CS 162 HW 2

Signal handling / Example: shells in shells

Example: shells in shells

In your Docker setup, you'll be executing a short series of commands in order to better understand
the correct behavior. We'll primarily be making use of two commands, ps and jobs. Recall that ps
gives you information about all processes running on the system, while jobs gives you a list of jobs
that the current shell is managing. Enter the following commands in your terminal, and you should
see similar behavior:

workspace $ ps

PID TTY TIME CMD

20970 ttys002 0:01.30 bash
workspace $ sh

$ ps

PID TTY TIME CMD

20970 ttys@02 0:00.63 bash

22323 ttys@04 0:00.01 sh

At this point, we have started a sh shell within our bash shell.

$ cat

hello

hello

world

world

N

[1]+ Stopped(SIGTSTP) cat
$ ps

PID TTY TIME CMD

20970 ttysee4 0:00.63 bash
22323 ttys004 0:00.02 sh

22328 ttysee4 0:00.01 cat



Notice how sending a ctrL-z while the cat program was running did not suspend the sh nor the

bash programs.

After examining the output of jobs, stop the cat program with crriL-c.

$ jobs

[1]+ Stopped(SIGTSTP) cat
$ fg

cat

~C

$ exit

workspace $ ps
PID TTY TIME CMD

20970 ttyse04 0:00.65 bash

Since exit terminates the shell, we terminated the sh program. Enter exit again and your terminal

will close.

Before we explain how you can achieve this effect, let’s discuss some more operating system

concepts.

Copyright © 2022 CS 162 staff.



