
Discussion 3

Mutual Exclusion, Condition Variables

02/09/24

Staff

Announcements

Sunday Monday Tuesday Wednesday Thursday Friday Saturday

Homework 2 Release
Midterm 1 Conflict
Request Due

Project 1 Design Doc Due

Midterm 1 (8-10 PM)

Homework 2 Due Homework 3 Release

Mutual Exclusion

Oftentimes, a multithreaded program will involve threads having shared

states, meaning threads will share data with one another. Such threads are

called cooperating threads. If threads don’t share any states, they are called

independent threads.

Cooperation between threads (i.e. synchronization) is made possible via

atomic operations, which always run to completion or not at all.

● Atomic operations are indivisible.

● Typically loads and stores are atomic.

Mutual exclusion is a basic method of synchronization where only one

thread does a particular action at a time.

● Code that runs as part of mutual exclusion is the critical section.

● Critical sections provide the illusion that each thread operates

atomically on a shared state.

Mutual Exclusion

Locks are synchronization variables that provide mutual exclusion.

● One thread holding lock → no other thread can hold it.

Two atomic operations.

● Acquire/Lock: waits until the lock is free, then marks it as busy.

When returning from this call, the thread is said to be holding the

lock.

● Release/Unlock: marks lock as free. When returning from this call,

the thread no longer holds the lock. This can only be called if the

thread is holding the lock.

Code in between acquire and release is the critical section.

lock_acquire(&lock);

Critical section;

lock_release(&lock);

Locks

Semaphores are synchronization variables with a nonnegative integer.

Two atomic operations.

● Down/Wait/P: waits for semaphore’s value to become strictly

positive, then decrements it by 1.

● Up/Post/V: increments the value of the semaphore by 1.

Technically not allowed to examine the value of a semaphore.

Mutual exclusion workflow: use semaphore as a lock.

1. Initialize semaphore to 1.

2. Down semaphore when entering a critical section.

3. Up semaphore when exiting critical section.

Scheduling workflow: one thread waits for another thread to do something.

1. Initialize semaphore to 0.

2. Down semaphore in the waiting thread.

3. After finishing desired work, up semaphore in the working thread.

Semaphores

Synchronization Stuffs

typedef struct account {
 /* ... */
 int balance;
 /* ... */
} account_t;

void transfer(account_t* donor, account_t* recipient, float amount) {
 assert(donor != recipient);
 if (donor->balance < amount) {
 printf("Insufficient funds.\n");
 return;
 }
 donor->balance -= amount;
 recipient->balance += amount;
}

1. Describe how a malicious user might exploit some unintended

behavior. What changes could you make to the CGFC to defend

against the exploits?

Break down a money transfer into further lines (not necessarily atomic

instructions).

Synchronization Stuffs

donor->balance -= amount

temp = donor->balance;

temp = temp - amount;

donor->balance = temp;

recipient->balance += amount

temp = recipient->balance;

temp = temp + amount;

recipient->balance = temp;

typedef struct account {
 /* ... */
 int balance;
 /* ... */
} account_t;

void transfer(account_t* donor, account_t* recipient, float amount) {
 assert(donor != recipient);
 if (donor->balance < amount) {
 printf("Insufficient funds.\n");
 return;
 }
 donor->balance -= amount;
 recipient->balance += amount;
}

1. Describe how a malicious user might exploit some unintended

behavior. What changes could you make to the CGFC to defend

against the exploits?

Synchronization Stuffs

transfer(alice, bob, 5) transfer(bob, alice, 5)

alice->balance 5

bob->balance 5

temp1

temp2

Consider two operations: transfer(alice, bob, 5) and

transfer(bob, alice, 5) and a particular interleaving which leads to

Bob having 10 and Alice having 5.

typedef struct account {
 /* ... */
 int balance;
 /* ... */
} account_t;

void transfer(account_t* donor, account_t* recipient, float amount) {
 assert(donor != recipient);
 if (donor->balance < amount) {
 printf("Insufficient funds.\n");
 return;
 }
 donor->balance -= amount;
 recipient->balance += amount;
}

1. Describe how a malicious user might exploit some unintended

behavior. What changes could you make to the CGFC to defend

against the exploits?

Synchronization Stuffs

transfer(alice, bob, 5) transfer(bob, alice, 5)

temp1 = alice->balance;

alice->balance 5

bob->balance 5

temp1 5

temp2

Consider two operations: transfer(alice, bob, 5) and

transfer(bob, alice, 5) and a particular interleaving which leads to

Bob having 10 and Alice having 5.

typedef struct account {
 /* ... */
 int balance;
 /* ... */
} account_t;

void transfer(account_t* donor, account_t* recipient, float amount) {
 assert(donor != recipient);
 if (donor->balance < amount) {
 printf("Insufficient funds.\n");
 return;
 }
 donor->balance -= amount;
 recipient->balance += amount;
}

1. Describe how a malicious user might exploit some unintended

behavior. What changes could you make to the CGFC to defend

against the exploits?

Consider two operations: transfer(alice, bob, 5) and

transfer(bob, alice, 5) and a particular interleaving which leads to

Bob having 10 and Alice having 5.

Synchronization Stuffs

transfer(alice, bob, 5) transfer(bob, alice, 5)

temp1 = alice->balance;
temp1 = temp1 - 5;
alice->balance = temp1;

alice->balance 0

bob->balance 5

temp1 0

temp2

typedef struct account {
 /* ... */
 int balance;
 /* ... */
} account_t;

void transfer(account_t* donor, account_t* recipient, float amount) {
 assert(donor != recipient);
 if (donor->balance < amount) {
 printf("Insufficient funds.\n");
 return;
 }
 donor->balance -= amount;
 recipient->balance += amount;
}

1. Describe how a malicious user might exploit some unintended

behavior. What changes could you make to the CGFC to defend

against the exploits?

Consider two operations: transfer(alice, bob, 5) and

transfer(bob, alice, 5) and a particular interleaving which leads to

Bob having 10 and Alice having 5.

Synchronization Stuffs

transfer(alice, bob, 5) transfer(bob, alice, 5)

temp1 = alice->balance;
temp1 = temp1 - 5;

alice->balance 5

bob->balance 5

temp1 0

temp2

typedef struct account {
 /* ... */
 int balance;
 /* ... */
} account_t;

void transfer(account_t* donor, account_t* recipient, float amount) {
 assert(donor != recipient);
 if (donor->balance < amount) {
 printf("Insufficient funds.\n");
 return;
 }
 donor->balance -= amount;
 recipient->balance += amount;
}

1. Describe how a malicious user might exploit some unintended

behavior. What changes could you make to the CGFC to defend

against the exploits?

Consider two operations: transfer(alice, bob, 5) and

transfer(bob, alice, 5) and a particular interleaving which leads to

Bob having 10 and Alice having 5.

Synchronization Stuffs

transfer(alice, bob, 5) transfer(bob, alice, 5)

temp1 = alice->balance;
temp1 = temp1 - 5;
alice->balance = temp1;
temp1 = bob->balance;

alice->balance 0

bob->balance 5

temp1 5

temp2

typedef struct account {
 /* ... */
 int balance;
 /* ... */
} account_t;

void transfer(account_t* donor, account_t* recipient, float amount) {
 assert(donor != recipient);
 if (donor->balance < amount) {
 printf("Insufficient funds.\n");
 return;
 }
 donor->balance -= amount;
 recipient->balance += amount;
}

1. Describe how a malicious user might exploit some unintended

behavior. What changes could you make to the CGFC to defend

against the exploits?

Consider two operations: transfer(alice, bob, 5) and

transfer(bob, alice, 5) and a particular interleaving which leads to

Bob having 10 and Alice having 5.

Synchronization Stuffs

transfer(alice, bob, 5) transfer(bob, alice, 5)

temp1 = alice->balance;
temp1 = temp1 - 5;
alice->balance = temp1;
temp1 = bob->balance;
temp1 = temp1 + 5;

alice->balance 0

bob->balance 5

temp1 10

temp2

typedef struct account {
 /* ... */
 int balance;
 /* ... */
} account_t;

void transfer(account_t* donor, account_t* recipient, float amount) {
 assert(donor != recipient);
 if (donor->balance < amount) {
 printf("Insufficient funds.\n");
 return;
 }
 donor->balance -= amount;
 recipient->balance += amount;
}

1. Describe how a malicious user might exploit some unintended

behavior. What changes could you make to the CGFC to defend

against the exploits?

Consider two operations: transfer(alice, bob, 5) and

transfer(bob, alice, 5) and a particular interleaving which leads to

Bob having 10 and Alice having 5.

Synchronization Stuffs

transfer(alice, bob, 5) transfer(bob, alice, 5)

temp1 = alice->balance;
temp1 = temp1 - 5;
alice->balance = temp1;
temp1 = bob->balance;
temp1 = temp1 + 5;

temp2 = bob->balance;

alice->balance 0

bob->balance 5

temp1 10

temp2 5

typedef struct account {
 /* ... */
 int balance;
 /* ... */
} account_t;

void transfer(account_t* donor, account_t* recipient, float amount) {
 assert(donor != recipient);
 if (donor->balance < amount) {
 printf("Insufficient funds.\n");
 return;
 }
 donor->balance -= amount;
 recipient->balance += amount;
}

1. Describe how a malicious user might exploit some unintended

behavior. What changes could you make to the CGFC to defend

against the exploits?

Consider two operations: transfer(alice, bob, 5) and

transfer(bob, alice, 5) and a particular interleaving which leads to

Bob having 10 and Alice having 5.

Synchronization Stuffs

transfer(alice, bob, 5) transfer(bob, alice, 5)

temp1 = alice->balance;
temp1 = temp1 - 5;
alice->balance = temp1;
temp1 = bob->balance;
temp1 = temp1 + 5;

temp2 = bob->balance;
temp2 = temp2 - 5;

alice->balance 0

bob->balance 5

temp1 10

temp2 0

typedef struct account {
 /* ... */
 int balance;
 /* ... */
} account_t;

void transfer(account_t* donor, account_t* recipient, float amount) {
 assert(donor != recipient);
 if (donor->balance < amount) {
 printf("Insufficient funds.\n");
 return;
 }
 donor->balance -= amount;
 recipient->balance += amount;
}

1. Describe how a malicious user might exploit some unintended

behavior. What changes could you make to the CGFC to defend

against the exploits?

Consider two operations: transfer(alice, bob, 5) and

transfer(bob, alice, 5) and a particular interleaving which leads to

Bob having 10 and Alice having 5.

Synchronization Stuffs

transfer(alice, bob, 5) transfer(bob, alice, 5)

temp1 = alice->balance;
temp1 = temp1 - 5;
alice->balance = temp1;
temp1 = bob->balance;
temp1 = temp1 + 5;

temp2 = bob->balance;
temp2 = temp2 - 5;
bob->balance = temp2;

alice->balance 0

bob->balance 0

temp1 10

temp2 0

typedef struct account {
 /* ... */
 int balance;
 /* ... */
} account_t;

void transfer(account_t* donor, account_t* recipient, float amount) {
 assert(donor != recipient);
 if (donor->balance < amount) {
 printf("Insufficient funds.\n");
 return;
 }
 donor->balance -= amount;
 recipient->balance += amount;
}

1. Describe how a malicious user might exploit some unintended

behavior. What changes could you make to the CGFC to defend

against the exploits?

Consider two operations: transfer(alice, bob, 5) and

transfer(bob, alice, 5) and a particular interleaving which leads to

Bob having 10 and Alice having 5.

Synchronization Stuffs

transfer(alice, bob, 5) transfer(bob, alice, 5)

temp1 = alice->balance;
temp1 = temp1 - 5;
alice->balance = temp1;
temp1 = bob->balance;
temp1 = temp1 + 5;

temp2 = bob->balance;
temp2 = temp2 - 5;
bob->balance = temp2;
temp2 = alice->balance;

alice->balance 0

bob->balance 0

temp1 10

temp2 0

typedef struct account {
 /* ... */
 int balance;
 /* ... */
} account_t;

void transfer(account_t* donor, account_t* recipient, float amount) {
 assert(donor != recipient);
 if (donor->balance < amount) {
 printf("Insufficient funds.\n");
 return;
 }
 donor->balance -= amount;
 recipient->balance += amount;
}

1. Describe how a malicious user might exploit some unintended

behavior. What changes could you make to the CGFC to defend

against the exploits?

Consider two operations: transfer(alice, bob, 5) and

transfer(bob, alice, 5) and a particular interleaving which leads to

Bob having 10 and Alice having 5.

Synchronization Stuffs

transfer(alice, bob, 5) transfer(bob, alice, 5)

temp1 = alice->balance;
temp1 = temp1 - 5;
alice->balance = temp1;
temp1 = bob->balance;
temp1 = temp1 + 5;

temp2 = bob->balance;
temp2 = temp2 - 5;
bob->balance = temp2;
temp2 = alice->balance;
temp2 = temp2 + 5;

alice->balance 0

bob->balance 0

temp1 10

temp2 5

typedef struct account {
 /* ... */
 int balance;
 /* ... */
} account_t;

void transfer(account_t* donor, account_t* recipient, float amount) {
 assert(donor != recipient);
 if (donor->balance < amount) {
 printf("Insufficient funds.\n");
 return;
 }
 donor->balance -= amount;
 recipient->balance += amount;
}

1. Describe how a malicious user might exploit some unintended

behavior. What changes could you make to the CGFC to defend

against the exploits?

Consider two operations: transfer(alice, bob, 5) and

transfer(bob, alice, 5) and a particular interleaving which leads to

Bob having 10 and Alice having 5.

Synchronization Stuffs

transfer(alice, bob, 5) transfer(bob, alice, 5)

temp1 = alice->balance;
temp1 = temp1 - 5;
alice->balance = temp1;
temp1 = bob->balance;
temp1 = temp1 + 5;

temp2 = bob->balance;
temp2 = temp2 - 5;
bob->balance = temp2;
temp2 = alice->balance;
temp2 = temp2 + 5;
alice->balance = temp2;

alice->balance 5

bob->balance 0

temp1 10

temp2 5

typedef struct account {
 /* ... */
 int balance;
 /* ... */
} account_t;

void transfer(account_t* donor, account_t* recipient, float amount) {
 assert(donor != recipient);
 if (donor->balance < amount) {
 printf("Insufficient funds.\n");
 return;
 }
 donor->balance -= amount;
 recipient->balance += amount;
}

1. Describe how a malicious user might exploit some unintended

behavior. What changes could you make to the CGFC to defend

against the exploits?

Consider two operations: transfer(alice, bob, 5) and

transfer(bob, alice, 5) and a particular interleaving which leads to

Bob having 10 and Alice having 5.

Synchronization Stuffs

transfer(alice, bob, 5) transfer(bob, alice, 5)

temp1 = alice->balance;
temp1 = temp1 - 5;
alice->balance = temp1;
temp1 = bob->balance;
temp1 = temp1 + 5;

bob->balance = temp1;

temp2 = bob->balance;
temp2 = temp2 - 5;
bob->balance = temp2;
temp2 = alice->balance;
temp2 = temp2 + 5;
alice->balance = temp2;

alice->balance 5

bob->balance 10

temp1 10

temp2 5

typedef struct account {
 /* ... */
 int balance;
 /* ... */
} account_t;

void transfer(account_t* donor, account_t* recipient, float amount) {
 assert(donor != recipient);
 if (donor->balance < amount) {
 printf("Insufficient funds.\n");
 return;
 }
 donor->balance -= amount;
 recipient->balance += amount;
}

1. Describe how a malicious user might exploit some unintended

behavior. What changes could you make to the CGFC to defend

against the exploits?

Another possible exploit if a thread switch occurs after the if statement

succeeds, which results in donor->balance changing to less than amount.

Synchronization Stuffs

typedef struct account {
 /* ... */
 int balance;
 /* ... */
} account_t;

void transfer(account_t* donor, account_t* recipient, float amount) {
 assert(donor != recipient);
 if (donor->balance < amount) {
 printf("Insufficient funds.\n");
 return;
 }
 donor->balance -= amount;
 recipient->balance += amount;
}

1. Describe how a malicious user might exploit some unintended

behavior. What changes could you make to the CGFC to defend

against the exploits?

typedef struct account {
 /* ... */
 int balance;
 /* ... */
} account_t;

void transfer(account_t* donor, account_t* recipient, float amount) {
 assert(donor != recipient);
 if (donor->balance < amount) {
 printf("Insufficient funds.\n");
 return;
 }
 donor->balance -= amount;
 recipient->balance += amount;
}

1. Describe how a malicious user might exploit some unintended

behavior. What changes could you make to the CGFC to defend

against the exploits?

Fix exploits by making the entire method a critical section (i.e. surround the

code with locks).

Synchronization Stuffs

void play_session(struct server* s) {
 connect(s);
 play();
 disconnect(s);
}

2. A recent popular game is having issues with its servers lagging

heavily due to too many players being connected at a time.

After testing, it turns out that the servers can run without lagging

for a max of up to 1000 players concurrently connected. How can

you use synchronization to enforce a strict limit of 1000 players

connected at a time? Assume that a game server can create

synchronization variables and share them amongst the player

threads.

Synchronization Stuffs

Player threads run the following code:

void play_session(struct server* s) {
 connect(s);
 play();
 disconnect(s);
}

2. A recent popular game is having issues with its servers lagging

heavily due to too many players being connected at a time.

After testing, it turns out that the servers can run without lagging

for a max of up to 1000 players concurrently connected. How can

you use synchronization to enforce a strict limit of 1000 players

connected at a time? Assume that a game server can create

synchronization variables and share them amongst the player

threads.

Use a semaphore for each server that’s initialized to 1000. Down semaphore

before calling connect, up semaphore after calling disconnect.

The order here is important - downing the semaphore after connecting but

before playing means that there is nothing blocking threads from calling

connect().

Upping the semaphore before disconnecting could lead to new connections

while there are still players connected to the game. For example, consider

the case where 1000 players are connected, one player ups the semaphore

(but hasn’t disconnected), and the 1001th player connects (due to the upped

semaphore) while the previous player hasn’t yet disconnected. Now we have

1001 players connected.

Synchronization Stuffs

int test_and_set(int* value) {
 int old_value = *value;
 *value = 1;
 return old_value;
}

Revisiting the idea of atomic operations:

● In a world where only loads and stores are atomic, it’s painful to enforce synchronization

● Hardware support for instructions that read and write a value atomically

Pseudocode for one such instruction, test_and_set, that can help us implement locks:

Assume that this function only meant to describe the behavior of a single atomic operation.

Atomic operations

int value = 0;
int hello = 0;

int test_and_set(int* value) {
 int old_value = *value;
 *value = 1;
 return old_value;
}

void print_hello() {
 while (test_and_set(&value));
 hello += 1;
 printf("Child thread: %d\n", hello);
 value = 0;
 pthread_exit(0);
}
void main() {
 pthread_t thread1;
 pthread_t thread2;
 pthread_create(&thread1, NULL, &print_hello, NULL);
 pthread_create(&thread2, NULL, &print_hello, NULL);
 while (test_and_set(&value));
 printf("Parent thread: %d\n", hello);
 value = 0;
}

Assume the following sequence of events.

1. Main starts running and creates both threads and is then context

switched right after.

2. Thread2 is scheduled and run until after it increments hello and is

switched.

3. Thread1 runs until it is switched.

4. Main thread resumes and runs until it is switched.

5. Thread2 runs to completion and exits.

6. Main thread runs to completion but doesn’t exit.

7. Thread1 runs to completion.

1. Why is this sequence of events possible?

Test and Set

int value = 0;
int hello = 0;

int test_and_set(int* value) {
 int old_value = *value;
 *value = 1;
 return old_value;
}

void print_hello() {
 while (test_and_set(&value));
 hello += 1;
 printf("Child thread: %d\n", hello);
 value = 0;
 pthread_exit(0);
}
void main() {
 pthread_t thread1;
 pthread_t thread2;
 pthread_create(&thread1, NULL, &print_hello, NULL);
 pthread_create(&thread2, NULL, &print_hello, NULL);
 while (test_and_set(&value));
 printf("Parent thread: %d\n", hello);
 value = 0;
}

Assume the following sequence of events.

1. Main starts running and creates both threads and is then context

switched right after.

2. Thread2 is scheduled and run until after it increments hello and is

switched.

3. Thread1 runs until it is switched.

4. Main thread resumes and runs until it is switched.

5. Thread2 runs to completion and exits.

6. Main thread runs to completion but doesn’t exit.

7. Thread1 runs to completion.

1. Why is this sequence of events possible?

In steps 3 and 4, main thread and thread1 make no progress since they can

only advance when value is 0.

Test and Set

int value = 0;
int hello = 0;

int test_and_set(int* value) {
 int old_value = *value;
 *value = 1;
 return old_value;
}

void print_hello() {
 while (test_and_set(&value));
 hello += 1;
 printf("Child thread: %d\n", hello);
 value = 0;
 pthread_exit(0);
}
void main() {
 pthread_t thread1;
 pthread_t thread2;
 pthread_create(&thread1, NULL, &print_hello, NULL);
 pthread_create(&thread2, NULL, &print_hello, NULL);
 while (test_and_set(&value));
 printf("Parent thread: %d\n", hello);
 value = 0;
}

Assume the following sequence of events.

1. Main starts running and creates both threads and is then context

switched right after.

2. Thread2 is scheduled and run until after it increments hello and is

switched.

3. Thread1 runs until it is switched.

4. Main thread resumes and runs until it is switched.

5. Thread2 runs to completion and exits.

6. Main thread runs to completion but doesn’t exit.

7. Thread1 runs to completion.

2. For steps where test_and_set is called, what does it return?

Test and Set

int value = 0;
int hello = 0;

int test_and_set(int* value) {
 int old_value = *value;
 *value = 1;
 return old_value;
}

void print_hello() {
 while (test_and_set(&value));
 hello += 1;
 printf("Child thread: %d\n", hello);
 value = 0;
 pthread_exit(0);
}
void main() {
 pthread_t thread1;
 pthread_t thread2;
 pthread_create(&thread1, NULL, &print_hello, NULL);
 pthread_create(&thread2, NULL, &print_hello, NULL);
 while (test_and_set(&value));
 printf("Parent thread: %d\n", hello);
 value = 0;
}

Assume the following sequence of events.

1. Main starts running and creates both threads and is then context

switched right after.

2. Thread2 is scheduled and run until after it increments hello and is

switched.

3. Thread1 runs until it is switched.

4. Main thread resumes and runs until it is switched.

5. Thread2 runs to completion and exits.

6. Main thread runs to completion but doesn’t exit.

7. Thread1 runs to completion.

2. For steps where test_and_set is called, what does it return?

Step 2: value is initially 0, so 0 is returned by test_and_set and the while

loop condition will not be satisfied. Now value is 1.

Steps 3, 4: thread1 and main thread do not advance past the while loop since

test_and_set keeps returning 1.

Step 6: main thread is able to advance (since value got set to 0, meaning

test_and_set returns 0) and runs to completion.

Step 7: thread1 is able to advance and runs to completion (same reasoning).

Test and Set

int value = 0;
int hello = 0;

int test_and_set(int* value) {
 int old_value = *value;
 *value = 1;
 return old_value;
}

void print_hello() {
 while (test_and_set(&value));
 hello += 1;
 printf("Child thread: %d\n", hello);
 value = 0;
 pthread_exit(0);
}
void main() {
 pthread_t thread1;
 pthread_t thread2;
 pthread_create(&thread1, NULL, &print_hello, NULL);
 pthread_create(&thread2, NULL, &print_hello, NULL);
 while (test_and_set(&value));
 printf("Parent thread: %d\n", hello);
 value = 0;
}

Assume the following sequence of events.

1. Main starts running and creates both threads and is then context

switched right after.

2. Thread2 is scheduled and run until after it increments hello and is

switched.

3. Thread1 runs until it is switched.

4. Main thread resumes and runs until it is switched.

5. Thread2 runs to completion and exits.

6. Main thread runs to completion but doesn’t exit.

7. Thread1 runs to completion.

3. What is the output of this program?

Test and Set

int value = 0;
int hello = 0;

int test_and_set(int* value) {
 int old_value = *value;
 *value = 1;
 return old_value;
}

void print_hello() {
 while (test_and_set(&value));
 hello += 1;
 printf("Child thread: %d\n", hello);
 value = 0;
 pthread_exit(0);
}
void main() {
 pthread_t thread1;
 pthread_t thread2;
 pthread_create(&thread1, NULL, &print_hello, NULL);
 pthread_create(&thread2, NULL, &print_hello, NULL);
 while (test_and_set(&value));
 printf("Parent thread: %d\n", hello);
 value = 0;
}

Assume the following sequence of events.

1. Main starts running and creates both threads and is then context

switched right after.

2. Thread2 is scheduled and run until after it increments hello and is

switched.

3. Thread1 runs until it is switched.

4. Main thread resumes and runs until it is switched.

5. Thread2 runs to completion and exits.

6. Main thread runs to completion but doesn’t exit.

7. Thread1 runs to completion.

3. What is the output of this program?

Child thread: 1

Parent thread: 1

Child thread: 2

Test and Set

int value = 0;
int hello = 0;

int test_and_set(int* value) {
 int old_value = *value;
 *value = 1;
 return old_value;
}

void print_hello() {
 while (test_and_set(&value));
 hello += 1;
 printf("Child thread: %d\n", hello);
 value = 0;
 pthread_exit(0);
}
void main() {
 pthread_t thread1;
 pthread_t thread2;
 pthread_create(&thread1, NULL, &print_hello, NULL);
 pthread_create(&thread2, NULL, &print_hello, NULL);
 while (test_and_set(&value));
 printf("Parent thread: %d\n", hello);
 value = 0;
}

Assume the following sequence of events.

1. Main starts running and creates both threads and is then context

switched right after.

2. Thread2 is scheduled and run until after it increments hello and is

switched.

3. Thread1 runs until it is switched.

4. Main thread resumes and runs until it is switched.

5. Thread2 runs to completion and exits.

6. Main thread runs to completion but doesn’t exit.

7. Thread1 runs to completion.

4. What is a major issue with this implementation of synchronization?

Test and Set

int value = 0;
int hello = 0;

int test_and_set(int* value) {
 int old_value = *value;
 *value = 1;
 return old_value;
}

void print_hello() {
 while (test_and_set(&value));
 hello += 1;
 printf("Child thread: %d\n", hello);
 value = 0;
 pthread_exit(0);
}
void main() {
 pthread_t thread1;
 pthread_t thread2;
 pthread_create(&thread1, NULL, &print_hello, NULL);
 pthread_create(&thread2, NULL, &print_hello, NULL);
 while (test_and_set(&value));
 printf("Parent thread: %d\n", hello);
 value = 0;
}

Assume the following sequence of events.

1. Main starts running and creates both threads and is then context

switched right after.

2. Thread2 is scheduled and run until after it increments hello and is

switched.

3. Thread1 runs until it is switched.

4. Main thread resumes and runs until it is switched.

5. Thread2 runs to completion and exits.

6. Main thread runs to completion but doesn’t exit.

7. Thread1 runs to completion.

4. What is a major issue with this implementation of synchronization?

Using a while loop with test_and_set involves a ton of busy waiting.

We should let the thread sleep while it can’t make any progress, so the CPU

is available for use by another thread.

Test and Set

typedef struct shared_data {
 sem_t semaphore;
 pthread_mutex_t lock;
 int ref_cnt;
 int data;
} shared_data_t;

void initialize_shared_data(shared_data_t* shared_data) {
 _______________________;
 _______________________;
 _______________________;
 shared_data->data = -1;
}

int wait_for_data(shared_data_t* shared_data) {
 _______________________;
 int data = shared_data->data;
 _______________________;
 int ref_cnt = --shared_data->ref_cnt;
 _______________________;
 if (ref_cnt == 0)
 _______________________;
 return data;
}

void* save_data(void* shared_pg) {
 _______________________;
 shared_data->data = 162;
 _______________________;
 _______________________;
 int ref_cnt = --shared_data->ref_cnt;
 _______________________;
 if (ref_cnt == 0)
 _______________________;
 return NULL;
}

int main() {
 void* shared_data = malloc(sizeof(shared_data_t));
 initialize_shared_data(shared_data);
 pthread_t tid;
 int error = pthread_create(&tid, NULL, &save_data, shared_data);
 int data = wait_for_data(shared_data);
 printf("Parent: Data is %d\n", data);
 return 0;
}

Want to design a program where main thread will wait for other thread to

update shared_data->data to 162 before printing, so the output is

always “Parent: Data is 162”.

Shared Data

typedef struct shared_data {
 sem_t semaphore;
 pthread_mutex_t lock;
 int ref_cnt;
 int data;
} shared_data_t;

1. Explain the purpose of each member in the shared_data_t struct.

Shared Data

typedef struct shared_data {
 sem_t semaphore;
 pthread_mutex_t lock;
 int ref_cnt;
 int data;
} shared_data_t;

1. Explain the purpose of each member in the shared_data_t struct.

semaphore is used to implement the scheduling workflow.

● Main thread can down semaphore while the other thread can up

semaphore after saving the data.

lock allows for mutual exclusion on members of the struct that can be

modified by both threads.

ref_cnt allows for reference counting, which is an indicator for how many

threads still hold a reference to this struct.

● Free when ref_cnt reaches 0.

data is the actual data.

Shared Data

typedef struct shared_data {
 sem_t semaphore;
 pthread_mutex_t lock;
 int ref_cnt;
 int data;
} shared_data_t;

void initialize_shared_data(shared_data_t* shared_data) {
 _______________________;
 _______________________;
 _______________________;
 shared_data->data = -1;
}

2. Fill in the missing lines in initialize_shared_data to correctly

initialize the members of shared_data.

Shared Data

typedef struct shared_data {
 sem_t semaphore;
 pthread_mutex_t lock;
 int ref_cnt;
 int data;
} shared_data_t;

void initialize_shared_data(shared_data_t* shared_data) {
 sem_init(&shared_data->semaphore, 0, 0);
 _______________________;
 _______________________;
 shared_data->data = -1;
}

2. Fill in the missing lines in initialize_shared_data to correctly

initialize the members of shared_data.

Initialize semaphore with a value of 0. When using sem_init, the third

argument is the actual value of the semaphore. The second argument is

pshared, where a 0 value indicates the semaphore is shared between

threads within a process.

Shared Data

typedef struct shared_data {
 sem_t semaphore;
 pthread_mutex_t lock;
 int ref_cnt;
 int data;
} shared_data_t;

void initialize_shared_data(shared_data_t* shared_data) {
 sem_init(&shared_data->semaphore, 0, 0);
 pthread_mutex_init(&shared_data->lock, NULL);
 _______________________;
 shared_data->data = -1;
}

2. Fill in the missing lines in initialize_shared_data to correctly

initialize the members of shared_data.

Initialize lock with default attributes.

Shared Data

typedef struct shared_data {
 sem_t semaphore;
 pthread_mutex_t lock;
 int ref_cnt;
 int data;
} shared_data_t;

void initialize_shared_data(shared_data_t* shared_data) {
 sem_init(&shared_data->semaphore, 0, 0);
 pthread_mutex_init(&shared_data->lock, NULL);
 shared_data->ref_cnt = 2;
 shared_data->data = -1;
}

2. Fill in the missing lines in initialize_shared_data to correctly

initialize the members of shared_data.

Initialize ref_cnt to 2 since two threads will have access to the data.

Shared Data

typedef struct shared_data {
 sem_t semaphore;
 pthread_mutex_t lock;
 int ref_cnt;
 int data;
} shared_data_t;

int wait_for_data(shared_data_t* shared_data) {
 sem_wait(&shared_data->semaphore);
 int data = shared_data->data;
 _______________________;
 int ref_cnt = --shared_data->ref_cnt;
 _______________________;
 if (ref_cnt == 0)
 _______________________;
 return data;
}

3. Fill in the missing lines in wait_for_data to correctly wait for the

other thread until the data is updated.

Down semaphore to wait for the other thread to update data.

Shared Data

typedef struct shared_data {
 sem_t semaphore;
 pthread_mutex_t lock;
 int ref_cnt;
 int data;
} shared_data_t;

int wait_for_data(shared_data_t* shared_data) {
 _______________________;
 int data = shared_data->data;
 _______________________;
 int ref_cnt = --shared_data->ref_cnt;
 _______________________;
 if (ref_cnt == 0)
 _______________________;
 return data;
}

3. Fill in the missing lines in wait_for_data to correctly wait for the

other thread until the data is updated.

Shared Data

typedef struct shared_data {
 sem_t semaphore;
 pthread_mutex_t lock;
 int ref_cnt;
 int data;
} shared_data_t;

int wait_for_data(shared_data_t* shared_data) {
 sem_wait(&shared_data->semaphore);
 int data = shared_data->data;
 pthread_mutex_lock(&shared_data->lock);
 int ref_cnt = --shared_data->ref_cnt;
 pthread_mutex_unlock(&shared_data->lock);
 if (ref_cnt == 0)
 _______________________;
 return data;
}

3. Fill in the missing lines in wait_for_data to correctly wait for the

other thread until the data is updated.

Need to decrement ref_cnt within a critical section since the other thread

could also modify it.

Shared Data

typedef struct shared_data {
 sem_t semaphore;
 pthread_mutex_t lock;
 int ref_cnt;
 int data;
} shared_data_t;

int wait_for_data(shared_data_t* shared_data) {
 sem_wait(&shared_data->sem);
 int data = shared_data->data;
 pthread_mutex_lock(&shared_data->lock);
 int ref_cnt = --shared_data->ref_cnt;
 pthread_mutex_unlock(&shared_data->lock);
 if (ref_cnt == 0)
 free(shared_data);
 return data;
}

3. Fill in the missing lines in wait_for_data to correctly wait for the

other thread until the data is updated.

Free when ref_cnt reaches 0

Shared Data

typedef struct shared_data {
 sem_t semaphore;
 pthread_mutex_t lock;
 int ref_cnt;
 int data;
} shared_data_t;

void* save_data(void* shared_pg) {
 _______________________;
 shared_data->data = 162;
 _______________________;
 _______________________;
 int ref_cnt = --shared_data->ref_cnt;
 _______________________;
 if (ref_cnt == 0)
 _______________________;
 return NULL;
}

4. Fill in the missing lines in save_data to correctly update the data.

Shared Data

typedef struct shared_data {
 sem_t semaphore;
 pthread_mutex_t lock;
 int ref_cnt;
 int data;
} shared_data_t;

void* save_data(void* shared_pg) {
 shared_data_t* shared_data = (shared_data_t*) shared_pg;
 shared_data->data = 162;
 _______________________;
 _______________________;
 int ref_cnt = --shared_data->ref_cnt;
 _______________________;
 if (ref_cnt == 0)
 _______________________;
 return NULL;
}

4. Fill in the missing lines in save_data to correctly update the data.

Cast shared_pg to shared_data_t* type.

Shared Data

typedef struct shared_data {
 sem_t semaphore;
 pthread_mutex_t lock;
 int ref_cnt;
 int data;
} shared_data_t;

void* save_data(void* shared_pg) {
 shared_data_t* shared_data = (shared_data_t*)shared_pg;
 shared_data->data = 162;
 sem_post(&shared_data->sem);
 _______________________;
 int ref_cnt = --shared_data->ref_cnt;
 _______________________;
 if (ref_cnt == 0)
 _______________________;
 return NULL;
}

4. Fill in the missing lines in save_data to correctly update the data.

Up semaphore after setting data.

Shared Data

typedef struct shared_data {
 sem_t semaphore;
 pthread_mutex_t lock;
 int ref_cnt;
 int data;
} shared_data_t;

void* save_data(void* shared_pg) {
 shared_data_t* shared_data = (shared_data_t*)shared_pg;
 shared_data->data = 162;
 sem_post(&shared_data->sem);
 pthread_mutex_lock(&shared_data->lock);
 int ref_cnt = --shared_data->ref_cnt;
 pthread_mutex_unlock(&shared_data->lock);
 if (ref_cnt == 0)
 free(shared_data);
 return NULL;
}

4. Fill in the missing lines in save_data to correctly update the data.

Decrement ref_cnt and free shared_data in the same way as the main

thread.

Shared Data

typedef struct shared_data {
 sem_t semaphore;
 pthread_mutex_t lock;
 int ref_cnt;
 int data;
} shared_data_t;

void initialize_shared_data(shared_data_t* shared_data) {
 sem_init(&shared_data->sem, 0, 0);
 pthread_mutex_init(&lock, NULL);
 shared_data->ref_cnt = 2;
 shared_data->data = -1;
}

int wait_for_data(shared_data_t* shared_data) {
 sem_wait(&shared_data->sem);
 int data = shared_data->data;
 pthread_mutex_lock(&shared_data->lock);
 int ref_cnt = --shared_data->ref_cnt;
 pthread_mutex_unlock(&shared_data->lock);
 if (ref_cnt == 0)
 free(shared_data);
 return data;
}

void* save_data(void* shared_pg) {
 shared_data_t* shared_data = (shared_data_t*)shared_pg;
 shared_data->data = 162;
 sem_post(&shared_data->sem);
 pthread_mutex_lock(&shared_data->lock);
 int ref_cnt = --shared_data->ref_cnt;
 pthread_mutex_unlock(&shared_data->lock);
 if (ref_cnt == 0)
 free(shared_data);
 return NULL;
}

int main() {
 void* shared_data = malloc(sizeof(shared_data_t));
 initialize_shared_data(shared_data);
 pthread_t tid;
 int error = pthread_create(&tid, NULL, &save_data, shared_data);
 int data = wait_for_data(shared_data);
 printf("Parent: Data is %d\n", data);
 return 0;
}

5. Why does shared_data->data not need to be surrounded by

locks when reading/writing to it in wait_for_data/save_data?

Shared Data

typedef struct shared_data {
 sem_t semaphore;
 pthread_mutex_t lock;
 int ref_cnt;
 int data;
} shared_data_t;

void initialize_shared_data(shared_data_t* shared_data) {
 sem_init(&shared_data->sem, 0, 0);
 pthread_mutex_init(&lock, NULL);
 shared_data->ref_cnt = 2;
 shared_data->data = -1;
}

int wait_for_data(shared_data_t* shared_data) {
 sem_wait(&shared_data->sem);
 int data = shared_data->data;
 pthread_mutex_lock(&shared_data->lock);
 int ref_cnt = --shared_data->ref_cnt;
 pthread_mutex_unlock(&shared_data->lock);
 if (ref_cnt == 0)
 free(shared_data);
 return data;
}

void* save_data(void* shared_pg) {
 shared_data_t* shared_data = (shared_data_t*)shared_pg;
 shared_data->data = 162;
 sem_post(&shared_data->sem);
 pthread_mutex_lock(&shared_data->lock);
 int ref_cnt = --shared_data->ref_cnt;
 pthread_mutex_unlock(&shared_data->lock);
 if (ref_cnt == 0)
 free(shared_data);
 return NULL;
}

int main() {
 void* shared_data = malloc(sizeof(shared_data_t));
 initialize_shared_data(shared_data);
 pthread_t tid;
 int error = pthread_create(&tid, NULL, &save_data, shared_data);
 int data = wait_for_data(shared_data);
 printf("Parent: Data is %d\n", data);
 return 0;
}

5. Why does shared_data->data not need to be surrounded by

locks when reading/writing to it in wait_for_data/save_data?

Semaphore guarantees the main thread will never access

shared_data->data before the other thread sets it. Similarly,

shared_data->data is never modified by the other thread afterwards.

Shared Data

Condition Variables

Condition variables are synchronization variables that let a thread

efficiently wait for a change to a shared state.

● A condition variable is a queue of threads where waiting threads are

allowed to sleep inside the critical section (in contrast to other

synchronization variables like semaphores).

A monitor is made up of a lock and zero or more condition variables.

Three condition variable operations:

● Wait: atomically releases lock and suspends execution of calling

thread.

● Signal: wake up the next waiting thread in the queue.

● Broadcast: wake up all waiting threads in the queue.

Important: a thread must hold the lock when performing any of the condition

variable operations.

Condition Variables and Monitors

Lock bufferLock;
ConditionVar bufferCV;

Producer() {
 bufferLock.acquire();
 put 1 coke in machine
 bufferCV.signal(bufferLock);
 bufferLock.release();
}

Consumer() {
 bufferLock.acquire();
 while (machine is empty)
 bufferCV.wait(bufferLock);
 take 1 coke out
 bufferLock.release();
}

Infinite synchronized buffer

Hoare

Ownership of lock is immediately transferred to waiting thread when a thread

is signaled.

After thread releases lock, ownership of lock transferred back to signaling

thread.

Signaling can be thought of as atomic.

if (machine is empty)
 bufferCV.wait(bufferLock);
take 1 coke out

Mesa

No guarantees about execution order when a thread is signaled.

while (machine is empty)
 bufferCV.wait(bufferLock);
take 1 coke out

Need while loop because condition can change due to a thread interleaving

between signaling and waiting thread.

Semantics

pthread_mutex_t lock;
pthread_cond_t cv;
int hello = 0;
void print_hello() {
 hello += 1;
 printf("First line (hello=%d)\n", hello);
 pthread_cond_signal(&cv);
 pthread_exit(0);
}

void main() {
 pthread_t thread;
 pthread_create(&thread, NULL, (void*)&print_hello, NULL);
 while (hello < 1)
 pthread_cond_wait(&cv, &lock);
 printf("Second line (hello=%d)\n", hello);
}

1. Will this program compile/run?

Condition Check

pthread_mutex_t lock;
pthread_cond_t cv;
int hello = 0;
void print_hello() {
 hello += 1;
 printf("First line (hello=%d)\n", hello);
 pthread_cond_signal(&cv);
 pthread_exit(0);
}

void main() {
 pthread_t thread;
 pthread_create(&thread, NULL, (void*)&print_hello, NULL);
 while (hello < 1)
 pthread_cond_wait(&cv, &lock);
 printf("Second line (hello=%d)\n", hello);
}

1. Will this program compile/run?

Will not run properly since the thread needs to be holding the lock before

performing a condition variable operation like wait or signal.

Lock and condition variable were also never initialized.

Condition Check

int ben = 0;
_______________________;
_______________________;

void* helper(void* arg) {
 _______________________;
 ben += 1;
 _______________________;
 _______________________;
 pthread_exit(NULL);
}

void main() {
 pthread_t thread;
 pthread_create(&thread, NULL, &helper, NULL);
 pthread_yield();
 _______________________;
 _______________________;
 _______________________;
 if (ben == 1)
 printf("Yeet Haw\n");
 else
 printf("Yee Howdy\n");
 _______________________;
}

2. Fill in the blanks such that the program always prints “Yeet Haw”.

Assume the system behaves with Mesa semantics.

Condition Check

int ben = 0;
pthread_mutex_t lock = PTHREAD_MUTEX_INITIALIZER;
pthread_cond_t cv = PTHREAD_COND_INITIALIZER;

void* helper(void* arg) {
 _______________________;
 ben += 1;
 _______________________;
 _______________________;
 pthread_exit(NULL);
}

void main() {
 pthread_t thread;
 pthread_create(&thread, NULL, &helper, NULL);
 pthread_yield();
 _______________________;
 _______________________;
 _______________________;
 if (ben == 1)
 printf("Yeet Haw\n");
 else
 printf("Yee Howdy\n");
 _______________________;
}

2. Fill in the blanks such that the program always prints “Yeet Haw”.

Assume the system behaves with Mesa semantics.

Initialize a lock and condition variable.

Condition Check

int ben = 0;
pthread_mutex_t lock = PTHREAD_MUTEX_INITIALIZER;
pthread_cond_t cv = PTHREAD_COND_INITIALIZER;

void* helper(void* arg) {
 pthread_mutex_lock(&lock);
 ben += 1;
 pthread_cond_signal(&cv);
 pthread_mutex_unlock(&lock);
 pthread_exit(NULL);
}

void main() {
 pthread_t thread;
 pthread_create(&thread, NULL, &helper, NULL);
 pthread_yield();
 _______________________;
 _______________________;
 _______________________;
 if (ben == 1)
 printf("Yeet Haw\n");
 else
 printf("Yee Howdy\n");
 _______________________;
}

2. Fill in the blanks such that the program always prints “Yeet Haw”.

Assume the system behaves with Mesa semantics.

The helper thread should signal once it has incremented ben. Make sure to

acquire the lock before signaling.

Condition Check

int ben = 0;
pthread_mutex_t lock = PTHREAD_MUTEX_INITIALIZER;
pthread_cond_t cv = PTHREAD_COND_INITIALIZER;

void* helper(void* arg) {
 pthread_mutex_lock(&lock);
 ben += 1;
 pthread_cond_signal(&cv);
 pthread_mutex_unlock(&lock);
 pthread_exit(NULL);
}

void main() {
 pthread_t thread;
 pthread_create(&thread, NULL, &helper, NULL);
 pthread_yield();
 pthread_mutex_lock(&lock);
 while (ben != 1)
 pthread_cond_wait(&cv, &lock);
 if (ben == 1)
 printf("Yeet Haw\n");
 else
 printf("Yee Howdy\n");
 pthread_mutex_unlock(&lock);
}

2. Fill in the blanks such that the program always prints “Yeet Haw”.

Assume the system behaves with Mesa semantics

The main thread should use pthread_cond_wait to sleep until signaled by the

helper thread. Again, make sure to acquire the lock before performing any

condition variable operations (in this case, pthread_cond_wait).

Condition Check

