CS162
Operating Systems and
Systems Programming

Lecture 8

Synchronization 2:
Lock Implementation, Atomic Instructions,
Futex, Need for Higher-Level Locking

February 8, 2024
Prof. John Kubiatowicz
http://cs162.eecs.Berkeley.edu



Recall: Multiple Threads on One CPU/core

« Consider the following code blocks:

Thread S Thread T
proc A() {
B(); < A A
} 5 B(while) B(while)
proc B() { o
while (TRUE) { v yield yield
yield(); g

}
}

» Suppose we have 2 threads:
—Threads Sand T

» Kernel stack contains pointers to all state

and can be placed on any queue: ' ,
. . Thread T's switch returns to Thread S
— Ready queue — available to run again

. , . . [ Thread T on Ready queue,
— Some wait queue — won'’t run again until Thread S is R :
condition resolved and back on ready queue read S is Running ]

2/8/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 8.2

<




Recall: Fix banking problem with Locks!

« |dentify critical sections (atomic instruction sequences) and add locking:
Deposit(acctIld, amount) {

acquire(&mylock) // Wait if someone else in critical section!
acct = GetAccount(actld);
acct->balance += amount; Critical Section
StoreAccount(acct);
release(&mylock) // Release someone into critical section
} Thread B
Thread A _‘\\\ f Thread C
acquire(&mylock) Threads serialized by lock
Thread B | Critical section through critical sectlor.L
release(&mylock) Only one thread at a time
Thread B

* Must use SAME lock (mylock) with all of the methods (Withdraw, etc...)
— Shared with all threads!

2/8/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 8.3



2/8/2024

Today’s Motivating Example: “Too Much Milk”

« Great thing about OS’s — analogy between
problems in OS and problems in real life

— Help you understand real life problems better
— But, computers are much stupider than people

« Example: People need to coordinate:

Time Person A Person B

3:00 Look in Fridge. Out of milk

3:05 Leave for store

3:10 Arrive at store Look in Fridge. Out of milk
3:15 Buy milk Leave for store

3:20 Arrive home, put milk away Arrive at store

3:25 Buy milk

3:30 Arrive home, put milk away

Kubiatowicz CS162 © UCB Spring 2024

Lec 8.4



Solve with a lock?

« Recall: Lock prevents someone from doing something ro
— Lock before entering critical section
— Unlock when leaving
— Wait if locked
» Important idea: all synchronization involves waiting
« For example: fix the milk problem by putting a key on the refrigerator
— Lock it and take key if you are going to go buy milk
— Fixes too much: roommate angry if only wants OJ

&

« Of Course — We don’t know how to make a lock yet

— Let’s see if we can answer this question!
2/8/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 8.5




Too Much Milk: Correctness Properties

* Need to be careful about correctness of concurrent programs, since
non-deterministic

— Impulse is to start coding first, then when it doesn’t work, pull hair out
— Instead, think first, then code
— Always write down behavior first

« What are the correctness properties for the “Too much milk”
problem???

— Never more than one person buys
— Someone buys if needed

 First attempt: Restrict ourselves to use only atomic load and store
operations as building blocks

2/8/2024 Kubiatowicz CS162 © UCB Spring 2024

Lec 8.6



Too Much Milk: Solution #1

« Use a note to avoid buying too much milk:
— Leave a note before buying (kind of “lock™)
— Remove note after buying (kind of “unlock”)
— Don’t buy if note (wait)
. Stupp_o§e a computer tries this (remember, only memory read/write are
atomic):

if (noMilk) {
if (noNote) {
leave Note;
buy milk;
remove note;

¥

}

2/8/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 8.7



Too Much Milk: Solution #1

« Use a note to avoid buying too much milk:
— Leave a note before buying (kind of “lock™)
— Remove note after buying (kind of “unlock”)
— Don’t buy if note (wait)

« Suppose a computer tries this (remember, only memory read/write are

atomic):
Thread A Thread B
if (noMilk) { f (noMiLK) {
1 noMl
if (noNote) {

if (noNote) {
leave Note;

buy Milk;
remove Note;
}
}
leave Note;
buy Milk;
remove Note;

}
}

Kubiatowicz CS162 © UCB Spring 2024

Lec 8.8



Too Much Milk: Solution #1

Use a note to avoid buying too much milk:
— Leave a note before buying (kind of “lock™)
— Remove note after buying (kind of “unlock”)
— Don’t buy if note (wait)
Suppose a computer tries this (remember, only memory read/write are

atomic):
if (noMilk) {
if (noNote) {
leave Note;
buy milk;
remove note;
}
* Result?

— Still too much milk but only occasionally!

— Thﬁgad can get context switched after checking milk and note but before buying
milk!

Solution makes problem worse since fails intermittently
— Makes it really hard to debug...

— Must work despite what the dispatcher does!
2/8/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 8.9



Too Much Milk: Solution #1774

» Clearly the Note is not quite blocking enough
— Let’s try to fix this by placing note first
* Another try at previous solution:

leave Note;

if (noMilk) A
if (noNote& {

buy milk;

}

}

remove Note;

« What happens here?

— Well, with human, probably nothing bad
— With computer: no one ever buys milk

2/8/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 8.10



Too Much Milk Solution #2

How about labeled notes?
— Now we can leave note before checking
Algorithm looks like this:

Thread A Thread B

leave note A; leave note B;

if (noNote B) { if (noNoteA) {
if (noMilk) { if (noMilk) {

buy Milk; buy Milk;

} }

} }

remove note A; remove note B;

Does this work?

Possible for neither thread to buy milk

— Context switches at exactly the wrong times can lead each to think that
the other is going to buy

Really insidious:
— Extremely unlikely this would happen, but will at worse possible time
— Probably something like this in UNIX

2/8/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 8.11



Too Much Milk Solution #2: problem!

* I’'m not getting milk, You’re getting milk
» This kind of lockup is called “starvation!”

2/8/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 8.12



Too Much Milk Solution #3

Here is a possible two-note solution:

Thread A Thread B

leave note A; leave note B;

while (note B) {\\X if (noNote A) {\\Y
do nothing; if (noMilk) {

} buy milk;

if (noMilk) { }
buy milk; }

} remove note B;

remove note A;

Does this work? Yes. Both can guarantee that:

— It is safe to buy, or

— Other will buy, ok to quit
At X:

— If no note B, safe for A to buy,

— Otherwise wait to find out what will happen
AtY:

— If no note A, safe for B to buy

— Otherwise, A is either buying or waiting for B to quit
2/8/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 8.13



Case 1

 “leave note A” happens before “if (noNote A)”

leave note A; ha eneq leave note B;

while (note B) {\\ \\EE%;§-\, if (noNote A) {\\Y
do nothing; if (noMilk) {

}s buy milk;

}
}

remove note B;

if (noMilk) {
buy milk; }
}

remove note A;

2/8/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 8.14



Case 1

 “leave note A” happens before “if (noNote A)”

leave note A; ha eneq leave note B;

while (note B) {\\ \‘EE%EE“‘* if (noNote A) {\\Y
do nothing; if (noMilk) {

}s buy milk;

}
}

remove note B;

if (noMilk) {
buy milk; }
}

remove note A;

2/8/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 8.15



Case 1

 “leave note A” happens before “if (noNote A)”

leave note A; ha eneq leave note B;
while (note B) {\\ \\EE%;£-‘, if (noNote A) {\\Y

do nothing; if (noMilk) {
}s buy milk;
| Wait for } }
 hote B to

lbe removed remove note B;

if (noMilk) {
buy milk; }

—
—
—
—
-
—

}

remove note A;

2/8/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 8.16



Case 2

 “if (noNote A)” happens before “1eave note A’

leave note B;

“appe“ed if (noNote A) {\\Y
leave note A; «’1§§6ﬁ;/” if (noMilk) {
while (note B) {\\X buy milk;

do nothing; }
}s }

remove note B;

if (noMilk) {
buy milk; }
}

remove note A;

2/8/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 8.17



Case 2

 “if (noNote A)” happens before “1eave note A’

leave note B;

“appe“ed if (noNote A) {\\Y
leave note A; «’1§§6ﬁ;//’ A (nehibdio)
while (note B) {\\X buy milk;

do nothing; }
}s }

remove note B;

if (noMilk) {
buy milk; }
}

remove note A;

2/8/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 8.18



Case 2

 “if (noNote A)” happens before “1eave note A’

leave note B;

“appe“ed if (noNote A) {\\Y
leave note A; «’1§§3ﬁ;”’ if (noMilk) {

while (note B) {\\X buy milk;
do nothing; ; }
¥ Wit for _ .~ remove note B;
I'note B to -

 be removed, - ©
if (noMilk) {
buy milk; }
}

remove note A;

2/8/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 8.19



This Generalizes to n Threads...

- Leslie Lamport’s “Bakery g nd S.11. Foller. Editors
Algorithm” (1974) A New Solution of |
Dijkstra’s Concurrent
Programming Problem

Leslie Lamport _
Massachusetts Computer Associates, Inc.

A simple solution to the mutual exclusion problem is
presented which allows the system to continue to operate

2/8/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 8.20



Solution #3 discussion

« Our solution protects a single “Critical-Section” piece of code for each
thread:

if (noMilk) {
buy milk;
}

« Solution #3 works, but it's really unsatisfactory
— Really complex — even for this simple an example
» Hard to convince yourself that this really works
— A’s code is different from B’s — what if lots of threads?
» Code would have to be slightly different for each thread
— While A is waiting, it is consuming CPU time
» This is called “busy-waiting”
* There’s got to be a better way!
— Have hardware provide higher-level primitives than atomic load & store
— Build even higher-level programming abstractions on this hardware support

2/8/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 8.21



Too Much Milk: Solution #47

* Recall our target lock interface:
- acquire(&milklock) — wait until lock is free, then grab
- release(&milklock) — Unlock, waking up anyone waiting

— These must be atomic operations — if two threads are waiting for the lock
and both see it’s free, only one succeeds to grab the lock

* Then, our milk problem is easy:
acquire(&milklock);
if (nomilk)
buy milk;
release(&milklock);

2/8/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 8.22



Where are we going with synchronization?

« We are going to implement various higher-level synchronization
primitives using atomic operations

— Everything is pretty painful if only atomic primitives are load and store
— Need to provide primitives useful at user-level

2/8/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 8.23



Administrivia

« Midterm Next Thursday (February 15, 8-10pm)!
— No class on day of midterm (extra office hours during class time)
— Topics, lectures, and assignments up to an including next Tuesday
— Closed book, one page of handwritten notes allowed

* Project 1 Design Document Due Date Saturday

* Project 1 Design reviews upcoming

— High-level discussion of your approach
» What will you modify?
» What algorithm will you use?
» How will things be linked together, etc.
» Do not need final design (complete with all semicolons!)

— You will be asked about testing
» Understand testing framework
» Are there things you are doing that are not tested by tests we give you?

2/8/2024 Kubiatowicz CS162 © UCB Spring 2024

Lec 8.24



Back to: How to Implement Locks?

 Lock: prevents someone from doing something

— Lock before entering critical section and (a’!

before accessing shared data
— Unlock when leaving, after accessing shared data
— Wait if locked

» Important idea: all synchronization involves waiting
» Should sleep if waiting for a long time

« Atomic Load/Store: get solution like Milk #3
— Pretty complex and error prone

 Hardware Lock instruction
—Is this a good idea?
—What about putting a task to sleep?
» What is the interface between the hardware and scheduler?
— Complexity?
» Done in the Intel 432

» Each feature makes HW more complex and slow
2/8/2024 Kubiatowicz CS162 © UCB Spring 2024

Lec 8.25



Naive use of Interrupt Enable/Disable

* How can we build multi-instruction atomic operations?
— Recall: dispatcher gets control in two ways.
» Internal: Thread does something to relinquish the CPU
» External: Interrupts cause dispatcher to take CPU
— On a uniprocessor, can avoid context-switching by:
» Avoiding internal events (although virtual memory tricky)
» Preventing external events by disabling interrupts

« Consequently, naive Implementation of locks:

LockAcquire { disable Ints; }
LockRelease { enable Ints; }

* Problems with this approach:

— Can’t let user do this! Consider following:

LockAcquire();
While(TRUE) {;}

— Real-Time system—no guarantees on timing!
» Critical Sections might be arbitrarily long |

— What happens with I/O or other important events?
» “Reactor about to meltdown. Help?”

2/8/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 8.26



Better Implementation of Locks by Disabling Interrupts

« Key idea: maintain a lock variable and impose mutual
exclusion only during operations on that variable

int value = FREE; ‘@

Acquire() { Release() {

disable interrupts; disable interrupts;

if (value == BUSY) { if (anyone on wait queue) {
put thread on wait queue; take thread off wait queue
Go to sleep(); Place on ready queue;
// Enable interrupts?  else {

} else { } value = FREE;

) value = BUSY; enable interrupts;

}

enable interrupts;

}

2/8/2024 Kubiatowicz CS162 © UCB Spring 2024

Lec 8.27



2/8/2024

New Lock Implementation: Discussion

« Why do we need to disable interrupts at all?

— Avoid interruption between checking and setting lock value.
— Prevent switching to other thread that might be trying to acquire lock!
— Otherwise two threads could think that they both have lock!

Acquire() {
disable interrupts;
if (value == BUSY) { )
put thread on wait queue;

Go to sleep();

} else {
value = BUSY;

} |/
enable interrupts;

}

* Note: unlike previous solution, this “meta-"critical section is very short
— User of lock can take as long as they like in their own critical section:

doesn’t impact global machine behavior

— Critical interrupts taken in time!
Kubiatowicz CS162 © UCB Spring 2024

“Meta_”

// Enable interrupts? >- CritiCal

Section

Lec 8.28



What about Interrupt Re-enable in Going to Sleep?

« What about re-enabling ints when going to sleep?
Acquire() {
disable interrupts;
if (value == BUSY) {
put thread on wait queue;
Go to sleep();

} else {
value = BUSY;
}
enable interrupts;

}

2/8/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 8.29



What about Interrupt Re-enable in Going to Sleep?

« What about re-enabling ints when going to sleep?
Acquire() {
disable interrupts;
if (value == BUSY) {
put thread on wait queue;
Go to sleep();

Enable Position?

} else {
value = BUSY;
}
enable interrupts;

}
« Before Putting thread on the wait queue?

2/8/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 8.30



What about Interrupt Re-enable in Going to Sleep?

« What about re-enabling ints when going to sleep?
Acquire() {
disable interrupts;
if (value == BUSY) {
put thread on wait queue;
Go to sleep();
} else {
value = BUSY;

Enable Position?

}

enable interrupts;

}
« Before Putting thread on the wait queue?

— Release can check the queue and not wake up thread

2/8/2024 Kubiatowicz CS162 © UCB Spring 2024

Lec 8.31



What about Interrupt Re-enable in Going to Sleep?

« What about re-enabling ints when going to sleep?
Acquire() {
disable interrupts;
if (value == BUSY) {
put thread on wait queue;
Go to sleep();
} else {
value = BUSY;

Enable Position?

}

enable interrupts;

}
« Before Putting thread on the wait queue?

— Release can check the queue and not wake up thread
« After putting the thread on the wait queue

2/8/2024 Kubiatowicz CS162 © UCB Spring 2024

Lec 8.32



What about Interrupt Re-enable in Going to Sleep?

« What about re-enabling ints when going to sleep?
Acquire() {
disable interrupts;
if (value == BUSY) {
put thread on wait queue;
Go to sleep();
} else {
value = BUSY;

Enable Position?

}

enable interrupts;

}
« Before Putting thread on the wait queue?

— Release can check the queue and not wake up thread
« After putting the thread on the wait queue

— Release puts the thread on the ready queue, but the thread
still thinks it needs to go to sleep

— Misses wakeup and still holds lock (deadlock!)

2/8/2024 Kubiatowicz CS162 © UCB Spring 2024

Lec 8.33



What about Interrupt Re-enable in Going to Sleep?

« What about re-enabling ints when going to sleep?
Acquire() {
disable interrupts;
if (value == BUSY) {
put thread on wait queue;
Go_to sleep();
} else {
value = BUSY;

Enable Position?

}

enable interrupts;

}
« Before Putting thread on the wait queue?

— Release can check the queue and not wake up thread
« After putting the thread on the wait queue

— Release puts the thread on the ready queue, but the thread
still thinks it needs to go to sleep

— Misses wakeup and still holds lock (deadlock!)

« Want to put it after sleep(). But — how?
2/8/2024 Kubiatowicz CS162 © UCB Spring 2024

Lec 8.34



2/8/2024

How to Re-enable After Sleep()?

* In scheduler, since interrupts are disabled when you call

sleep:
— Responsibility of the next thread to re-enable ints

— When the sleeping thread wakes up, returns to acquire and
re-enables interrupts

Thread A Thread B

disabié ints

sleep %}
Swi sleep return
ltch enable ints

texi disable int
on

ji———“’—‘ sleep

sleep return “gyitch
enable ints

Kubiatowicz CS162 © UCB Spring 2024

Lec 8.35



In-Kernel Lock: Simulation

Value: O || waiters | owner READY

Running
INIT
Thr'ead A int value = 0;

quire() {
. @ disable interrupts;
lock.Acquire ()~ if (value == 1) {

= put thread on wait-queue;
critical section; go to sleep() //??
} else {
value = 1;
}

enable interrupts;

}

lock.Release() ;

Release () {

disable interrupts;

if anyone on wait queue {
take thread off wait-queue
Place on ready queue;

} else {
value = 0;

}

enable interrupts;

}

2/8/2024 Kubiatowicz CS162 © UCB Spring 2024

Ready
Thread B

lock.Acquire() ;
critical section;

lock.Release() ;

Lec 8.36



In-Kernel Lock: Simulation

. Value: 1 || waiters | owner READY
7 ~
/ S~ /
Running =~ T---_ -7 Read
ping INIT —~ ~————~ - Y

Thread A int value = 0; Thread B

qulre() {
. disable interrupts; . )

lock.Acquire ( if (value == 1) { lock.Acquire() ;

= put thread on wait-queue; =

critical sectigon; go to sleep() //?? critical section;
} else { .

lock Release() ; value = 1; lock.Release() ;

. enable interrupts;

Release () {

disable interrupts;

if anyone on wait queue {
take thread off wait-queue
Place on ready queue;

} else {
value = 0;

}

enable interrupts;

2/8/2024 Kubiatowicz CS162 © UCB Spring 2024

Lec 8.37



In-Kernel Lock: Simulation

. Value: 1 || waiters | owner READY
' ~ A
/ S~ /
Reming @~ To--_ - Ra
ngy\g INIT =~~~ ——— _ nriyug
Thread A € int value = 0; Thread B
——?
quxre() { e
(:)dlsable 1nterrggt$—” . )
lock.Acquire ()/ if (valye—-‘ -1y { lock.Acquire() ;
__—1nﬁ:thread on wait-queue; =
crltlcal si tion.. @7~ go to sleep() //?? critical section;
- } else { .
lock Release() ; value = 1; lock.Release() ;

() enable interrupts;

Release () {

disable interrupts;

if anyone on wait queue {
take thread off wait-queue
Place on ready queue;

} else {
value = 0;

}

enable interrupts;

2/8/2024 Kubiatowicz CS162 © UCB Spring 2024

Lec 8.38



In-Kernel Lock: Simulation

. Value: 1 || waiters | owner READY
7 ~ \
/ S~
Renping @~ - --_ ety g
anging RN g
Thread A (€ int value = 0; Thread B

quire() { 1
disable int
lock.Acquire ()~ O i;S?vaiy;f-:£§%B{ lock.Acquire() ;

_.-Put” thread on wait-queue;

critical sectioni.-- _go_to-sleep()~772? critical section;
c@-=--"1"" } else {
value = 1; lock.Release() ;

lock.Release() ; )

O enable interrupts;
}

Release () {
disable interrupts;
if anyone on wait queue {
take thread off wait-queue
Place on ready queue;
} else {
value = 0;

}

enable interrupts;

2/8/2024 Kubiatowicz CS162 © UCB Spring 2024

Lec 8.39



In-Kernel Lock: Simulation

o Value: 1 || waiters | owner READY
e ~
/ S~ VAN
Running ~  ~T---_ it
fing INIT -~ “Ready
Thread A int value = 0; Thread B
Recquire () { -=="
) ’ () disable interru ) )
lock.Acquire (), if (va}ye_-=’f) { lock.Acquire() ;
e _.-Put” thread on wait-queue; o
critical s ctioni--- - _go_to-sleep()~772? critical section;
Clo=w===T""} else {

value = 1; lock.Release() ;

}
O enable interrupts;

}

lock.Release() ;

Release () {
disable interrupts;
if anyone on wait queue {
l take thread off wait-queue
Place on ready queue;
} else {
value = 0;
}
@ cenable interrupts;

}

2/8/2024 Kubiatowicz CS162 © UCB Spring 2024

Lec 8.40



In-Kernel Lock: Simulation

Value: 1 || waiters owner. READY

RMQ INIT

Thr'ead A €« int value = 0;

/E quize() {
. disable interru
lock.Acquire ()~ <> if (valye_-‘ frB{

_—1nﬁ:thread on w t queue;
___99_ Lo _s-Lee'p-(') l

critical sectiopi.-- l critical section;

-
o o e

. e } else { ,¢¢
lock.Release() ;

value,z 1;
/

lock.Release() ;

’
O;eﬁable interrupts;g@
~

Release () {
disable interrupts;
if anyone on wait queue {
l take thread off wait-queue
Place on ready queue;
} else {
value = 0;
}
() enable interrupts;

}

2/8/2024 Kubiatowicz CS162 © UCB Spring 2024

Lec 8.41



Atomic Read-Modify-Write Instructions

* Problems with previous solution:
— Can't give lock implementation to users
— Doesn’t work well on multiprocessor

» Disabling interrupts on all processors requires messages and would be
very time consuming

» Alternative: atomic instruction sequences
— These instructions read a value and write a new value atomically
— Hardware is responsible for implementing this correctly
» on both uniprocessors (not too hard)
» and multiprocessors (requires help from cache coherence protocol)

— Unlike disabling interrupts, can be used on both uniprocessors and
multiprocessors

2/8/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 8.42



Examples of Read-Modify-Write

o test&set (&address) { /* most architectures */
result = M[address]; // return result from “address” and
M[address] = 1; // set value at “address” to 1
return result;
}
e swap (&address, register) { /* x86 */
temp = M[address]; // swap register’s value to
M[address] = register; // value at “address”
register = temp; // value from “address” put back to register
return temp; // value from “address” considered return from swap
}

e compare&swap (&address, regl, reg2) { /* x86 (returns old value), 68000 */
if (regl == M[address]) { // If memory still == regl,

M[address] = reg2; // then put reg2 => memory
return success;
} else { // Otherwise do not change memory
return failure;
}
}
e load-linked&store-conditional(&address) { /* R4000, alpha */
loop:
11 rl1, M[address];
movi r2, 1; // Can do arbitrary computation

sc r2, M[address];
beqz r2, loop;
2/8/2024 } Kubiatowicz CS162 © UCB Spring 2024 Lec 8.43



Using of Compare&Swap for queues

e compare&swap (&address, regl, reg2) { /* x86, 68000 */

if (regl == M[address]) {
M[address] = reg2;
return success;

} else {
return failure;

}

}

Here is an atomic add to linkedlist function:

addToQueue(&object) {
do { // repeat until no conflict
1d r1, M[root] // Get ptr to current head
st rl, M[object] // Save link in new object
} until (compare&swap(&root,rl,object));

root /’I next

next

New
Object
2/8/2024 Kubiatowicz CS162 © UCB Spring 2024

\ 4

next

Lec 8.44



Implementing Locks with test&set
« Simple lock that doesn’t require entry into the kernel:

// (Free) Can access this memory location from user space!
int mylock = @; // Interface: acquire(&mylock);
// release(&mylock);
acquire(int *thelock) {
while (test&set(thelock)); // Atomic operation!

}
release(int *thelock) {

*thelock = 0; // Atomic operation!
}

« Simple explanation:

— If lock is free, test&set reads 0 and sets lock=1, so lock is now busy.
It returns 0 so while exits.

— If lock is busy, test&set reads 1 and sets lock=1 (no change)
It returns 1, so while loop continues.

— When we set thelock = 0, someone else can get lock.
« Busy-Waiting: thread consumes cycles while waiting

— For multiprocessors: every test&set() is a write, which makes value ping-pong around in

cache (using lots of network BW)
2/8/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 8.45



Problem: Busy-Waiting for Lock

Positives for this solution
— Machine can receive interrupts
— User code can use this lock
— Works on a multiprocessor
Negatives
— This is very inefficient as thread will consume cycles waiting
— Waiting thread may take cycles away from thread holding lock (no one wins!)

— Priority Inversion: If busy-waiting thread has higher priority than thread holding lock
= no progress!

Priority Inversion problem with original Martian rover

For higher-level synchronization primitives (e.g. semaphores or monitors),
waiting thread may wait for an arbitrary long time!
— Thus even if busy-waiting was OK for locks, definitely not ok for other primitives
— Homework/exam solutions should avoid busy-waiting!

2/8/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 8.46



Multiprocessor Spin Locks: test&test&set

» A better solution for multiprocessors:

// (Free) Can access this memory location from user space!
int mylock = @; // Interface: acquire(&mylock);

// release(&mylock);

acquire(int *thelock) {

do {

while(*thelock); // Wait until might be free (quick check/test!)

} while(test&set(thelock)); // Atomic grab of lock (exit if succeeded)
}
release(int *thelock) {

*thelock = 0; // Atomic release of lock
}

« Simple explanation:
— Wait until lock might be free (only reading — stays in cache)
— Then, try to grab lock with test&set
— Repeat if fail to actually get lock
 [ssues with this solution:
— Busy-Waiting: thread still consumes cycles while waiting
» However, it does not impact other processors!

2/8/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 8.47



Better Locks using test&set

« Can we build test&set locks without busy-waiting?
— Mostly. Idea: only busy-wait to atomically check lock value
— 1int guard = 0; // Global Variable!

‘gh, int mylock = FREE; // Interface: acquire(&mylock);
@ // release(&nylock);
acquire(int *thelock) { release(int *thelock) {
// Short busy-wait time // Short busy-wait time
while (test&set(guard)); while (test&set(guard));
if (*thelock == BUSY) { if anyone on wait queue {
put thread on wait queue; take thread off walt.queue
Place on ready queue;
go to sleep() & guard = 0; } else {
// guard == @ on wakup! *thelock = FREE;
} else { }
*thelock = BUSY; guard = 0;
guard = 0;
}

}

* Note: sleep has to be sure to reset the guard variable

— Why can’t we do it just before or just after the sleep?

2/8/2024 Kubiatowicz CS162 © UCB Spring 2024

Lec 8.48



Recap: Locks using interrupts

2 acquire(int *thelock) {
// Short busy-wait time

acquire (int *thelock) { disable interrupts;
. n. disable interrupts; if (*thelock == 1) {
int mylock=0; } put thread on wait-queue;
go to sleep() //??
acquire (&mylock) ; } else {
*thelock = 1;
critical section; enable interrupts;
e }
release (&mylock) ; }

release (int *thelock) . release (int *thelock) {

{ // Short busy-wait time
enable interrupts; disable interrupts;
} if anyone on wait queue {
. iy take thread off wait-queue
('If one thread in critical ) Place on ready queue;
section, no other activity } else {
c 0 * = .
(including OS) can run! } thelock =0,
enable interrupts;

\Lock argument not used! )}
Kubiatowicz CS162 © UCB Spring 2024

2/8/2024 Lec 8.49



Recap: Locks using test & set

int guard = 0; // global!

2 acquire(int *thelock) {

int mylock = 0O;
acquire (int *thelock) {

int mylock=0; while (tests&set (thelock)) ;
}

// Short busy-wait time
while (testé&set (guard)) ;
if (*thelock == 1) {
put thread on wait-queue;
go to sleep()& guard = 0;

acquire (&mylock) ; // guard == 0 on wakeup

. } else {
critical section; *thelock = 1;
guard = 0;
. |
release (&mylock) ;

}

elease (int *thelock) {‘—>release(int *thelock) {
*thelock = 0; // Short busy-wait time

} while (testé&set(guard)) ;

if anyone on wait queue {
take thread off wait-queue
Place on ready queue;

} else {
*thelock = 0;

}

guard = 0;

Threads waiting to enter
critical section busy-wait

}

2/8/2024 Kubiatowicz CS162 © UCB Spring 2024

Lec 8.50



Linux futex: Fast Userspace Mutex

#include <linux/futex.h>
#include <sys/time.h>

int futex(int *uaddr, int futex op, int val,
const struct timespec *timeout );

uaddr points to a 32-bit value in user space

futex_op
— FUTEX_WAIT —if val == *uaddr sleep till FUTEX_WAIT
» Atomic check that condition still holds after we disable interrupts (in kernel!)
- FUTEX_WAKE — wake up at most val waiting threads
— FUTEX_FD, FUTEX_WAKE_OP, FUTEX_CMP_REQUEUE: More interesting operations!

timeout
— ptr to a timespec structure that specifies a timeout for the op

e Interface to the kernel sleep() functionality!
- Let thread put themselves to sleep - conditionally!
e futex is not exposed in libc; it is used within the implementation of pthreads

— Can be used to implement locks, semaphores, monitors, etc...
2/8/2024 Kubiatowicz C$162 © UCB Spring 2024

Lec 8.51



Example: First try: T&S and futex

int mylock = @; // Interface: acquire(&mylock);

// release(&mylock);
acquire(int *thelock) { release(int *thelock) {
while (test&set(thelock)) { *thelock = 0; // unlock
futex(thelock, FUTEX WAIT, 1); futex(thelock, FUTEX_WAKE, 1);
}
} }
* Properties:

— Sleep interface by using futex — no busywaiting

* No overhead to acquire lock
— Good!

» Every unlock has to call kernel to potentially wake someone up — even if none
— Doesn'’t quite give us no-kernel crossings when uncontended...!

2/8/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 8.52



Example: Try #2: T&S and futex

bool maybe waiters = false;
int mylock = @; // Interface: acquire(&mylock,&maybe waiters);

// release(&mylock,&maybe waiters);
acquire(int *thelock, bool *maybe) { release(int *thelock, bool *maybe) {
while (test&set(thelock)) { *thelock = 6;
// Sleep, since lock busy! if (*maybe) {
*maybe = true; *maybe = false;
futex(thelock, FUTEX WAIT, 1); // Try to wake up someone
futex(thelock, FUTEX WAKE, 1);
// Make sure other sleepers not stuck }
*maybe = true; }

}
}

» This is syscall-free in the uncontended case

— Temporarily falls back to syscalls if multiple waiters, or concurrent acquire/release
« But it can be considerably optimized!

— See “Futexes are Tricky” by Ulrich Drepper

2/8/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 8.53



Try #3: Better, using more atomics

* Much better: Three (3) states: typedef enum { UNLOCKED,LOCKED,CONTESTED } Lock;
— UNLOCKED: No one has lock Lock mylock = UNLOCKED; // Interface: acquire(&mylock);
// release(&mylock);
— LOCKED: One thread has lock (&mylock)
— CONTESTED: Possibly more acquire(Lock *thelock) {
than one (with someone sleeping) // If unlocked, grab lock!
« Clean interface! if (compare&swap(thelock,UNLOCKED,LOCKED))
return;

* Lock grabbed cleanly by either

— compare&swap() // Keep trying to grab lock, sleep in futex

— First swap() while (swap(thelock,CONTESTED) != UNLOCKED))

, // Sleep unless someone releases here!

* No overhead if uncontested! futex(thelock, FUTEX WAIT, CONTESTED);

» Could build semaphores in a similar }
way!

release(Lock *thelock) {

// If someone sleeping,
if (swap(thelock,UNLOCKED) == CONTESTED)

futex(thelock, FUTEX WAKE,1);
}

2/8/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 8.54



Recall: Where are we going with synchronization?

« We are going to implement various higher-level synchronization
primitives using atomic operations

— Everything is pretty painful if only atomic primitives are load and store
— Need to provide primitives useful at user-level

2/8/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 8.55



Producer-Consumer with a Bounded Buffer

Problem Definition I Consumer |:|
— Producer(s) put things into a shared buffer '

— Consumer(s) take them out
— Need synchronization to coordinate producer/consumer

Don’t want producer and consumer to have to work in lockstep, so put
a fixed-size buffer between them

— Need to synchronize access to this buffer
— Producer needs to wait if buffer is full
— Consumer needs to wait if buffer is empty

Example 1: GCC compiler
-cpp | ccl | cc2 | as | 1d
Example 2: Coke machine
— Producer can put limited number of Cokes in machine
— Consumer can'’t take Cokes out if machine is empty
Others: Web servers, Routers, ....

2/8/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 8.56




Bounded Buffer Data Structure (sequential case)

W |
r

typedef struct buf {

int write index;

int read index;

<type> *entries [BUFSIZE]; L{
} buf t;

* Insert: write & bump write ptr (enqueue)
 Remove: read & bump read ptr (dequeue)

« How to tell if Full (on insert) Empty (on remove)?
« And what do you do if it is?

What needs to be atomic?

2/8/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 8.57



Bounded Buffer — first cut

mutex buf_lock = <initially unlocked>

Producer(item) {
acquire(&buf_lock);
while (buffer full) {}; // Wait for a free slot

enqueue(item);
release(&buf_lock); \
Will we ever come out
of the wait loop?
Consumer() {
acquire(&buf_lock);
while (buffer empty) {}; // Wait for arrival
item = dequeue();

release(&buf_lock);
return item

2/8/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 8.58



Bounded Buffer — 2" cut

mutex buf_lock = <initially unlocked>

Producer(item) {
acquire(&buf_lock);
while (buffer full) {release(&buf_lock); acquire(&buf_lock);}

enqueue(item);
release(&buf_lock); What happens when one
} is waiting for the other?
- Multiple cores ?
Consumer() { , - Single core ?

acquire(&buf_lock);

while (buffer empty) {release(&buf_lock); acquire(&buf_lock);}
item = dequeue();

release(&buf_lock);

return item

2/8/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 8.59



Higher-level Primitives than Locks

» Goal of last couple of lectures:
— What is right abstraction for synchronizing threads that share memory?
— Want as high a level primitive as possible!

« Good primitives and practices important!

— Since execution is not entirely sequential, really hard to find bugs, since they
happen rarely

— UNIX'is pretty stable now, but up until about mid-80s
(10 years after started), systems running UNIX would crash every week or so —
concurrency bugs

« Synchronization is a way of coordinating multiple concurrent activities that are
using shared state

— This lecture and the next presents a some ways of structuring sharing

2/8/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 8.60



Summary

Important concept: Atomic Operations
— An operation that runs to completion or not at all
— These are the primitives on which to construct various synchronization
primitives
Talked about hardware atomicity primitives:

— Disabling of Interrupts, test&set, swap, compare&swap,
load-locked & store-conditional

Showed several constructions of Locks

— Must be very careful not to waste/tie up machine resources
» Shouldn’t disable interrupts for long
» Shouldn’t spin wait for long

— Key idea: Separate lock variable, use hardware mechanisms to protect
modifications of that variable

Showed primitive for constructing user-level locks
— Packages up functionality of sleeping

2/8/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 8.61



