C3S162
Operating Systems and
Systems Programming

Lecture 6

Abstractions 4: Sockets, I/O, IPC (finished)

February 1st, 2024
Prof. John Kubiatowicz
http://cs162.eecs.Berkeley.edu



Recall: Connection Setup over TCP/IP
Client Side Server Side

Server Listening:

1. Server IP addr

2. well-known port,
3. Protocol (TCPI/IP)

Connection request:
1. Client IP addr

2. Client Port

3. Protocol (TCP/IP)

« 5-Tuple identifies each connection: + Often, Client Port “randomly” assigned

1. Source IP Address — Done by OS during client socket setup
2. Destination IP Address « Server Port often “well known”

3. Source Port Number _ 80 (web), 443 (secure web), 25

4. Destination Port Number (sendmail), etc

5. Protocol (always TCP here) — Well-known ports from 0—1023

2/1/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 6.2



Recall: Simple Web Server

Client Server
Create Server Socket

Create Client Socket Bind it to an Address
l (host:port)
. v
Connect it to server (host:port) - - - - ____ > Listen for Connection
e ~o - v P’ \\
~ Accept syscall() \;
Connection Socket&=» Connection Socke‘t/ te
,“uwriterequest - - - - - -~ > read request X "
\

‘. _sreadresponse <- - — - — — - — — - — - — write response . _ _'
Close Client Socket Close Connection Socket

Close Server Socket

2/1/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 6.3



2/1/2024

Client Code

char *host _name, *port_name;

// Create a socket

struct addrinfo *server = lookup host(host_name, port_name);

int sock_fd = socket(server->ai_family, server->ai_socktype,
server->ai_protocol);

// Connect to specified host and port
connect(sock_fd, server->ai_addr, server->ai_addrlen);

// Carry out Client-Server protocol
run_client(sock fd);

/* Clean up on termination */
close(sock_fd);

Kubiatowicz CS162 © UCB Spring 2024

Lec 6.4



Client-Side: Getting the Server Address

struct addrinfo *lookup host(char *host_name, char *port) {
struct addrinfo *server;
struct addrinfo hints;
memset(&hints, 0, sizeof(hints));
hints.ai_family = AF_UNSPEC; /* Includes AF_INET and AF_INET6 */
hints.ai_socktype = SOCK_STREAM; /* Essentially TCP/IP */

int rv = getaddrinfo(host_name, port_name, &hints, &server);
if (rv 1= 0) {
printf("getaddrinfo failed: %s\n", gai_strerror(rv));
return NULL;

}

return server;

2/1/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 6.5



2/1/2024

Server Code (v1)

// Create socket to listen for client connections
char *port_name;
struct addrinfo *server = setup_address(port_name);

int server_socket = socket(server->ai_family, .
server->ai_socktype, server->ai_protocol);

// Bind socket to specific port

bind(server_socket, server-»>ai_addr, server-»>ai_addrlen);
// Start listening for new client connections
listen(server_socket, MAX QUEUE);

while (1) {
// Accept a new client connection, obtaining a new socket
int conn_socket = accept(server_socket, NULL, NULL);
serve_client(conn_socket);
close(conn_socket);

}

close(server_socket);

Kubiatowicz CS162 © UCB Spring 2024

Lec 6.6



Server Address: Itself (wildcard IP), Passive

struct addrinfo *setup address(char *port) {
struct addrinfo *server;
struct addrinfo hints;
memset(&hints, O, sizeof(hints));

hints.ai_family = AF_UNSPEC; /* Includes AF_INET and AF_INET6 */
hints.ai_socktype = SOCK_STREAM; /* Essentially TCP/IP */
hints.ai_flags = AI_PASSIVE; /* Set up for server socket */

int rv = getaddrinfo(NULL, port, &hints, &server); /* No address! (any local IP) */
if (rv 1= 0) {

printf("getaddrinfo failed: %s\n", gai_strerror(rv));

return NULL;

}

return server;

« Accepts any connections on the specified port

2/1/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 6.7



How Could the Server Protect ltself?

« Handle each connection in a separate process

— This will mean that the logic serving each request will be “sandboxed” away from
the main server process

* In the following code, keep in mind:
- fork() will duplicate all of the parent’s file descriptors (i.e. pointers to sockets!)
— We keep control over accepting new connections in the parent
— New child connection for each remote client

2/1/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 6.8



Server With Protection (each connection has own process)

Client Server
Create Server Socket

Create Client Socket Bind it to an Address
l (host:port)

Connect it to server (host:port) e > Listen for Connection

~

TS Acce|it syscall() \

Connectlon Socket C———============)Connection Socket
Ch"‘y \farent

v

, uwriterequest - - - — - - _ _
I

'__read response « - — - - — —

!

Close Client Socket

Close Connection
Socket l

Wait for child

Close Server Socket
2/1/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 6.9



Server Code (v2)

// Socket setup code elided..
listen(server_socket, MAX QUEUE);
while (1) {
// Accept a new client connection, obtaining a new socket
int conn_socket = accept(server_socket, NULL, NULL);
pid_t pid = fork();
if (pid == 0) {
close(server_socket);
serve_client(conn_socket);
close(conn_socket);
exit(0);
} else {
close(conn_socket);
wait(NULL);
}

}

close(server_socket);
2/1/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 6.10



How to make a Concurrent Server

« So far, in the server:
— Listen will queue requests
— Buffering present elsewhere

— But server waits for each connection to terminate before servicing the next
» This is the standard shell pattern

* A concurrent server can handle and service a new connection before the
previous client disconnects

— Simple — just don’t wait in parent!

— Perhaps not so simple — multiple child processes better not have data races
with one another through file system/etc!

2/1/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 6.11



Server With Protection and Concurrency

Client Server
Create Server Socket

Create Client Socket Bind it to an Address
l (host:port)
Connect it to server (host:port) c------= > Listen for Connection

~

TS Acce|it syscall()

Connectlon Socket C———============)Connection Socket
Ch"‘y \farent

v

, uwriterequest - - - — - - _ _
I

'__read response « - — - - — —

!

Close Client Socket

Close Connection
Socket

Close Server Socket

2/1/2024 Kubiatowicz CS162 © UCB Spring 2024

Lec 6.12



Server Code (v3)

// Socket setup code elided..
listen(server_socket, MAX QUEUE);
while (1) {
// Accept a new client connection, obtaining a new socket
int conn_socket = accept(server_socket, NULL, NULL);
pid_t pid = fork();
if (pid == 0) {
close(server_socket);
serve_client(conn_socket);
close(conn_socket);
exit(0);
} else {
close(conn_socket);
//wait(NULL);

}

}

close(server_socket);
2/1/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 6.13



Faster Concurrent Server (without Protection)

Spawn a new thread to handle each connection
— Lower overhead spawning process (less to do)

Main thread initiates new client connections without waiting for previously
spawned threads

Why give up the protection of separate processes?
— More efficient to create new threads
— More efficient to switch between threads
Even more potential for data races (need synchronization?)
— Through shared memory structures
— Through file system

2/1/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 6.14



Server with Concurrency, without Protection

Client Server
Create Server Socket

Create Client Socket Bind it to an Address
l (host:port)
Connect it to server (host:port) c------= > Listen for Connection

~

T~ l V. \
~ Accept syscall() Y
N

V -
Connection Socket === Connection Socket

pthread_create
v Spawned Thread \

, uwriterequest - - - — - - — _ _
/

'__/read response « - — - - - —

!

Close Client Socket

Main Thread

Close Server Socket

2/1/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 6.15



Thread Pools: More Later!

* Problem with previous version: Unbounded Threads
— When web-site becomes too popular — throughput sinks

 Instead, allocate a bounded “pool” of worker threads, representing the
maximum level of multiprogramming

Master
/-\ Thread|
e\ \

ananb

Thread Pool
master() { worker(queue) {

allocThreads (worker,queue); while(TRUE) {

while(TRUE) { con=Dequeue(queue);
con=AcceptCon(); if (con==null)
Enqueue(queue,con); sleepOn(queue);
wakeUp(queue); else

} ServicelWebPage(con);

} }

2/1/2024 Kubiatowicz CS162 © JCB Spring 2024 Lec 6.16



Administrivia
Project 1 in full swing! Released Yesterday!

— We expect that your design document will give intuitions behind your designs, not
just a dump of pseudo-code

— Think of this you are in a company and your TA is you manager
Paradox: need code for design document?

— Not full code, just enough prove you have thought through complexities of design
Should be attending your permanent discussion section!

— Discussion section attendance is mandatory, but don’t come if sick!!
» We have given a mechanism to make up for missed sections—see EdStem

Midterm 1: February 15t 8-10PM (Two weeks from today!)
— Fill out conflict request form!

2/1/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 6.17



2/1/2024

Recall: The Process Control Block

» Kernel represents each process as a process
control block (PCB)

— Status (running, ready, blocked, ...)
— Register state (when not ready)

— Process ID (PID), User, Executable, Priority, ...

— Execution time, ...
— Memory space, translation, ...

 Kernel Scheduler maintains a data structure
containing the PCBs

— Give out CPU to different processes
— This is a Policy Decision
« Give out non-CPU resources
— Memory/IO
— Another policy decision

Kubiatowicz CS162 © UCB Spring 2024

process state

process number

program counter

registers

memory limits

list of open files

Process
Control
Block

Lec 6.18



Process-Specific File Descriptor Table inside Kernel

Process
Suppose that we execute
Thread’s . i
Regs Address open(“foo.txt”)
Space and that the result is 3
(Memory)
User Space

Kernel Space

File Descriptors
3

Open File Description

Not shown:
Initially contains 0,
1, and 2 (stdin,

stdout, stderr) \ /

File: foo.txt
Position: 0

2/1/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 6.19



Process-Specific File Descriptor Table inside Kernel

User Space

Kernel Space

Not shown:
Initially contains 0,
1, and 2 (stdin,
stdout, stderr)

2/1/2024

Process
Thread’s
Regs Address
Space
(Memory)

File Descriptors

Open File Description

File: foo.txt

Position: 0

_/

Kubiatowicz CS162 © UCB Spring 2024

Suppose that we execute
open(“foo.txt”)
and that the result is 3

Next, suppose that we execute
read(3, buf, 100)
and that the result is 100

Lec 6.20



Process-Specific File Descriptor Table inside Kernel

User Space

Kernel Space

Not shown:
Initially contains 0,
1, and 2 (stdin,
stdout, stderr)

2/1/2024

Process
Thread’s
Regs Address
Space
(Memory)

File Descriptors

Open File Description

File: foo.txt

Position: 100

_/

Kubiatowicz CS162 © UCB Spring 2024

Suppose that we execute
open(“foo.txt”)
and that the result is 3

Next, suppose that we execute
read(3, buf, 100)
and that the result is 100

Lec 6.21



Process-Specific File Descriptor Table inside Kernel

User Space

Kernel Space

Not shown:
Initially contains 0,
1, and 2 (stdin,
stdout, stderr)

2/1/2024

Process
Thread’s
Regs Address
Space
(Memory)

File Descriptors
3

Open File Description

File: foo.txt

Position: 100

\_ J

Kubiatowicz CS162 © UCB Spring 2024

Suppose that we execute
open(“foo.txt”)
and that the result is 3

Next, suppose that we execute
read(3, buf, 100)
and that the result is 100

Finally, suppose that we execute
close(3)

Lec 6.22



Instead of Closing, let’s fork()!

User Space

Kernel Space

Not shown:
Initially contains 0,
1, and 2 (stdin,
stdout, stderr)

2/1/2024

Process 1
Thread’s
Regs Address
Space
(Memory)

File Descriptors

File descriptor is
copied

Open file
description is
aliased

Open File Description

File: foo.txt
Position: 100

Process 2
Thread’s \
Regs Address
Space
(Memory)

File Descriptors

7

_/

Kubiatowicz CS162 © UCB Spring 2024

Lec 6.23



Open File Description is Aliased

read(3, buf, 100)

User Space

Kernel Space

Not shown:
Initially contains 0,
1, and 2 (stdin,
stdout, stderr)

2/1/2024

Process 1
Thread’s
Regs Address
Space
(Memory)

File Descriptors
3

Open File Description

File: foo.txt

Process 2
Thread’s \
Regs Address
Space
(Memory)

File Descriptors

"

Position: 100

\ J

Kubiatowicz CS162 © UCB Spring 2024

Lec 6.24



Open File Description is Aliased

read(3, buf, 100)

User Space

Kernel Space

Not shown:
Initially contains 0,
1, and 2 (stdin,
stdout, stderr)

2/1/2024

Process 1
Thread’s
Regs Address
Space
(Memory)

File Descriptors
3

Open File Description

File: foo.txt

Process 2
Thread’s \
Regs Address
Space
(Memory)

File Descriptors

"

Position: 200

\ J

Kubiatowicz CS162 © UCB Spring 2024

Lec 6.25



Open File Description is Aliased

read(3, buf, 100)

User Space

Kernel Space

Not shown:
Initially contains 0,
1, and 2 (stdin,
stdout, stderr)

2/1/2024

Process 1
Thread’s
Regs Address
Space
(Memory)

File Descriptors
3

read(3, buf, 100)

Open File Description

File: foo.txt

Process 2
Thread’s \
Regs Address
Space
(Memory)

File Descriptors

"

Position: 200

\- J

Kubiatowicz CS162 © UCB Spring 2024

Lec 6.26



Open File Description is Aliased

read(3, buf, 100)

User Space

Kernel Space

Not shown:
Initially contains 0,
1, and 2 (stdin,
stdout, stderr)

2/1/2024

Process 1
Thread’s
Regs Address
Space
(Memory)

File Descriptors
3

read(3, buf, 100)

Open File Description

File: foo.txt

Process 2
Thread’s \
Regs Address
Space
(Memory)

File Descriptors

"

Position: 300

\- J

Kubiatowicz CS162 © UCB Spring 2024

Lec 6.27



File Descriptor is Copied

Process 1 Process 2
read(3, buf, 100) read(3, buf, 100)
close(3) \
Thread’s Thread’s
Regs Address Regs Address
Space Space
(Memory) (Memory)
User Space

Kernel Space

File Descriptors File Descriptors

Open File Description

3 U
Not shown: File: foo.txt
Initially contains 0, Position: 300 N |
1, and 2 (stdin,

stdout, stderr) \ / \ /

2/1/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 6.28



File Descriptor is Copied

Process 1 Process 2
read(3, buf, 100) read(3, buf, 100)
close(3) \
Thread’s Thread’s
Regs Address + Open file Regs Address
Space description remains Space
(Memory) alive until no file (Memory)
descriptors in any
User Space

process refer to it

Kernel Space

File Descriptors File Descriptors

Open File Description

U
Nc_:t_ shown: _ File: foo.txt

Initially contains 0, Position: 300 N |
1, and 2 (stdin,

stdout, stderr) \ / \ /

2/1/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 6.29



Why is Aliasing the Open File Description a Good Ildea?

« It allows for shared resources between processes

2/1/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 6.30



Example: Shared Terminal Emulator

* When you fork() a process, the parent’s and child’s printf outputs go
to the same terminal

2/1/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 6.31



Example: Shared Terminal Emulator

User Space

Kernel Space

2/1/2024

Process 1
Thread’s
Regs Address
Space
(Memory)

Terminal Emulator

o v A2 — ap ~ 2334

Process 2
Thread’s \
Regs Address
Space
(Memory)

Kubiatowicz CS162 © UCB Spring 2024

Lec 6.32



Example: Shared Terminal Emulator

Process 1 Process 2
close(0) \
Thread’s Thread’s
Regs Address Regs Address
Space Space
(Memory) (Memory)
User Space
Kernel Space -
P File Descriptors ‘ :rerm"fé‘l'E'TIator File Descriptors
0 ' —
1
2

2/1/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 6.33



Example: Shared Terminal Emulator

Process 1 Process 2
close(0) \
Thread’s Thread’s
Regs Address - If one process Regs Address
Space closes stdin (0), it Space
(Memory) remains open in (Memory)
User Space other processes
Kernel Space -
P File Descriptors Term'?ilerTlator File Descriptors
0 ' —
1
2

2/1/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 6.34



Single-Process Pipe Example (not that interesting yet!)

#include <unistd.h>
int main(int argc, char *argv[])
{ Could be useful for
char *msg = "Message in a pipe.\n"; multithreaded processes...
char buf[BUFSIZE];
int pipe fd[2];
if (pipe(pipe_fd) == -1) {
fprintf (stderr, "Pipe failed.\n"); return EXIT_FAILURE;
}
ssize t writelen = write(pipe fd[1], msg, strlen(msg)+1l);
printf("Sent: %s [%1d, %1d]\n", msg, strlen(msg)+1l, writelen);

ssize t readlen = read(pipe_fd[©], buf, BUFSIZE);
printf("Rcvd: %s [%1d]\n", msg, readlen);

close(pipe_fd[0]);
close(pipe_fd[1]);

2/1/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 6.35



Example: Pipes Between Processes

] Parent Process Child Process
pipe(...) \
'For'k( ) Thread’s Thread’s

Regs Address Regs Address
Space Space
(Memory) (Memory)

User Space

Kernel Space

File Descriptors ‘ _ Eile Descriptors

b A

2/1/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 6.36




Example: Channel from Parent = Child

pipe(...)
fork()
close(3)

User Space
Kernel Space

2/1/2024

Parent Process

Thread’s
Regs Address
Space
(Memory)

File Descriptors

4 /-

\- /

)
o]

Child Process

\

Thread’s
Regs Address
Space
(Memory)

File Descriptors
3

—

Kubiatowicz CS162 © UCB Spring 2024

close(4)

Lec 6.37



2/1/2024

Inter-Process Communication (IPC): Parent = Child

// continuing from earlier
pid t pid = fork();
if (pid < @) {

}

fprintf (stderr, "Fork failed.\n");
return EXIT_FAILURE;

if (pid != @) {

close(pipe_fd[@]); // Not using this descriptor!

ssize t writelen = write(pipe_fd[1], msg, msglen);
printf("Parent: %s [%1d, %1d]\n", msg, msglen, writelen);
else {

close(pipe_fd[1]); // Not using this descriptor!

ssize t readlen = read(pipe_fd[©], buf, BUFSIZE);
printf("Child Rcvd: %s [%1d]\n", msg, readlen);

Kubiatowicz CS162 © UCB Spring 2024

Lec 6.38



Recall: CPU Switch From Process A to Process B

H process P,

operating system process P,

Lxecuting u

-idle

User Mode

interrupt or system call

¥
save state into PCB,
. idle
reload state from PCB,
interrupt or system call executingf
h 4 A
save state into PCB;
idle
reload state from PCB,

Kernel/System Mode | User Mode

2/1/2024 Kubiatowicz CS162 © UCB Spring 2024

Lec 6.39



Lifecycle of a Process

admitted interrupt ' terminate

I/O or event completion schedumermspatch I/0O or event wait

« As a process executes, it changes state:
—new: The process is being created
—ready: The process is waiting to run
—running: Instructions are being executed
— waiting: Process waiting for some event to occur
—terminated: The process has finished execution

2/1/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 6.40



2/1/2024

Process Scheduling

i ready queue » CPU
I/O queue - I/O request [«
time slice «
expired
child fork a P
executes child A
interrupt wait for an «
Q:curs interrupt

« PCBs move from queue to queue as they change state
— Decisions about which order to remove from queues are

Scheduling decisions

— Many algorithms possible (few weeks from now)

Kubiatowicz CS162 © UCB Spring 2024

Lec 6.41



Ready Queue And Various |/O Device Queues

* Process not running = PCB is in some scheduler queue

— Separate queue for each device/signal/condition

— Each queue can have a different scheduler policy

Ready
Queue

USB
Unit ©

Disk
Unit ©

Disk
Unit 2

Ether
Netwk ©

2/1/2024

Head * Link » Link Link
Tail Registers Registers Registers
Other Other Other
Head [ State State State
Tail = PCB, PCB, PCB,
Head * Link » Link [/
Tail Registers egisterd =
Other Other
Head [ State State
Tail = PCB, PCB,
_ Link
Head — ' -
- Registers =
Tail Other
State
PCBg

Kubiatowicz CS162 © UCB Spring 2024

Lec 6.42



Recall: Modern Process with Threads

» Thread: a sequential execution stream within process
(Sometimes called a “Lightweight process”)

— Process still contains a single Address Space
— No protection between threads

« Multithreading: a single program made up of a number of
different concurrent activities

— Sometimes called multitasking, as in Ada ...

« Why separate the concept of a thread from that of a process?
— Discuss the “thread” part of a process (concurrency)
— Separate from the “address space” (protection)
— Heavyweight Process = Process with one thread

2/1/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 6.43



Recall: Single and Multithreaded Processes

code data files code data files
registers stack registers ||| registers ||| registers
stack stack stack
thread — ; ; ; ;4—— thread
single-threaded process multithreaded process

* Threads encapsulate concurrency: “Active” component

» Address spaces encapsulate protection: “Passive” part
— Keeps buggy program from trashing the system

« Why have multiple threads per address space?

2/1/2024 Kubiatowicz CS162 © UCB Spring 2024

Lec 6.44



Recall: Thread State

» State shared by all threads in process/address space
— Content of memory (global variables, heap)
— 1/O state (file descriptors, network connections, etc)

» State “private” to each thread
— Kept in TCB = Thread Control Block
— CPU registers (including, program counter)
— Execution stack — what is this?

» Execution Stack
— Parameters, temporary variables

— Return PCs are kept while called procedures are executing

2/1/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 6.45



2/1/2024

Shared vs. Per-Thread State

Shared
State

Heap

Global
Variables

Code

Per—Thread

State

Thread Control
Block (TCB)

Stack
Information

Saved
Registers

Thread
Metadata

Kubiatowicz CS162 © UCB Spring 2024

Per—Thread
State

Thread Control
Block (TCB)

Stack
Information

Saved
Registers

Thread
Metadata




Memory Footprint: Two-Threads

* |f we stopped this program and examined it with a
debugger, we would see

— Two sets of CPU registers
— Two sets of Stacks

e Questions:

— How do we position stacks relative to
each other?

— What maximum size should we choose
for the stacks?

— What happens if threads violate this?
— How might you catch violations?

aoedg ssalppy

Global Data

Code

2/1/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 6.47



Recall: Use of Threads
» Version of program with Threads (loose syntax):

main () {
ThreadFork (ComputePI, “pi.txt” ));
ThreadFork (PrintClassList, Y“classlist.txt”));

 What does ThreadFork() do?
— Start independent thread running given procedure
* What is the behavior here?

— Now, you would actually see the class list
— This should behave as if there are two separate CPUs

CPU1  CPU2 CPU1 CPU2 CPU1 CPU2

Time —p

2/1/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 6.48



The Core of Concurrency: the Dispatch Loop

« Conceptually, the scheduling loop of the operating system looks as
follows:

Loop A
RunThread();
ChooseNextThread();
SaveStateOfCPU(curTCB);
LoadStateOfCPU(newTCB);

¥

» This is an infinite loop

— One could argue that this is all that the OS does
« Should we ever exit this loop???

—When would that be?

2/1/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 6.49



Conclusion

Recall: Everything is a file!
- open(), read(), write(), and close() used for wide variety of 1/O:
— Devices (terminals, printers, etc.)
— Regular files on disk
— Networking (sockets)
— Local interprocess communication (pipes, sockets)
Processes have two parts
— Threads (Concurrency)
— Address Spaces (Protection)

Various textbooks talk about processes
— When this concerns concurrency, really talking about thread portion of a process
— When this concerns protection, talking about address space portion of a process

Stack is essential part of computation
— Every thread has two stacks: user-level (in address space) and kernel

— The kernel stack + support often called the “kernel thread”
2/1/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 6.50



