calls open(), read(), write(), and close()
Additional: ioctl() for custom configuration that doesn’t quite fit

Note that the “Everything is a File” idea was a radical idea when proposed

— Dennis Ritchie and Ken Thompson described this idea in their seminal paper
on UNIX called “The UNIX Time-Sharing System” from 1974

— | posted this on the resources page if you are curious

1/30/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 5.3

/O and Storage Layers

Application / Service

High Level /0 Streams (buffered I/0O)

Low Level I/O File Descriptors
Syscall open(), read(), write(), close(), ...
Open File Descriptions

File System Files/Directories/Indexes

1/0 Driver Commands and Data Transfers

éJ?; Disks, Flash, Controllers, DMA

1/30/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 5.4

C High-Level File APl — Streams

« Operates on “streams” — unformatted sequences of bytes (wither text or
binary data), with a position:

#include <stdio.h>
FILE *fopen(const char *filename, const char!*mode) ;
int fclose(FILE *fp);

&=
r rb Open existing file for reading
w wb Open for writing; created if does not exist
a ab Open for appending; created if does not exist
r+ rb+ Open existing file for reading & writing.
w+ wb+ Open for reading & writing; truncated to zero if exists, create otherwise
a+ ab+ Open for reading & writing. Created if does not exist. Read from beginning, write

as append

* Open stream represented by pointer to a FILE data structure
— Error reported by returning a NULL pointer

1/30/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 5.5

C APl Standard Streams — stdio.h

» Three predefined streams are opened implicitly when the program is
executed.

- FILE *stdin — normal source of input, can be redirected
- FILE *stdout — normal source of output, can too
- FILE *stderr — diagnostics and errors

« STDIN/STDOUT enable composition in Unix

 All can be redirected
- cat hello.txt | grep “World!”
— cat’s stdout goes to grep’s stdin

1/30/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 5.6

C High-Level File API

// character oriented
int fputc(int c, FILE *fp); // rtn c or EOF on err
int fputs(const char *s, FILE *fp); // rtn > @ or EOF

int fgetc(FILE * fp);
char *fgets(char *buf, int n, FILE *fp);

// block oriented
size t fread(void *ptr, size t size of elements,
size t number_of elements, FILE *a file);
size t fwrite(const void *ptr, size t size of elements,
size t number_of elements, FILE *a file);

// formatted
int fprintf(FILE *restrict stream, const char *restrict format, ...);
int fscanf(FILE *restrict stream, const char *restrict format, ...);

1/30/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 5.7

C Streams: Char-by-Char I/O

int main(void) {
FILE* input = fopen(“input.txt”, “r”);
FILE* output = fopen(“output.txt”, “w”);

1/30/2024

int c;

c = fgetc(input);

while (c != EOF) {
fputc(output, c);
c = fgetc(input);

}

fclose(input);

fclose(output);

Kubiatowicz CS162 © UCB Spring 2024

Lec 5.8

C High-Level File API

// character oriented
int fputc(int c, FILE *fp); // rtn c or EOF on err
int fputs(const char *s, FILE *fp); // rtn > @ or EOF

int fgetc(FILE * fp);
char *fgets(char *buf, int n, FILE *fp);

// block oriented
size t fread(void *ptr, size t size of_elements,
size t number_of _elements, FILE *a file);
size t fwrite(const void *ptr, size t size of elements,
size t number_of _elements, FILE *a file);

// formatted
int fprintf(FILE *restrict stream, const char *restrict format, ...);
int fscanf(FILE *restrict stream, const char *restrict format, ...);

1/30/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 5.9

C Streams: Block-by-Block 1/O

#define BUFFER_SIZE 1024
int main(void) {
FILE* input = fopen("input.txt", "r");
FILE* output = fopen("output.txt", "w");
char buffer[BUFFER_SIZE];
size t length;
length = fread(buffer, sizeof(char), BUFFER_SIZE, input);
while (length > 0) {
fwrite(buffer, sizeof(char), length, output);
length = fread(buffer, sizeof(char), BUFFER_SIZE, input);
}
fclose(input);
fclose(output);

1/30/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 5.10

1/30/2024

Aside: Check your Errors!

Systems programmers should always be paranoid!
— Otherwise you get intermittently buggy code
We should really be writing things like:
FILE* input = fopen(“input.txt”, “r”);
if (input == NULL) {
// Prints our string and error msg.
perror(“Failed to open input file”)

}

Be thorough about checking return values!
— Want failures to be systematically caught and dealt with

| may be a bit loose with error checking for examples in class (to keep short)

— Do as | say, not as | show in class!

Kubiatowicz CS162 © UCB Spring 2024

Lec 5.11

C High-Level File API: Positioning The Pointer

int fseek(FILE *stream, long int offset, int whence);
long int ftell (FILE *stream)
void rewind (FILE *stream)

* For fseek(), the offset is interpreted based on the whence argument
(constants in stdio.h):

— SEEK_SET: Then offset interpreted from beginning (position 0)
— SEEK_END: Then offset interpreted backwards from end of file
- SEEK_CUR: Then offset interpreted from current position

offset (SEEK_SET) offset (SEEK_END)

whence

offset (SEEK_CUR)
« Overall preserves high-level abstraction of a uniform stream of objects

1/30/2024 Kubiatowicz CS162 © UCB Spring 2024

Lec 5.12

Administrivia
Kubiatowicz Office Hours (673 Soda Hall):
— 3pm-4pm, Tuesday/Thursday
Friday was drop deadline. If you forgot to drop, we can’t help you!
— You need to speak with advisor services in your department about how to drop
Be careful on Ed: Don’t give away solutions when you post questions or answers
— Remember that everyone is supposed to do their own work!
Recommendation: Read assigned readings before lecture
Group sign up should have happened already
— If you don’t have 4 members in your group, we will try to find you other partners
— Want everyone in your group to have the same TA
— Go to your assigned section on Friday, starting this week!
Midterm 1 conflicts
— Watch for announcements on EdStem (remember: MT1 is 2/15)

1/30/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 5.13

/O and Storage Layers

Application / Service

High Level I/O Streams (buffered I/0O)

Low Level I/O File Descriptors
Syscall open(), read(), write(), close(), ...
Open File Descriptions

File System Files/Directories/Indexes

1/0 Driver Commands and Data Transfers

éJ?; Disks, Flash, Controllers, DMA

1/30/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 5.14

Low-Level File I/O: The RAW system-call interface

#include <fentl.h>
#include <unistd.h>
#include <sys/types.h>

int open (const char *filename,[int flags| [, rmode t mode])
int creat (const char *fi ame, mode t mode)
int close (int filed

Bit vector of:

« Access modes (Rd, Wr, ...)

* Open Flags (Create, ...)

* Operating modes (Appends, ...)

Bit vector of Permission Bits:
* User|Group|Other X R|W|X

 Integer return from open() is a file descriptor
— Error indicated by return < 0: the global errno variable set with error (see man pages)
» Operations on file descriptors:
— Open system call created an open file description entry in system-wide table of open files
— Open file description object in the kernel represents an instance of an open file
— Why give user an integer instead of a pointer to the file description in kernel?

1/30/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 5.15

C Low-Level (pre-opened) Standard Descriptors

#include <unistd.h>

STDIN FILENO - macro has value ©
STDOUT_FILENO - macro has value 1
STDERR_FILENO - macro has value 2

// Get file descriptor inside FILE *
int fileno (FILE *stream)

// Make FILE * from descriptor
FILE * fdopen (int filedes, const char *opentype)

1/30/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 5.16

Low-Level File API

« Read data from open file using file descriptor:

ssize t read (int filedes, void *buffer, size t maxsize)

— Reads up to maxsize bytes — might actually read less!
— returns bytes read, 0 => EOF, -1 => error

» Write data to open file using file descriptor
ssize t write (int filedes, const void *buffer, size t size)

— returns number of bytes written

» Reposition file offset within kernel (this is independent of any position held by
high-level FILE descriptor for this file!

off t lseek (int filedes, off t offset, int whence)

1/30/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 5.17

Example: lowio.c

int main() {
char buf[1000];

int fd = open("lowio.c", O _RDONLY, S IRUSR | S _IWUSR);

ssize t rd
int err
ssize t wr

read(fd, buf, sizeof(buf));
close(fd);
write(STDOUT_FILENO, buf, rd);

« How many bytes does this program read?

1/30/2024

Kubiatowicz CS162 © UCB Spring 2024

Lec 5.18

POSIX I/O: Design Patterns

* Open before use

— Access control check, setup happens here
« Byte-oriented

— Least common denominator

— OS responsible for hiding the fact that real devices may not work this way
(e.g. hard drive stores data in blocks)

« Explicit close

1/30/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 5.19

POSIX I/O: Kernel Buffering

« Reads are buffered inside kernel
— Part of making everything byte-oriented
— Process is blocked while waiting for device
— Let other processes run while gathering result
» Writes are buffered inside kernel
— Complete in background (more later on)
— Return to user when data is “handed off” to kernel

» This buffering is part of global buffer management and caching for block
devices (such as disks)

— Items typically cached in quanta of disk block sizes

— We will have many interesting things to say about this buffering when we dive
into the kernel

1/30/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 5.20

Low-Level I/O: Other Operations

Operations specific to terminals, devices, networking, ...
—e.g., ioctl
Duplicating descriptors
— int dup2(int old, int new);
— int dup(int old);
Pipes — channel
— int pipe(int pipefd[2]);
- Writes to pipefd[1] can be read from pipefd[0]
File Locking
Memory-Mapping Files
Asynchronous I/O

1/30/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 5.21

Low-Level vs High-Level file API

Low-level direct use of syscall interface:
open(), read(), write(), close()

Opening of file returns file descriptor:
int myfile = open(..);
File descriptor only meaningful to kernel

— Index into process (PDB) which holds
pointers to kernel-level structure (“file
description”) describing file.

Every read() orwrite() causes
syscall no matter how small (could read
a single byte)

Consider loop to get 4 bytes at a time
using read():

— Each iteration enters kernel for 4 bytes.

High-level buffered access:
fopen(), fread(), fwrite(), fclose()

Opening of file returns ptr to FILE:
FILE *myfile = fopen(..);
FILE structure is user space contains:
— a chunk of memory for a buffer
— the file descriptor for the file (fopen() will
call open () automatically)

Every fread() or fwrite() filters
through buffer and may not call read ()
orwrite() on every call.

Consider loop to get 4 bytes at a time
using fread():
— First call to fread() calls read() for block of

bytes (say 1024). Puts in buffer and returns
first 4 to user.

— Subsequent fread() grab bytes from buffer

1/30/2024

Kubiatowicz CS5162

© UCB Spring 2024

Lec 9.22

Low-Level vs. High-Level File API

Low-Level Operation:
ssize_t read(...) {

High-Level Operation:
ssize_t fread(...) {

1/30/2024

asm code ... syscall # into %eax
put args into registers %ebx, ...
special trap instruction

Kernel:
get args from regs
dispatch to system func
Do the work to read from the file
Store return value in %eax

get return values from regs

Return data to caller

Check buffer for contents
Return data to caller if available

asm code ... syscall # into %eax
put args into registers %ebx, ...
special trap instruction

Kernel:
get args from regs
dispatch to system func
Do the work to read from the file
Store return value in %eax

get return values from regs

Update buffer with excess data
Return data to caller

Kubiatowicz CS162 © UCB Spring 2024

High-Level vs. Low-Level File API

« Streams are buffered in user memory:
printf("Beginning of line ");

sleep(10); // sleep for 10 seconds
printf("and end of line\n");

Prints out everything at once

« Operations on file descriptors are visible immediately
write(STDOUT_FILENO, "Beginning of line ", 18);
sleep(10);
write("and end of line \n", 16);

Outputs "Beginning of line" 10 seconds earlier than “and end of line”

1/30/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 5.24

What’s below the surface ??

Application / Service

High Level 1/0O

Low Level I/O

‘ Syscall
File System
I/O Driver

streams

handles
registers

descriptions

Commands and Data Transfers

Disks, Flash, Controllers, DMA

1/30/2024 Kubiatowicz CS162 © UCB Spring 2024

Lec 5.25

Recall: SYSCALL

c

B cal Cduce [csi62 [0 cullermayens

' syscalls.kernelgrok.com

Linux Syscall Reference

W Wikipedia Yahoo!] News [Popular [Imported From Safari

Show | L0 | entries

El

Harmne
sys_restart_syscall axd
SyE_axil axdl
sys_fork audz
sys_read x03
S¥S_write ax04
SYs_open axls
5¥s_close Ox06
s¥s_waitpid ax07
SyE_creat i E]
sys_link ax09

Showing 1 to 10 of 338 entries

Int error_code
struct pt_regs *
unslaned Int fd
unsigred int Id

canst char _user

*fllename
unsigred int fd
pid_t pid

COnSt Char __user
*pathname

const char __user
*pldnarme

char __use
const ghar
*bul

int flags

int _user
*stat_addr

IRt miocle

const chiar
“rEwname

Registers

r *buf
user

slze_t count
size_ L count

int moce

int aptians

user -

Search:

Definiticn

karnel/signal 2058
KernelfexinclD46
arch/alpha/kernel fentry 5:7 16
fsiread_wrlte.c391

Isiread write.c408

5 openc:A00

s/ openc:o63
kernelfexitcl771

fs/openc933

fs/nameic2520

2 3 4 5 MNewt Last

Generated from Linux kernel 2.6.35.4 using Exuberant Ctags, Python, and DataTables.

Project on QitHub. Hosted on QitHub Pages.

 Low level lib parameters are set up in registers and syscall
instruction is issued

— A type of synchronous exception that enters well-defined entry
points into kernel

1/30/2024

Kubiatowicz CS162 © UCB Spring 2024

Lec 5.26

What's below the surface ??

File descriptor number Application / Service
- an int High Level /O | streams

“Low Level I/O | handles

‘ Syscall registers

File System descriptions

File description
« a struct with all the I/O Driver Commands and Data Transfers

info about the files QJ?; Disks, Flash, Controllers, DMA

1/30/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 5.27

Inside Kernel!

What's in an Open File Description?

For our purposes, the two most important things are:
Where to find the file data on disk —
The current position within the file

1/30/2024

c

] Ixr.free=electrans.com/source/include linux/fs.h#L747

5 m!Eal |:|L.|CB. DEELEZ D:ullnrmawnn W Wikipedia \’ahnnl

Kubiatowicz CS162 © UCB Spring 2024

778
779
TER
781
T8
783

-

784 }

#ifdef

#endif

truct 1list_node fi
struct rcu_head

3 S TH
struct path

 f_dentry f_pat

struct inode

f_path;

h.dentry

*f_inode;

TUu_rcu

L:N!M I:

head:

const struct file_operations *f_op;

spinlock_t
atomic_leng_t
unsigned int)
fmode_t

Struct mutex

loff_t

struct fown_struct
const struct cred
struct file_ra_state

ubd4

T CONFIG_SECURITY

QHII (1] L-I LL

by fsseventpoll

C*rl" llst head
t t llst head

raef

struct address spar.e

_attribute__(({aligmnec

ONFIG_EPOLL #*/

Lec 5.28

File System: from syscall to driver

In fs/read write.c

ssize t vfs read(struct file *file, char user *buf, size t count, loff t *pos)
{
ssize_t ret;
if (!(file->f_mode & FMODE_READ)) return| <Read up to “count” bytes from “file”
if (!'Fi].e'>'F_0p | | (!'File'>'F_0p—>r‘ead & Startlng from “pos” |nto “buf”_
return -EINVAL; .
if (unlikely('access ok(VERIFY_WRITE, bu Return error or number of bytes read.
ret = rw_verify area(READ, file, pos, courrcy;
if (ret >= 0) {
count = ret;
if (file->f_op->read)
ret = file->f_op->read(file, buf, count, pos);
else
ret = do_sync_read(file, buf, count, pos);
if (ret > 0) {
fsnotify access(file->f _path.dentry);
add_rchar(current, ret);
}
inc_syscr(current);
¥

return ret;

}
1/30/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 5.29

File System: from syscall to driver

In fs/read write.c

ssize t vfs read(struct file *file, char __ _user *buf, size t count, loff t *pos)
{

ssize t ret;

if (!(file->f mode & FMODE READ)) return -EBADF;

if (!file->f op || (!file->f op->read && !file—>f_op->w
return -EINVAL;

if (unlikely(!access_ok(VERIFY_WRITE, buf, count))) rel Make sure we
r.'et = rw_verify area(READ, file, pos, count); are allowed to
if (ret >= 0) { . g
e read this file
if (file->f _op->read)
ret = file->f op->read(file, buf, count, pos);
else
ret = do_sync_read(file, buf, count, pos);
if (ret > 0) {
fsnotify _access(file->f_path.dentry);
add_rchar(current, ret);
}
inc_syscr(current);
}

return ret;

}
1/30/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 5.30

File System: from syscall to driver

In fs/read write.c

ssize t vfs_read(struct file *file, char _ user *buf, size t count, loff_t *pos)
{
ssize_t ret;
if (!(file->f mode & FMODE READ)) return -EBADF;
if (!file->f op || (!file->f op->read &% !file->f op->aio _read))
return -EINVAL;
if (unlikely('access ok(VERIFY_WRITE, buf, count))) Pé%Urn\;EEégFT;

ret = rw_verify area(READ, file, pos, count);
if (ret >= 0) { Check if file has

count = ret;
’ read methods
if (file->f _op->read)

ret = file->f_op->read(file, buf, count, pos);
else
ret = do_sync_read(file, buf, count, pos);
if (ret > 0) {
fsnotify access(file->f _path.dentry);
add_rchar(current, ret);
}
inc_syscr(current);
¥

return ret;

}
1/30/2024 Kubiatowicz CS162 © UCB Spring 2024

Lec 5.31

File System: from syscall to driver

In fs/read write.c

ssize t vfs_read(struct file *file, char _ user *buf, size t count, loff_t *pos)

{

ssize_t ret;

if (!(file->f mode & FMODE_READ)) return -EBADF;
if (!file->f op || (!file->f op->read &% !file->f op->aio _read))

return -EINVAL.

if (unlikely('access ok(VERIFY_WRITE, buf, count))) return -EFAULT;

ret = rw_verity_area(READ, Tile, pos, count), ‘\\\\\\\

if (ret >= 0) {

count = ret; fi
if (file->f _op->read)
ret = file->f op->read(file, buf, c

ret = do_sync_read(file, buf, count

if (ret > 0) { _

Check whether we can write to buf
(e.g., bufis in the user space range)
else «unlikely(): hint to branch prediction

this condition is unlikely

~N

J

fsnotify access(file->f _path.dentry);
add_rchar(current, ret);

}

inc_syscr(current);

}

return ret;

}

1/30/2024 Kubiatowicz CS162 © UCB Spring 2024

Lec 5.32

File System: from syscall to driver

In fs/read write.c

ssize t vfs_read(struct file *file, char _ user *buf, size t count, loff_t *pos)

{

ssize_t ret;

if (!(file->f mode & FMODE_READ)) return -EBADF;

if (!file->f op || (!file->f op->read &% !file->f op->aio _read))
return -EINVAL;

if (unlikelv(laccess ok(VERIFY WRITE, buf, count))) return -EFAULT:

ret = rw_verify area(READ, file, pos, count);

It (ret >= 0) { \
count = ret;

if (file->f op->read) . Check whether we read from
ret = file->f_op->read(file, buf, count, po . . .
else a valid range in the file.

ret = do_sync_read(file, buf, count, pos);
if (ret > 0) {

fsnotify access(file->f _path.dentry);

add_rchar(current, ret);

}

inc_syscr(current);

}

return ret;

}
1/30/2024 Kubiatowicz CS162 © UCB Spring 2024

Lec 5.33

File System: from syscall to driver

In fs/read write.c

ssize t vfs_read(struct file *file, char _ user *buf, size t count, loff_t *pos)
{
ssize_t ret;
if (!(file->f mode & FMODE_READ)) return -EBADF;
if (!file->f op || (!file->f op->read &% !file->f op->aio _read))
return -EINVAL;
if (unlikely('access ok(VERIFY_WRITE, buf, count))) return -EFAULT;
ret = rw_verify area(READ, file, pos, count);
if (ret >= 0) {
count = _ret:
if (file->f_op->read)
ret = file->f_op->read(file, buf, count, pos);
else

ret = do_sync read(file, buf, count, pos);

if (ret > 9) { <.="“-._=F>

fsnotify access(file->f _path.dentry);

add_rchar(current, ret); If driver provide a read
} function (f_op->read) use it;
inc_syscr(current); otherwise use do_sync_read()
}
return ret;

}
1/30/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 5.34

File System: from syscall to driver

In fs/read write.c

ssize t vfs_read(struct file *file, char _ _user *buf, size t count, loff_t *pos)
{
ssize_t ret;
if (!(file->f_mode & FMODE_READ)) return -EBADF;
if (!file->f op || (!file->f op->read && !file->f op->aio_read))
return -EINVAL;
if (unlikely('access ok(VERIFY_WRITE, buf, count))) return -EFAULT;
ret = rw_verify area(READ, file, pos, count);
if (ret >= 0) {
count = ret;
if (file->f_op->read) | Notify the parent of this file that the file was read
lr‘et = file->f_op->rg (see http://www.fieldses.org/~bfields/kernel/vfs.txt)
else
ret = do_sync_read(file, buf, count, pos); /
if (ret > 0) {
fsnotify access(file->f _path.dentry);
add_rchar(current, ret);
}
inc_syscr(current);
}

return ret;

}

1/30/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 5.35

File System: from syscall to driver

In fs/read write.c

ssize t vfs_read(struct file *file, char _ _user *buf, size t count, loff_t *pos)
{
ssize_t ret;
if (!(file->f_mode & FMODE_READ)) return -EBADF;
if (!file->f op || (!file->f op->read && !file->f op->aio_read))
return -EINVAL;
if (unlikely('access ok(VERIFY_WRITE, buf, count))) return -EFAULT;
ret = rw_verify area(READ, file, pos, count);
if (ret >= 0) {
count = ret;

if (file->f_op->read)
ret = file->f _op->read(file, buf, count, po Update the number of bytes

else read by “current” task (for
ret = do_sync_read(file, buf, count, pos); scheduling purposes)

if (ret > 0) {
fsnotify access(file->f path.dentry):

add_rchar(current, ret);

s

inc_syscr(current);

}

return ret;

}

1/30/2024 Kubiatowicz CS162 © UCB Spring 2024

Lec 5.36

File System: from syscall to driver

In fs/read write.c

ssize t vfs_read(struct file *file, char _ _user *buf, size t count, loff_t *pos)
{
ssize_t ret;
if (!(file->f_mode & FMODE_READ)) return -EBADF;
if (!file->f op || (!file->f op->read && !file->f op->aio_read))
return -EINVAL;
if (unlikely('access ok(VERIFY_WRITE, buf, count))) return -EFAULT;
ret = rw_verify area(READ, file, pos, count);
if (ret >= 0) {
count = ret;
if (file->f_op->read)
ret = file->f op->read(file, buf, count, pos);

else
ret = do_sync_read(file, buf, count, pos); Update the pumber,,Of read
if (ret > @) { syscalls by _current task
fsnotify access(file->f_path.dentry); (for scheduling purposes)

add_rchar(current, ret); 1:””,,————=
k:

inc_syscr(current);

I

return ret;

}

1/30/2024 Kubiatowicz CS162 © UCB Spring 2024

Lec 5.37

Device Drivers

« Device Driver: Device-specific code in the kernel that interacts directly
with the device hardware
— Supports a standard, internal interface
— Same kernel 1/0O system can interact easily with different device drivers
— Special device-specific configuration supported with the 1octl1 () system call

* Device Drivers typically divided into two pieces:
— Top half: accessed in call path from system calls

» implements a set of standard, cross-device calls like open (), close (),
read(), write (), ioctl (), strategy ()

» This is the kernel’s interface to the device driver

» Top half will start I/O to device, may put thread to sleep until finished
— Bottom half: run as interrupt routine

» Gets input or transfers next block of output

» May wake sleeping threads if I/O now complete

1/30/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 5.38

Lower Level Driver

« Associated with particular hardware device
* Registers / Unregisters itself with the kernel
« Handler functions for each of the file operations

1/30/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 5.39

Life Cycle of An I/O Request

user /O completed,
process input data available, or
output completed

request /O

User
Program

system call
y return from system call

kernel

.- transfer data

can already V'O subsystem (if appropriate) to process,
satisfy request? return completion

or efror code

Kernel I/0O
Subsystem

send request fo device
driver, block process if __ kemnel
appropriate I'0 subsystem

: H process request, issue : .
D eV | Ce D Il Ve r commands to controller, device co?n?grtrgclir,‘?ngillgtr:e”s?ate

configure controller to driver T s R

Top Half block until interrupted

i H . receive interrupt, store
DeVICe Drlver device-controller commands interrupt data in device-driver buffer

handler if input, signal to unblock

BOttom Half device driver

EEEEEEE NN NN NN NS NN NN NN EEEEEEEEED llllllllllllllllllllllllllllllinteuumlllllll

. device
maonitor device, controller
DeVI ce interrupt when 1/0 /O completed.

completed generate interrupt
Hardware

1/30/2024 Kubiatowicz CS162 © UCB Spring 2024

Lec 5.40

Communication between processes

« Can we view files as communication channels?

write(wfd, wbuf, wlen);

5
—_—

—

n = read(rfd, rbuf,rmax);

* Producer and Consumer of a file may be distinct processes
— May be separated in time (or not)
« However, what if data written once and consumed once?

— Don’t we want something more like a queue?
— Can still look like File 1/0!

1/30/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 5.41

Communication Across the world looks like file 10!

write(wfd, wbuf, wlen);

— &

\Cwy T

n = read(rfd,rbuf,rmax);

» Connected queues over the Internet
— But what's the analog of open?
— What is the namespace?
— How are they connected in time?

1/30/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 5.42

Request Response Protocol

Client (issues requests) Server (performs operations)

write(rqgfd, rgbuf, buflen);

5
s

. requests —>
\
\ n = read(rfd,rbuf,rmax);
" /l "
wait/ service request
\\ write(wfd, respbuf, len);
|
\ 4 /

e responses

n = read(resfd,resbuf,resmax);

1/30/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 5.43

Request Response Protocol: Across Network

Client (issues requests) Server (performs operations)

write(rqgfd, rgbuf, buflen);

1L \Ma

\ n = read(rfd,rbuf,rmax);
/I
wait/ % service request
\\ write(wfd, respbuf, len);
; ~__responses
|

< \
n = read(resfd,resbd;jggémaQ{:V/

1/30/2024 Kubiatowicz CS162 © UCB Spring 2024

Lec 5.44

The Socket Abstraction: Endpoint for Communication

« Key ldea: Communication across the world looks like File /O

write(wfd, wbuf, wlen);

Process

=P

» Sockets: Endpoint for Communication
— Queues to temporarily hold results

 Connection: Two Sockets Connected Over the network = IPC over network!

1/30/2024

— How to open()?

— What is the namespace?
— How are they connected in time?

Kubiatowicz CS162 © UCB Spring 2024

Socket

n

e

Process

= read(rfd, rbuf, rmax);

Lec 5.45

Sockets: More Details

« Socket: An abstraction for one endpoint of a network connection
— Another mechanism for inter-process communication

— Most operating systems (Linux, Mac OS X, Windows) provide this, even if they
don’t copy rest of UNIX I/O

— Standardized by POSIX
 First introduced in 4.2 BSD (Berkeley Standard Distribution) Unix

— This release had some huge benefits (and excitement from potential users)

— Runners waiting at release time to get release on tape and take to businesses
« Same abstraction for any kind of network

— Local (within same machine)
— The Internet (TCP/IP, UDP/IP)
— Things “no one” uses anymore (OSI, Appletalk, IPX, ...)

1/30/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 5.46

Sockets: More Details

« Looks just like a file with a file descriptor
— Corresponds to a network connection (two queues)
- write adds to output queue (queue of data destined for other side)
- read removes from it input queue (queue of data destined for this side)
— Some operations do not work, e.g. 1seek

 How can we use sockets to support real applications?
— A bidirectional byte stream isn’t useful on its own...
— May need messaging facility to partition stream into chunks

— May need RPC facility to translate one environment to another and provide
the abstraction of a function call over the network

1/30/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 5.47

Simple Example: Echo Server

Q@ “hello, world” X
GV

Client Web Server

“hello, world”

1/30/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 5.48

Simple Example: Echo Server

Client (issues requests) Server (services requests)
fgets(sndbuf,bufsize,stdin);

ﬂ‘ﬂ” rite(sockfd,sndbuf,strlen(sndbuf)+1); n = read(sockfd,reqbuyf,..);
S

\
= read(sockfd,rcvbuf, ..); > [;;;;;]
Client Server

Socket Socket

write(sockfd,reqgbufj..);

print

1/30/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 5.49

1/30/2024

Echo client-server example

void client(int sockfd) {

int n;

char sndbuf[MAXIN]; char rcvbuf[MAXOUT];

while (1) {
fgets(sndbuf,MAXIN,stdin); /* prompt */
[write(sockftd, sndbut, strlen(sndbuf)+ljy /* send (including null terminator) */
memset (rcvbuf,0,MAXOUT); clear */
n=read(socktd, rcvbuf, MAXOUT); | ceive */
write(STDOUT_FILENO, rcvbuf, n); ho */

}

——

1d server(int consoc
char regbuf[MAXREQ];
int n;
while (1) {
memset(regbuf,®, MAXREQ);
~\,‘|n = read(consocktd, reqbut, MAXREQ); /F Recv */
if (n <= @) return;
write(STDOUT_FILENO, regbuf, n);
|write(consochd, regbuf, n); /* echo*/
}
}

Kubiatowicz CS162 © UCB Spring 2024 Lec 5.50

What Assumptions are we Making?

* Reliable
— Write to a file => Read it back. Nothing is lost.
— Write to a (TCP) socket => Read from the other side, same.

 In order (sequential stream)
— Write X then write Y => read gets X then read gets Y

* When ready?

— File read gets whatever is there at the time
» Actually need to loop and read until we receive the terminator (\0’)

— Assumes writing already took place
— Blocks if nothing has arrived yet

1/30/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 5.51

Socket Creation

» File systems provide a collection of permanent objects in a structured name space:
— Processes open, read/write/close them
— Files exist independently of processes
— Easy to name what file to open()
» Pipes: one-way communication between processes on same (physical) machine
— Single queue
— Created transiently by a call to pipe()
— Passed from parent to children (descriptors inherited from parent process)

» Sockets: two-way communication between processes on same or different
machine

— Two queues (one in each direction)
— Processes can be on separate machines: no common ancestor
— How do we name the objects we are opening?

— How do these completely independent programs know that the other wants to “talk” to
them?

1/30/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 5.52

Namespaces for Communication over IP

 Hostname
— www.eecs.berkeley.edu

* |P address
—128.32.244 172 (IPv4, 32-bit Integer)
— 2607:1140:0:81::f (IPv6, 128-bit Integer)
* Port Number
— 0-1023 are “well known” or “system” ports
» Superuser privileges to bind to one
— 1024 — 49151 are “registered” ports (reqistry)
» Assigned by IANA for specific services
— 49152-65535 (215+214 to 276-1) are “dynamic” or “private”
» Automatically allocated as “ephemeral ports”

1/30/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 5.53

Connectlon Setup over TCP/IP

Client Side 5 Server Side

Server Listening:

1. ServerIP addr :
2. well-known port,
3. Protocol (TCP/IP) :

Connection request:
1. Client IP addr

2. Client Port

3. Protocol (TCP/IP)

» Special kind of socket: server socket
— Has file descriptor
— Can’t read or write
* Two operations:
1. listen(): Start allowing clients to connect
2. accept(): Create a new socket for a particular client

1/30/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 5.54

Connection Setup over TCP/IP
Client Side Server Side

Server Listening:

1. Server IP addr

2. well-known port,
3. Protocol (TCPI/IP)

Connection request:
1. Client IP addr

2. Client Port

3. Protocol (TCP/IP)

« 5-Tuple identifies each connection: + Often, Client Port “randomly” assigned

1. Source IP Address — Done by OS during client socket setup
2. Destination IP Address « Server Port often “well known”

3. Source Port Number _ 80 (web), 443 (secure web), 25

4. Destination Port Number (sendmail), etc

5. Protocol (always TCP here) — Well-known ports from 0—1023

1/30/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 5.55

Web Server

Q m Request
Hb& L
W Reply

Client Web Server

1/30/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 5.56

Client-Server Models

Client 1

Client 2

*%%

[Client n

* File servers, web, FTP, Databases, ...
« Many clients accessing a common server

1/30/2024 Kubiatowicz CS162 © UCB Spring 2024

Lec 5.57

Simple Web Server

Client Server
Create Server Socket

Create Client Socket Bind it to an Address
l (host:port)
. v
Connect it to server (host:port) - - - - ____ > Listen for Connection
e ~o - v P’ \\
~ Accept syscall() \;
Connection Socket&=» Connection Socke‘t/ te
,“uwriterequest - - - - - -~ > read request X "
\

‘. _sreadresponse <- - — - — — - — — - — - — write response . _ _'
Close Client Socket Close Connection Socket

Close Server Socket

1/30/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 5.58

1/30/2024

Client Code

char *host _name, *port_name;

// Create a socket

struct addrinfo *server = lookup host(host_name, port_name);

int sock_fd = socket(server->ai_family, server->ai_socktype,
server->ai_protocol);

// Connect to specified host and port
connect(sock_fd, server->ai_addr, server->ai_addrlen);

// Carry out Client-Server protocol
run_client(sock fd);

/* Clean up on termination */
close(sock_fd);

Kubiatowicz CS162 © UCB Spring 2024

Lec 5.59

Client-Side: Getting the Server Address

struct addrinfo *lookup host(char *host_name, char *port) {
struct addrinfo *server;
struct addrinfo hints;
memset(&hints, 0, sizeof(hints));
hints.ai_family = AF_UNSPEC; /* Includes AF_INET and AF_INET6 */
hints.ai_socktype = SOCK_STREAM; /* Essentially TCP/IP */

int rv = getaddrinfo(host_name, port_name, &hints, &server);
if (rv 1= 0) {
printf("getaddrinfo failed: %s\n", gai_strerror(rv));
return NULL;

}

return server;

1/30/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 5.60

1/30/2024

Server Code (v1)

// Create socket to listen for client connections
char *port_name;
struct addrinfo *server = setup_address(port_name);

int server_socket = socket(server->ai_family, .
server->ai_socktype, server->ai_protocol);

// Bind socket to specific port

bind(server_socket, server-»>ai_addr, server-»>ai_addrlen);
// Start listening for new client connections
listen(server_socket, MAX QUEUE);

while (1) {
// Accept a new client connection, obtaining a new socket
int conn_socket = accept(server_socket, NULL, NULL);
serve_client(conn_socket);
close(conn_socket);

}

close(server_socket);

Kubiatowicz CS162 © UCB Spring 2024

Lec 5.61

Server Address: Itself (wildcard IP), Passive

struct addrinfo *setup address(char *port) {
struct addrinfo *server;
struct addrinfo hints;
memset(&hints, O, sizeof(hints));

hints.ai_family = AF_UNSPEC; /* Includes AF_INET and AF_INET6 */
hints.ai_socktype = SOCK_STREAM; /* Essentially TCP/IP */
hints.ai_flags = AI_PASSIVE; /* Set up for server socket */

int rv = getaddrinfo(NULL, port, &hints, &server); /* No address! (any local IP) */
if (rv 1= 0) {

printf("getaddrinfo failed: %s\n", gai_strerror(rv));

return NULL;

}

return server;

« Accepts any connections on the specified port

1/30/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 5.62

How Could the Server Protect ltself?

« Handle each connection in a separate process

— This will mean that the logic serving each request will be “sandboxed” away from
the main server process

* In the following code, keep in mind:
- fork() will duplicate all of the parent’s file descriptors (i.e. pointers to sockets!)
— We keep control over accepting new connections in the parent
— New child connection for each remote client

1/30/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 5.63

Server With Protection (each connection has own process)

Client Server
Create Server Socket

Create Client Socket Bind it to an Address
l (host:port)

Connect it to server (host:port) e > Listen for Connection

~

TS Acce|it syscall() \

Connectlon Socket C———============)Connection Socket
Ch"‘y \farent

v

, uwriterequest - - - — - - _ _
I

'__read response « - — - - — —

!

Close Client Socket

Close Connection
Socket l

Wait for child

Close Server Socket
1/30/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 5.64

Server Code (v2)

// Socket setup code elided..
listen(server_socket, MAX QUEUE);
while (1) {
// Accept a new client connection, obtaining a new socket
int conn_socket = accept(server_socket, NULL, NULL);
pid_t pid = fork();
if (pid == 0) {
close(server_socket);
serve_client(conn_socket);
close(conn_socket);
exit(0);
} else {
close(conn_socket);
wait(NULL);
}

}

close(server_socket);
1/30/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 5.65

How to make a Concurrent Server

« So far, in the server:
— Listen will queue requests
— Buffering present elsewhere

— But server waits for each connection to terminate before servicing the next
» This is the standard shell pattern

* A concurrent server can handle and service a new connection before the
previous client disconnects

— Simple — just don’t wait in parent!

— Perhaps not so simple — multiple child processes better not have data races
with one another through file system/etc!

1/30/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 5.66

Server With Protection and Concurrency

Client Server
Create Server Socket

Create Client Socket Bind it to an Address
l (host:port)
Connect it to server (host:port) c------= > Listen for Connection

~

TS Acce|it syscall()

Connectlon Socket C———============)Connection Socket
Ch"‘y \farent

v

, uwriterequest - - - — - - _ _
I

'__read response « - — - - — —

!

Close Client Socket

Close Connection
Socket

Close Server Socket

1/30/2024 Kubiatowicz CS162 © UCB Spring 2024

Lec 5.67

Server Code (v3)

// Socket setup code elided..
listen(server_socket, MAX QUEUE);
while (1) {
// Accept a new client connection, obtaining a new socket
int conn_socket = accept(server_socket, NULL, NULL);
pid_t pid = fork();
if (pid == 0) {
close(server_socket);
serve_client(conn_socket);
close(conn_socket);
exit(0);
} else {
close(conn_socket);
//wait(NULL);

}

}

close(server_socket);
1/30/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 5.68

Faster Concurrent Server (without Protection)

Spawn a new thread to handle each connection
— Lower overhead spawning process (less to do)

Main thread initiates new client connections without waiting for previously
spawned threads

Why give up the protection of separate processes?
— More efficient to create new threads
— More efficient to switch between threads
Even more potential for data races (need synchronization?)
— Through shared memory structures
— Through file system

1/30/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 5.69

Server with Concurrency, without Protection

Client Server
Create Server Socket

Create Client Socket Bind it to an Address
l (host:port)
Connect it to server (host:port) c------= > Listen for Connection

~

T~ l V. \
~ Accept syscall() Y
N

V -
Connection Socket === Connection Socket

pthread_create
v Spawned Thread \

, uwriterequest - - - — - - — _ _
/

'__/read response « - — - - - —

!

Close Client Socket

Main Thread

Close Server Socket

1/30/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 5.70

Thread Pools: More Later!

* Problem with previous version: Unbounded Threads
— When web-site becomes too popular — throughput sinks

 Instead, allocate a bounded “pool” of worker threads, representing the
maximum level of multiprogramming

Master
/-\ Thread|
e\ \

ananb

Thread Pool
master() { worker(queue) {

allocThreads (worker,queue); while(TRUE) {

while(TRUE) { con=Dequeue(queue);
con=AcceptCon(); if (con==null)
Enqueue(queue,con); sleepOn(queue);
wakeUp(queue); else

} ServicelWebPage(con);

} }

1/30/2024 Kubiatowicz CS162 © JCB Spring 2024 Lec 5.71

Conclusion

POSIX I/O

— Everything is a file!

— Based on the system calls open(), read(), write(), and close()
Streaming |O: modeled as a stream of bytes

— Most streaming |/O functions start with “f” (like “fread”)

— Data buffered automatically by C-library function
Low-level I/O:

— File descriptors are integers

— Low-level I/O supported directly at system call level

Device Driver: Device-specific code in the kernel that interacts directly with the
device hardware

— Supports a standard, internal interface

— Same kernel I/O system can interact easily with different device drivers
File abstraction works for inter-processes communication (local or Internet)
Socket: an abstraction of a network I/O queue (IPC mechanism)

1/30/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 5.72

