CS162
Operating Systems and
Systems Programming

Lecture 5

Abstractions 3: Files and 1/0, Sockets and IPC

January 30st, 2024
Prof. John Kubiatowicz
http://cs162.eecs.Berkeley.edu

Recall: Process Creating New Processes

e pid_t fork() — copy the current process
— New process has different pid
— New process contains a single thread
* Return value from fork(): pid (like an integer)
— When > 0:
» Running in (original) Parent process
» return value is pid of new child
— When =0:
» Running in new Child process
— When < 0:
» Errorl Must handle somehow
» Running in original process
» State of original process duplicated in both Parent and Child!
— Address Space (Memory), File Descriptors (covered later), etc...
— For now—your mental model of fork() should be complete duplication of Parent

1/30/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec5.2
Recall: Unix/POSIX Idea: Everything is a “File” I/O and Storage Layers
+ Identical interface for: Application / Service
— Files on disk Streams (buffered 1/0)
— Devices (terminals, printers, etc.) File Descriptors
— Regular files on disk syscall open(), read(), write(), close(), ...
Net i ket Open File Descriptions
— Networking (sockets) File System| Files/Directories/Indexes
— Local interprocess communication (pipes, sockets) -
. 1/0 Driver Commands and Data Transfers
- Based on the system calls open(), read(), write(), and close()
« Additional: ioct1() for custom configuration that doesn’t quite fit Disks, Flash, Controllers, DMA
* Note that the “Everything is a File” idea was a radical idea when proposed
— Dennis Ritchie and Ken Thompson described this idea in their seminal paper
on UNIX called “The UNIX Time-Sharing System” from 1974
— | posted this on the resources page if you are curious
1/30/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec5.3 1/30/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec5.4

C High-Level File APl — Streams

» Operates on “streams” — unformatted sequences of bytes (wither text or

binary data), with a position:

#include <stdio.h>
FILE *fopen(const char *filename, const char)
int fclose(FILE *fp);

r b Open existing file for reading

w wb Open for writing; created if does not exist

a ab Open for appending; created if does not exist

r+ rb+ Open existing file for reading & writing.

w+ wb+ Open for reading & writing; truncated to zero if exists, create otherwise

a+ ab+ Open for reading & writing. Created if does not exist. Read from beginning, write

as append

» Open stream represented by pointer to a FILE data structure
— Error reported by returning a NULL pointer

C API| Standard Streams — stdio.h

» Three predefined streams are opened implicitly when the program is

executed.
- FILE *stdin — normal source of input, can be redirected
- FILE *stdout — normal source of output, can too
- FILE *stderr — diagnostics and errors

» STDIN / STDOUT enable composition in Unix
* All can be redirected

- cat hello.txt | grep “World!”
- cat’s stdout goes to grep’s stdin

1/30/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 5.5 1/30/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 5.6
C High-Level File API C Streams: Char-by-Char I/O
// character oriented int main(void) {
int fputc(int c, FILE *fp); // rtn c or EOF on err FILE* input = fopen(“input.txt”, “r”);
int fputs(const char *s, FILE *fp); // rtn > @ or EOF FILE* output = fopen(“output.txt”, “w”);
int fgetc(FILE * fp); int ¢;
char *fgets(char *buf, int n, FILE *fp);
c = fgetc(input);
// block oriented while (c != EOF) {
size_t fread(void *ptr, size_t size_of_elements, fputc(output, c);
size_t number_of_elements, FILE *a_file); c = fgetc(input);
B
size_t fwrite(const void *ptr, size_t size_of_elements, }
size_t number_of_elements, FILE *a_file); .
- - - -); fclose(input);
// formatted fclose(output);
int fprintf(FILE *restrict stream, const char *restrict format, ...); }
int fscanf(FILE *restrict stream, const char *restrict format, ...);
1/30/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 5.7 1/30/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec5.8

C High-Level File API

// character oriented
int fputc(int c, FILE *fp);
int fputs(const char *s, FILE *fp);

// rtn c or EOF on err
// rtn > @ or EOF

int fgetc(FILE * fp);
char *fgets(char *buf, int n, FILE *fp);

// block oriented
size_t fread(void *ptr, size_t size_of_elements,
size_t number_of_elements, FILE *a_file);
size_t fwrite(const void *ptr, size_t size_of_elements,
size_t number_of_elements, FILE *a_file);

// formatted

int fprintf(FILE *restrict stream, const char *restrict format, ...);
int fscanf(FILE *restrict stream, const char *restrict format, ...);
1/30/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 5.9

C Streams: Block-by-Block I/0O

#define BUFFER_SIZE 1024
int main(void) {
FILE* input = fopen("input.txt", "r");
FILE* output = fopen("output.txt", "w");
char buffer[BUFFER_SIZE];
size_t length;
length = fread(buffer, sizeof(char), BUFFER_SIZE, input);
while (length > @) {
fwrite(buffer, sizeof(char), length, output);
length = fread(buffer, sizeof(char), BUFFER_SIZE, input);

¥
fclose(input);
fclose(output);

1/30/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec5.10

Aside: Check your Errors!

» Systems programmers should always be paranoid!
— Otherwise you get intermittently buggy code
We should really be writing things like:
FILE* input = fopen(“input.txt”, “r”);
if (input == NULL) {
// Prints our string and error msg.
perror(“Failed to open input file”)

}

Be thorough about checking return values!

— Want failures to be systematically caught and dealt with
* I may be a bit loose with error checking for examples in class (to keep short)
— Do as | say, not as | show in class!

1/30/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec5.11

C High-Level File API: Positioning The Pointer

int fseek(FILE *stream, long int offset, int whence);
long int ftell (FILE *stream)
void rewind (FILE *stream)

* For fseek(), the offset is interpreted based on the whence argument
(constants in stdio.h):
- SEEK_SET: Then offset interpreted from beginning (position 0)
- SEEK_END: Then offset interpreted backwards from end of file
- SEEK_CUR: Then offset interpreted from current position
offset (SEEK_END)

offset (SEEK_SET)

whence

offset (SEEK_CUR)
» Overall preserves high-level abstraction of a uniform stream of objects

1/30/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec5.12

Administrivia
+ Kubiatowicz Office Hours (673 Soda Hall):
— 3pm-4pm, Tuesday/Thursday
» Friday was drop deadline. If you forgot to drop, we can’t help you!
— You need to speak with advisor services in your department about how to drop

» Be careful on Ed: Don’t give away solutions when you post questions or answers

— Remember that everyone is supposed to do their own work!
+ Recommendation: Read assigned readings before lecture
» Group sign up should have happened already
— If you don’t have 4 members in your group, we will try to find you other partners
— Want everyone in your group to have the same TA
— Go to your assigned section on Friday, starting this week!
* Midterm 1 conflicts
— Watch for announcements on EdStem (remember: MT1 is 2/15)

I/O and Storage Layers

Application / Service

Streams (buffered I/0)
File Descriptors
Syscall open(), read(), write(), close(), ...

Open File Descriptions
File System Files/Directories/Indexes

1/0 Driver Commands and Data Transfers

Disks, Flash, Controllers, DMA

1/30/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec5.13 1/30/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 5.14
Low-Level File I/O: The RAW system-call interface C Low-Level (pre-opened) Standard Descriptors

#include <fentl.h> . .

#include <unistd.hs #include <unistd.h>

#include <sys/types.h> STDIN_FILENO - macro has value ©

STDOUT_FILENO - macro has value 1

:i.nt open (const char *fiI'Lena.me int flags‘ [, h\ode t modej) STDERR FILENO - macro has value 2

int creat (const char *fi ame, mode_t mode) -

int close (int filed

// Get file descriptor inside FILE *

Bit vector of: y I . . .

- Access modes (Rd, W, ...) Bit vectoGr of Pe(r)mlssmn Bits: int fileno (FILE *stream)

. 0 Flags (Create, ...) * User|Group|Other X R|W|X

pen Flag]
*_Operating modes (Appends, ...) // Make FILE * from descriptor
. . . FILE * fdopen (int filedes, const char *opentype)
* Integer return from open() is a file descriptor
— Error indicated by return < 0: the global errno variable set with error (see man pages)
» Operations on file descriptors:
— Open system call created an open file description entry in system-wide table of open files
— Open file description object in the kernel represents an instance of an open file
— Why give user an integer instead of a pointer to the file description in kernel?
1/30/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec5.15 1/30/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec5.16

Low-Level File API

» Read data from open file using file descriptor:

ssize_t read (int filedes, void *buffer, size_t maxsize)

— Reads up to maxsize bytes — might actually read less!
—returns bytes read, 0 => EOF, -1 => error

» Write data to open file using file descriptor
ssize_t write (int filedes, const void *buffer, size_t size)

—returns number of bytes written

* Reposition file offset within kernel (this is independent of any position held by
high-level FILE descriptor for this file!

off_t lseek (int filedes, off_t offset, int whence)

Example: lowio.c

int main() {
char buf[1000];

int fd = open("lowio.c", O RDONLY, S _IRUSR | S_IWUSR);
ssize_t rd = read(fd, buf, sizeof(buf));
int err = close(fd);
ssize_t wr = write(STDOUT_FILENO, buf, rd);
}

* How many bytes does this program read?

1/30/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 5.17 1/30/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 5.18
POSIX I/0O: Design Patterns POSIX I/0O: Kernel Buffering
* Open before use » Reads are buffered inside kernel
— Access control check, setup happens here — Part of making everything byte-oriented
« Byte-oriented — Process is blocked while waiting for device
_ Least common denominator — Let other processes run while gathering result
— OS responsible for hiding the fact that real devices may not work this way " Writes are bgffered inside kernel
(e.g. hard drive stores data in blocks) — Complete in background (more later on)
- Explicit close — Return to user when data is “handed off” to kernel
+ This buffering is part of global buffer management and caching for block
devices (such as disks)
— Items typically cached in quanta of disk block sizes
— We will have many interesting things to say about this buffering when we dive
into the kernel
1/30/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 5.19 1/30/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 5.20

Low-Level I/O: Other Operations

» Operations specific to terminals, devices, networking, ...
—e.g., ioctl
Duplicating descriptors
- int dup2(int old, int new);
- int dup(int old);
* Pipes — channel
- int pipe(int pipefd[2]);
- Writes to pipefd[1] can be read from pipefd[@]
File Locking
* Memory-Mapping Files
* Asynchronous I/O

Low-Level vs High-Level file API

- Low-level direct use of syscall interface: | |« High-level buffered access:
open(), read(), write(), close() fopen(), fread(), fwrite(), fclose()
» Opening of file returns file descriptor: » Opening of file returns ptr to FILE:
int myfile = open(..); FILE *myfile = fopen(..);
« File descriptor only meaningful to kernel | |+ FILE structure is user space contains:
— Index into process (PDB) which holds — a chunk of memory for a buffer
pointers to kernel-level structure (“file — the file descriptor for the file (fopen() will
description”) describing file. call open() automatically)
* Every read() orwrite() causes « Every fread() or furite() filters
syscall no matter how small (could read through buffer and may not call read()
a single byte) orwrite() on every call.

» Consider loop to get 4 bytes at a time « Consider loop to get 4 bytes at a time
using read(): using fread():

— Each iteration enters kernel for 4 bytes. — First call to fread() calls read() for block of
bytes (say 1024). Puts in buffer and returns

first 4 to user.
— Subsequent fread() grab bytes from buffer

1/30/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 5.21 173072024 Kubiatowicz CS162 © UCB Spring 2024 Lec5.22
Low-Level vs. High-Level File API High-Level vs. Low-Level File API
Low-Level Operation: High-Level Operation: » Streams are buffered in user memory:
ssize_tread(...) { ssize_t fread(...) { printf("Beginning of line ");
Check buffer for contents sleep(10); // sleep for 1@ seconds
Return data to caller if available printf("and end of line\n");
asm code ... syscall # into %eax asm code ... syscall # into %eax Prints out everything at once
put args into registers %ebx, ... put args into registers %ebyx, ...
special trap instruction special trap instruction
Ke”:e'i . Kemte'i . « Operations on file descriptors are visible immediately
get args from regs get args from regs . et s R .
dispatch to system func dispatch to system func write(STDOUT_FILENO, "Beginning of line ", 18);
Do the work to read from the file Do the work to read from the file sleep(10);
Store return value in %eax Store return value in %eax write("and end of line \n", 16);
get return values from regs get return values from regs Outputs "Beginning of line" 10 seconds earlier than “and end of line”
Return data to caller Update buffer with excess data
Return data to caller
h b
1/30/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec5.23 1/30/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 5.24

What's below the surface ??

Application / Service

streams
handles
‘ registers
descriptions

1/O Driver

Commands and Data Transfers
Disks, Flash, Controllers, DMA

1/30/2024

Recall: SYSCALL

=

[pcal Suce [mcsi62 [0 cullermayeno W Wikipedia [l Yahoo! I News L Popular [Imported From Safari

syscalls.kernelgrok.com

Linux Syscall Reference

Show | 10 | entrics.

Search:
ealsters
Narme pefiniten
o s P PR PRI PR
sys_restan_syscall 000 - kernelisignalc2058
sys et 001 s ervor_cose kerneliexiLe1046
sy forc o2 struct pLrogs * - - archyalphajkernel jentry 5716
sy read o3 unsigned intfd char _user “buf size_t count fs/read_wte.c391
sys_wrine e unsigned intfd const cnar _user size t count 1s]read_wre.c408
ot

sys_open 005

I fags

f5/opene900

fs)openc:ass
int aptians - - kerneljexite 1771

fsjopencss3

s nameie2520

Showing 1 1010 of 338 entries 2 3 4 5 Nex Last

Generated from Linux kernel 2.6.35.4 using. g3, Python, and
Project on GitHub, Hosted on GitHub Pages.

Low level lib parameters are set up in registers and syscall
instruction is issued

— A type of synchronous exception that enters well-defined entry
points into kernel

Kubiatowicz CS162 © UCB Spring 2024 Lec 5.25 1/30/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 5.26
, . . .y
What’s below the surface ?? What’s in an Open File Description?
. € [xrfree-electrons.com/source/include/linux/fs h# 747
Inside Kernel! O (e e v e
For our purposes, the two most important things are: | %~ " . o
S ATad /pplication/ Service * Where to find the file dataon disk —nuo | = oo oo
- an int High Level /0 | streams + The current position within the file o seemeon e
ow Level /0 | handles & A
‘ Syscall regiSterS 762 atomic_long_t
- — ile System | descriptions
File description ' P puck crad_,
« a struct with all the 1/0 Driver Commands and Data Transfers T .
info about the files i Disks, Flash, Controllers, DMA 2 et "
1/30/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 5.27 1/30/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 5.28

File System: from syscall to driver

In fs/read_write.c

|ssize t vfs read(struct file *file, char user *buf, size t count, loff t *pos)l
{

ssize_t ret;

if (!(file->f_mode & FMODE_READ)) return| <Read up to “count” bytes from “file”
if (!file->f_op || (!file->f_op->read & starting from “pos” into “buf”.

return -EINVAL;
if (unlikely(!access_ok(VERIFY_WRITE, bui *Return error or number of bytes read.

ret = rw_verify_area(READ, file, pos, courrcys
if (ret >= 0) {
count = ret;
if (file->f_op->read)
ret = file->f op->read(file, buf, count, pos);
else
ret = do_sync_read(file, buf, count, pos);
if (ret > 0) {
fsnotify_access(file->f_path.dentry);
add_rchar(current, ret);
}

inc_syscr(current);

return ret;

File System: from syscall to driver

In fs/read_write.c

ssize_t vfs_read(struct file *file, char __user *buf, size_t count, loff_t *pos)

{

ssize t ret;

if (!(file->f mode & FMODE_READ)) return -EBADF; |

if (!file->f op || (!file->f op->read && !file->f_op->alv
return -EINVAL;
if (unlikely(!access_ok(VERIFY_WRITE, buf, count))) re
ret = rw_verify_area(READ, file, pos, count);
if (ret >=0) {
count = ret;
if (file->f_op->read)
ret = file->f op->read(file, buf, count, pos);
else
ret = do_sync_read(file, buf, count, pos);
if (ret > 0) {
fsnotify access(file->f_path.dentry);
add_rchar(current, ret);

Make sure we
are allowed to
read this file

¥

inc_syscr(current);

return ret;

} }
1/30/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 5.29 1/30/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 5.30
File System: from syscall to driver File System: from syscall to driver
In fs/read_write.c In fs/read_write.c
ssize_t vfs_read(struct file *file, char _ user *buf, size_t count, loff_t *pos) ssize_t vfs_read(struct file *file, char _ user *buf, size_t count, loff_t *pos)
{ {
ssize_t ret; ssize_t ret;
if (!(file->f mode & FMODE READ)) return -EBADF; if (!(file->f_mode & FMODE_READ)) return -EBADF;
| if (!file->f_op || (!file->f_op->read && !file->f op->aio_read)) if (!file->f op || (!file->f_op->read && !file->f_op->aio_read))
return -EINVAL; return -EINVAL:
if (unlikely(!access_ok(VERIFY_WRITE, buf, count))) return if (unlikely(!access_ok(VERIFY_WRITE, buf, count))) return -EFAULT; I
ret = rw_verify_area(READ, file, pos, count); ret = rw_verity_area(READ, file, pos, count);
if (ret >= @) { Check if file has if (ret >= @) {
count = ret; count = ret; .
read methods o
if (file->f_op->read) if (file->f_op->read) *Check Wh_et_her we can write to buf
ret = file->f_op->read(file, buf, count, pos); ret = file->f_op->read(file, buf, c (e.g., bufis n the user space_ra_nge)
else else «unlikely(): hint to branch prediction
ret = do_sync_read(file, buf, count, pos); ret = do_sync_read(file, buf, count| this condition is unlikely
if (ret > 0) { if (ret > 0) {
fsnotify_access(file->f_path.dentry); fsnotify_access(file->f_path.dentry);
add_rchar(current, ret); add_rchar(current, ret);
} }
inc_syscr(current); inc_syscr(current);
return ret; return ret;
} }
1/30/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 5.31 1/30/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 5.32

File System: from syscall to driver

In fs/read_write.c

ssize_t vfs_read(struct file *file, char __user *buf, size_t count, loff_t *pos)
{
ssize_t ret;
if (!(file->f_mode & FMODE_READ)) return -EBADF;
if (!file->f op || (!file->f_op->read && !file->f_op->aio_read))
return -EINVAL;
i |

I ret = rw_verify_area(READ, file, pos, count); I

1T (ret >= 0) {
count = ret;

7 (= p=Sireet)) Check whether we read from
ret = file->f op->read(file, buf, count, po . . y
else a valid range in the file.

ret = do_sync_read(file, buf, count, pos);
if (ret > 0) {
fsnotify_access(file->f_path.dentry);
add_rchar(current, ret);
}

inc_syscr(current);

return ret;

File System: from syscall to driver

In fs/read_write.c

ssize_t vfs_read(struct file *file, char __user *buf, size_t count, loff_t *pos)
{
ssize_t ret;
if (!(file->f_mode & FMODE_READ)) return -EBADF;
if (!file->f op || (!file->f_op->read && !file->f_op->aio_read))
return -EINVAL;
if (unlikely(!access_ok(VERIFY_WRITE, buf, count))) return -EFAULT;
ret = rw_verify_area(READ, file, pos, count);
if (ret >= 0) {
count = ret:
if (file->f_op->read)
ret = file->f op->read(file, buf, count, pos);
else
ret = do_sync read(file, buf, count, pos):
if (ret > 0) {

fsnotify_access(file->f_path.dentry);] -
add_rchar(current, ret); If driver provide a read

} function (f_op->read) use it;
inc_syscr(current); otherwise use do_sync_read()

return ret;

} }
1/30/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 5.33 1/30/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 5.34
File System: from syscall to driver File System: from syscall to driver
In fs/read_write.c In fs/read_write.c
ssize_t vfs_read(struct file *file, char __user *buf, size_t count, loff_t *pos) ssize_t vfs_read(struct file *file, char __user *buf, size_t count, loff_t *pos)
{ {
ssize_t ret; ssize_t ret;
if (!(file->f_mode & FMODE_READ)) return -EBADF; if (!(file->f_mode & FMODE_READ)) return -EBADF;
if (!file->f op || (!file->f_op->read && !file->f_op->aio_read)) if (!file->f op || (!file->f_op->read && !file->f_op->aio_read))
return -EINVAL; return -EINVAL;
if (unlikely(!access_ok(VERIFY_WRITE, buf, count))) return -EFAULT; if (unlikely(!access_ok(VERIFY_WRITE, buf, count))) return -EFAULT;
ret = rw_verify_area(READ, file, pos, count); ret = rw_verify_area(READ, file, pos, count);
if (ret >=0) { if (ret >=0) {
count = ret; - . - count = ret;
lfrg:l}e;ﬁ;‘f:;;?gr{ NOtlf);IPG_J//PaFen';_OIfdthIS fle t/hT)tfthfj f;lke Was|/nf3a§i t) lfr‘glie;;{;?g:;:i)‘ead(File buf, count, po Update the number of bytes
o = (see p://www.Tieldses.orqg, lelas/kernel/vis.x oo - 5> > > read by “current” task (fOI’
ret = do_sync_read(file, buf, count, pos); / ret = do_sync_read(file, buf, count, pos); | Scheduling purposes)
if (ret > 0) { if (ret > 0) {
fsnotify access(file->f_path.dentry); i ile- try):
add_rchar(current, ret); add_rchar(current, ret); I
} ¥
inc_syscr(current); inc_syscr(current);
}
return ret; return ret;
¥ }
1/30/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 5.35 1/30/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 5.36

File System: from syscall to driver

In fs/read_write.c

ssize_t vfs_read(struct file *file, char _ user *buf, size_t count, loff_t *pos)
{
ssize_t ret;
if (!(file->f_mode & FMODE_READ)) return -EBADF;
if (!file->f op || (!file->f_op->read && !file->f_op->aio_read))
return -EINVAL;
if (unlikely(!access_ok(VERIFY_WRITE, buf, count))) return -EFAULT;
ret = rw_verify_area(READ, file, pos, count);
if (ret >=0) {
count = ret;
if (file->f_op->read)
ret = file->f op->read(file, buf, count, pos);

else
ret = do_sync_read(file, buf, count, pos); Update the Pumber,,Of read
syscalls by “current” task

if (ret > 0) { .
fsnotify access(file->f_path.dentry); (for scheduling purposes)

add_rchar(current, ret);

Device Drivers

» Device Driver: Device-specific code in the kernel that interacts directly
with the device hardware
— Supports a standard, internal interface
— Same kernel 1/0 system can interact easily with different device drivers
— Special device-specific configuration supported with the ioct1 () system call
» Device Drivers typically divided into two pieces:
— Top half: accessed in call path from system calls

» implements a set of standard, cross-device calls like open (), close (),
read (), write(), ioctl(), strategy()

» This is the kernel’s interface to the device driver

» Top half will start I/O to device, may put thread to sleep until finished
— Bottom half: run as interrupt routine

» Gets input or transfers next block of output

1 . .
[inc_syscr(current);] » May wake sleeping threads if I/O now complete
1
return ret;
¥
1/30/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 5.37 1/30/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 5.38
Lower Level Driver Life Cycle of An I/O Request
struct file_cperations { User request 0 process TR
struct module sewner; output completed
loff_t (#llseek) (struct file #, loff t, imt); Program T
ssize_t (+read) (struct file *, char __user #, size_t, loff_t *); system call retum from system call
saiza v (urite) (struce fila +, const char _user s, aize.t, loff e): L 1 e e R (.
saize_t (+mio_read) (struet kiseb #, comat struet iovee &, umaigned lemg, loff t); 10 subsystem transfer data
saize_t (*aio_write) (struct kioch *, conat struct iovec *, unsigned long, loff t); (\fagg‘zeg\if%g‘)eeg:ess‘
int (+readdir) (struct file =, void =, filldir t}; K 11/0
unaigned int (spsll) (struct file s, struet poll_table_struct #); erne
int (+ioctl) (struct inede *, struct file #, unsigned int, unsigned lemg);
int (+mmap) (etruct file =, ;eme n_aru_;mur. =) : : SUbsyStem send request to device
int (+open) (struct inode =, struct file #); T |
int (#flush) (etreet file =, f1_owner_t id);
int (srelease) (struct imode =, struet file s} b e [ETTITTTIT T T T IT T TTTTTTTTOTIN PYPPRrY R
dnt (#fsyne) (struct file #, struct demtry *, int datasync); . . process request, issue
int (+fasync) (int, struct file =, int); ' Device Driver commands o contler device o IRa
int (+flock) (struct file =, int, struct file_lock +); Top Half block until nterrupted ver change to /O subsystem
L. |
N PP PP PP PP PP PP PP PP PP PP PEPEPLOO DETORREEE! ORI PP PPPPYT71 PYTTTTTIT1 I
Device Driver sonocontolrcommanss |t oo e buter
° A 0 t d -th rt- I h d d 0 B tt H If if ‘npu:i:J%:la‘d:ﬁ/gpb‘ock
Ssoclated witnh particular haraware device ottom Ha i
.. L11411T PR | R
. . . . g
» Registers / Unregisters itself with the kernel _
Device o e |
. . . i generate interrupt
» Handler functions for each of the file operations Hardware
[time
1/30/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 5.39 1/30/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 5.40

Communication between processes

» Can we view files as communication channels?

write(wfd, wbuf, wlen);

B

n = read(rfd,rbuf,rmax);

» Producer and Consumer of a file may be distinct processes
— May be separated in time (or not)

» However, what if data written once and consumed once?
— Don’t we want something more like a queue?
— Can still look like File 1/O!

1/30/2024 Kubiatowicz CS162 © UCB Spring 2024

Lec 5.41

1/30/2024

Communication Across the world looks like file 10!

write(wfd, wbuf, wlen);

= read(rfd,rbuf,rmax);

» Connected queues over the Internet
— But what'’s the analog of open?
— What is the namespace?
— How are they connected in time?

Kubiatowicz CS162 © UCB Spring 2024

Lec5.42

Request Response Protocol

Client (issues requests) Server (performs operations)

write(rqfd, rgbuf, buflen);

= read(rfd,rbuf,rmax);
I

wait.’ service request
\ write(wfd, respbuf, len);

|:|<—" responses]

n = read(resfd,resbuf,resmax);

1/30/2024 Kubiatowicz CS162 © UCB Spring 2024

Lec5.43

1/30/2024

Request Response Protocol: Across Network

Client (issues requests) Server (performs operations)

write(rqfd, rgbuf, buflen);

read(rfd, rbuf, rmax);

service request
write(wfd, respbuf, len);

n = read(resfd,resbuf,resmax);

Kubiatowicz CS162 © UCB Spring 2024

Lec 5.44

The Socket Abstraction: Endpoint for Communication

+ Key Idea: Communication across the world looks like File 1/0

write(wfd, wbuf, wlen);

Process Socket N

Process

Socket -

n =

read(rfd, rbuf, rmax);

» Sockets: Endpoint for Communication
— Queues to temporarily hold results
» Connection: Two Sockets Connected Over the network = IPC over network!
— How to open()?
— What is the namespace?
— How are they connected in time?

1/30/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 5.45

1/30/2024

Sockets: More Details

» Socket: An abstraction for one endpoint of a network connection
— Another mechanism for inter-process communication

— Most operating systems (Linux, Mac OS X, Windows) provide this, even if they
don’t copy rest of UNIX I/O

— Standardized by POSIX
* First introduced in 4.2 BSD (Berkeley Standard Distribution) Unix

— This release had some huge benefits (and excitement from potential users)

— Runners waiting at release time to get release on tape and take to businesses
« Same abstraction for any kind of network

— Local (within same machine)

— The Internet (TCP/IP, UDP/IP)

— Things “no one” uses anymore (OSlI, Appletalk, IPX, ...)

Kubiatowicz CS162 © UCB Spring 2024 Lec 5.46

Sockets: More Details

* Looks just like a file with a file descriptor
— Corresponds to a network connection (two queues)
- write adds to output queue (queue of data destined for other side)

- read removes from it input queue (queue of data destined for this side)
— Some operations do not work, e.g. 1seek

* How can we use sockets to support real applications?
— A bidirectional byte stream isn’t useful on its own...
— May need messaging facility to partition stream into chunks

— May need RPC facility to translate one environment to another and provide
the abstraction of a function call over the network

1/30/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 5.47

1/30/2024

Simple Example: Echo Server

“hello, world”

“hello, world”

Web Server

Kubiatowicz CS162 © UCB Spring 2024 Lec 5.48

Simple Example: Echo Server

Client (issues requests)
fgets(sndbuf,bufsize,stdin);

Server (services requests)

rite(sockfd,sndbuf,strlen(sndbuf)+1); n = read(sockfd,reqbuf,..);
]
/W\ wait\
L"*'—»,;,; —/ \
— :
7;77 @ ’
d(sockifd, rcvbuf, %

Client Server
Socket Socket | |

.,
7

write(sockfd,reqgbuf)..);

Echo client-server example

void client(int sockfd) {
int n;
char sndbuf[MAXIN]; char rcvbuf[MAXOUT];
while (1) {
fgets(sndbuf,MAXIN, stdin); /* prompt */
|write(sockfd, sndbuf, strlen(sndbuf)+1j send (including null terminator) */
memset (rcvbuf,@,MAXOUT) ;
n=read(socktd, rcvbut, MAXOUT); |
write(STDOUT_FILENO, rcvbuf, n);

—vﬂﬂer‘ver‘(int consoc
char regbuf[MAXREQ];
int n;
while (1) {

memset(regbuf,®, MAXREQ);

\|n = read(consocktd, reqouf,MAXREQ); /F Recv */

if (n <= @) return;

write(STDOUT_FILENO, regbuf, n);

print |write(consockfd, regbuf, n); /* echo*/
}
1/30/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 5.49 1/30/2024 ¥ Kubiatowicz CS162 © UCB Spring 2024 Lec 5.50
What Assumptions are we Making? Socket Creation
« Reliable + File systems provide a collection of permanent objects in a structured name space:
— Write to a file => Read it back. Nothing is lost. — Processes open, read/write/close them
— Write to a (TCP) socket => Read from the other side, same. — Files exist independently of processes
— Easy to name what file to open()
+ In order (sequential stream) . Plpgi:g?en;\;ng communication between processes on same (physical) machine
— Write X then write Y => read gets X then read gets Y — Created transiently by a call to pipe()
— Passed from parent to children (descriptors inherited from parent process)
* When ready? « Sockets: two-way communication between processes on same or different
— File read gets whatever is there at the time machine
» Actually need to loop and read until we receive the terminator (\O’) — Two queues (one in each direction)
— Assumes writing already took place — Processes can be on separate machines: no common ancestor
_ Blocks if nothing has arrived yet — How do we name the objects we are opening?
— How go these completely independent programs know that the other wants to “talk” to
them?
1/30/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 5.51 1/30/2024

Kubiatowicz CS162 © UCB Spring 2024 Lec 5.52

Namespaces for Communication over IP

* Hostname
— www.eecs.berkeley.edu
* |P address
—128.32.244 172 (IPv4, 32-bit Integer)

Connection Setup over TCP/IP

Server Side

Server Listening:

1. Server IP addr

2. well-known port,
3. Protocol (TCP/IP)

Client Side

Connection request:
1. Client IP addr

2. Client Port

3. Protocol (TCP/IP)

. .- - ; new
—2607:f140:0:81::f (IPv6, 128-bit Integer) ¥ socket
* Port Number ;
« — » < connection
—0-1023 are “well known” or “system” ports , ‘
» Superuser privileges to bind to one i ,J\j
— 1024 — 49151 are “registered” ports (registry) + Special kind of socket: server socket
» Assigned by IANA for specific services — Has file descriptor
—49152-65535 (215+2' to 2'6-1) are “dynamic” or “private” — Can't read or write
» Automatically allocated as “ephemeral ports” » Two operations:
1. listen(): Start allowing clients to connect
2. accept(): Create a new socket for a particular client
1/30/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 5.53 1/30/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 5.54
Connection Setup over TCP/IP Web Server
Client Side Server Side
Server Listening:
Connection request: _ _ 1. Server IP addr
1. Client IP addr 7\(\/ R 2. well-known port,
2. Client Port 3. Protocol (TCP/IP)
3. Protocol (TCP/IP) new = Reques +
socket
connection @ ﬁ@x\/fé
S S Wé f Reply
» 5-Tuple identifies each connection: « Often, Client Port “randomly” assigned .
1. Source IP Address Client Web Server

— Done by OS during client socket setup
+ Server Port often “well known”

— 80 (web), 443 (secure web), 25
(sendmail), etc

— Well-known ports from 0—1023

Kubiatowicz CS162 © UCB Spring 2024

Destination IP Address
Source Port Number
Destination Port Number
Protocol (always TCP here)

Bl i

1/30/2024 Lec 5.55

1/30/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 5.56

Client-Server Models

Client 1

‘/ Client 2\‘

‘/ Client n \

* File servers, web, FTP, Databases, ...
* Many clients accessing a common server

Simple Web Server

Server
Create Server Socket

Client

Bind it to an Address

Create Client Socket
(host:port)

Connect it to server (host:port) oo > Listen for Connection

~

Ss N

~

| RN
~~ Accept syscall() ;
N -

Connection Socket&=» Connection Sockef/ -

I,' ywrite request - - - - - - - - > read request ¥ "«
A\

'__sread response <- - — - — - — —— - — — -~ write response « _ _'

|

Close Client Socket Close Connection Socket

Close Server Socket

1/30/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 5.57 1/30/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 5.58
Client Code Client-Side: Getting the Server Address
char *host_name, *port_name; struct addrinfo *lookup_host(char *host_name, char *port) {
struct addrinfo *server;
// Create a socket struct addrinfo hints;
struct addrinfo *server = lookup_host(host_name, port_name); memset(&hints, @, sizeof(hints));
int sock_fd = socket(server->ai_family, server->ai_socktype, hints.ai_family = AF_UNSPEC; /* Includes AF_INET and AF_INET6 */
server->ai_protocol); hints.ai_socktype = SOCK_STREAM; /* Essentially TCP/IP */
// Connect to specified host and port int rv = getaddrinfo(host_name, port_name, &hints, &server);
connect(sock_fd, server->ai_addr, server->ai_addrlen); if (rv 1= 9) {
printf(“getaddrinfo failed: %s\n", gai_strerror(rv));
// Carry out Client-Server protocol return NULL;
run_client(sock_fd); }
return server;
/* Clean up on termination */ }
close(sock_fd);
1/30/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 5.59 1/30/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 5.60

Server Code (v1)

// Create socket to listen for client connections
char *port_name;

struct addrinfo *server =
int server_socket =

setup_address(port_name);

socket(server->ai_family, .
server->ai_socktype, server->ai_protocol);

// Bind socket to specific port

bind(server_socket, server->ai_addr, server->ai_addrlen);
// Start listening for new client connections
listen(server_socket, MAX_QUEUE);

while (1) {
// Accept a new client connection, obtaining a new socket
int conn_socket = accept(server_socket, NULL, NULL);
serve_client(conn_socket);
close(conn_socket);

}

close(server_socket);

1/30/2024

Server Address: Itself (wildcard IP), Passive

struct addrinfo *setup_address(char *port) {
struct addrinfo *server;
struct addrinfo hints;
memset(&hints, @, sizeof(hints));
hints.ai_family = AF_UNSPEC;
hints.ai_socktype = SOCK_STREAM;
hints.ai_flags = AI_PASSIVE;

/* Includes AF_INET and AF_INET6 */
/* Essentially TCP/IP */
/* Set up for server socket */

int rv = getaddrinfo(NULL, port, &hints, &server);
if (rv !=0) {
printf("getaddrinfo failed: %s\n", gai_strerror(rv));
return NULL;

/* No address! (any local IP) */

}

return server;

}

» Accepts any connections on the specified port

Kubiatowicz CS162 © UCB Spring 2024 Lec 5.61 1/30/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 5.62
How Could the Server Protect Itself? Server With Protection (each connection has own process)
« Handle each connection in a separate process Client Server
i . X . . B R Create Server Socket
— This will mean that the logic serving each request will be “sandboxed” away from
the main s.erver process) . Create Client Socket Bind it to an Address
* In the following code, keep in mind: (host:port)
B . . e . . . |)
fork() will duplicate all of the parent’s file d(.asan)tors (i.e. pointers to sockets!) Connect it to server (host:port) - _ » Listen for Connection
— We keep control over accepting new connections in the parent S~ol -
— New child connection for each remote client ">~ Accept syscall()P Y
N -
Connection Socket € »Connection Socket
| Child Parent
Close Listen Socket ;
,” N\ write request - — — - — - — _ _ ~read request - - Close Connection
! . Socket
'__sreadresponse « — - - - — -
Wait for child
Close Client Socket
Close Server Socket
1/30/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 5.63 1/30/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 5.64

Server Code (v2)

// Socket setup code elided..
listen(server_socket, MAX_QUEUE);
while (1) {
// Accept a new client connection, obtaining a new socket
int conn_socket = accept(server_socket, NULL, NULL);
pid_t pid = fork();
if (pid == 0) {
close(server_socket);
serve_client(conn_socket);
close(conn_socket);

How to make a Concurrent Server

e So far, in the server:
— Listen will queue requests
— Buffering present elsewhere
— But server waits for each connection to terminate before servicing the next
» This is the standard shell pattern

» A concurrent server can handle and service a new connection before the
previous client disconnects

exit(0); — Simple — just don’t wait in parent!
} else { — Perhaps not so simple — multiple child processes better not have data races
close(conn_socket); with one another through file system/etc!
wait(NULL);
}
}
close(server_socket);
1/30/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 5.65 1/30/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 5.66
Server With Protection and Concurrency Server Code (v3)
Client Server // Socket setup code elided..
Create Server Socket listen(server_socket, MAX_QUEUE);
Bindi Add while (1) {
Create Client Socket (dgsgggzsn ress // Accept a new client connection, obtaining a new socket
] int conn_socket = accept(server_socket, NULL, NULL);
Connect it to server (host:port) - - - - > Listen for Connection I?id_t . pid = fork();
S~ if (pid == @) {
h ~._Acceptsysca"0P . close(server_socket);
NI serve_client(conn_socket);
Connection Socket € »Connection Socket close(conn_socket);
l Chil(‘i/ \farent exit(a);
Close Listen Socket : } else {
- : < Close Connection
7 uwrite request - - - - - - - - PeSAIBGUSSEREN et close(conn_socket);
'__ read response « - - - - - - //wait(NULL);
}
Close Client Socket Close Server Socket }
close(server_socket);
Kubiatowicz CS162 © UCB Spring 2024 Lec 5.67 1/30/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 5.68

1/30/2024

Faster Concurrent Server (without Protection)

* Spawn a new thread to handle each connection
— Lower overhead spawning process (less to do)

* Main thread initiates new client connections without waiting for previously
spawned threads

* Why give up the protection of separate processes?
— More efficient to create new threads
— More efficient to switch between threads
» Even more potential for data races (need synchronization?)
— Through shared memory structures
— Through file system

1/30/2024 Kubiatowicz CS162 © UCB Spring 2024

Lec 5.69

Server with Concurrency, without Protection
Client

Server
Create Server Socket

Bind it to an Address

Create Client Socket
(host:port)

Connect it to server (host:port) o= > Listen for Connection

So ~o P’ ~
~ Accept syscall() i
\

» Connection Socket
pthread_create

l Spawned Thread/

J “ywrite request - - — - - - - — - ~ read request \‘

'_ _sread response « - - - - - -

-

Connection Socket &

Main Thread
- write response

Close Client Socket Close Server Socket

1/30/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 5.70

Thread Pools: More Later!
* Problem with previous version: Unbounded Threads
— When web-site becomes too popular — throughput sinks

+ Instead, allocate a bounded “pool” of worker threads, representing the
maximum level of multiprogramming

L]

e

Thread Pool

worker(queue) {
while(TRUE) {
con=Dequeue(queue);
if (con==null)

master() {
allocThreads(worker,queue);
while(TRUE) {
con=AcceptCon();

Enqueue(queue,con); sleepOn(queue);
wakeUp(queue); else
} ServicelWebPage(con);
} }

1/30/2024 Kubiatowicz CS162 © JCB Spring 2024

Lec5.71

Conclusion

+ POSIX /O
— Everything is a file!
— Based on the system calls open(), read(), write(), and close()
» Streaming |O: modeled as a stream of bytes
— Most streaming I/O functions start with “f’ (like “fread”)
— Data buffered automatically by C-library function
* Low-level I/O:
— File descriptors are integers
— Low-level I/O supported directly at system call level
» Device Driver: Device-specific code in the kernel that interacts directly with the
device hardware
— Supports a standard, internal interface
— Same kernel I/0 system can interact easily with different device drivers
* File abstraction works for inter-processes communication (local or Internet)
» Socket: an abstraction of a network 1/0O queue (IPC mechanism)

1/30/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 5.72

