C3S162
Operating Systems and
Systems Programming

Lecture 9

Synchronization 3:
Semaphores, Monitors and Readers/Writers

February 13, 2024
Prof. John Kubiatowicz
http://cs162.eecs.Berkeley.edu

Recall: Atomic Instruction Operations

o test&set (&address) { /* most architectures */
result = M[address]; // return result from “address” and
M[address] = 1; // set value at “address” to 1
return result;
}
e swap (&address, register) { /* x86 */
temp = M[address]; // swap register’s value to
M[address] = register; // value at “address”
register = temp; // value from “address” put back to register
return temp; // value from “address” considered return from swap
}

e compare&swap (&address, regl, reg2) { /* x86 (returns old value), 68000 */
if (regl == M[address]) { // If memory still == regl,

M[address] = reg2; // then put reg2 => memory
return success;
} else { // Otherwise do not change memory
return failure;
}
}
e load-linked&store-conditional(&address) { /* R4000, alpha */
loop:
11 rl1, M[address];
movi r2, 1; // Can do arbitrary computation

sc r2, M[address];
beqz r2, loop;
2/13/2024 } Kubiatowicz CS162 © UCB Spring 2024 Lec 9.2

Recall: Implementing Locks with test&set
» Simple lock that doesn’t require entry into the kernel:

// (Free) Can access this memory location from user space!
int mylock = @; // Interface: acquire(&mylock);
// release(&mylock);
acquire(int *thelock) {
while (test&set(thelock)); // Atomic operation!

}
release(int *thelock) {

*thelock = 0; // Atomic operation!
}

« Discussion:
— Can have as many locks as memory locations!

— If lock is free, only one thread will get to run test&set which reads 0 and sets lock=1

— If lock is busy, test&set reads 1 and sets lock=1 (no change)
It returns 1, so while loop continues.

— When we set thelock = 0, someone else can get lock.
« Busy-Waiting: thread consumes cycles while waiting

— For multiprocessors: every test&set() is a write, which makes value ping-pong around in

2/13/2024 cache (usmg lots of network B}yL}Qatowicz CS162 © UCB Spring 2024 Lec 9.3

Better Locks using test&set

« Can we build test&set locks without busy-waiting?
— Mostly. Idea: only busy-wait to atomically check lock value
— 1int guard = @; // Global Variable!

int mylock = 1; // Interface: acquire(&mylock);
g // release(&mylock);
acquire(int *thelock) { release(int *thelock) {
// Short busy-wait time // Short busy-wait time
while (test&set(guard)); while (test&set(guard));
if (*thelock == 1) { if anyone on wait queue {
put thread on wait queue; take thread off walt.queue
Place on ready queue;
go to sleep() & guard = @ ???? } else {
// guard == 0 on wakup; *thelock = 0;
} else { }
*thelock = 1; guard = 0;
guard = 0;
}

}

* Note: sleep has to be sure to reset the guard variable

— Why can’t we do it just before or just after the sleep?

2/13/2024 Kubiatowicz CS162 © UCB Spring 2024

Lec 9.4

Analysis: Lock Implementation using interrupts

Desired API Naive Implementation Better Implementation
‘—-\“acquire(int *thelock) {
coquire(int renelock) (1/ STOTE Busyvait vine
int mylock=0; , disable interrupts; if (*thelock == 1) {
put thread on wait-queue;
acquire (&mylock) ; go to sleep() //See Lecture 8!
} else {

*thelock = 1;
enable interrupts;

}

critical section;

release (&mylock); _ }

release (int *thelock) > release(int *thelock) ({

{ // Short busy-wait time
enable interrupts; disable interrupts;
} if anyone on wait queue {
. i,) take thread off wait-queue
& one thread in critical Place on ready queue;

section, no other activity } else {

(including OS) can run! \ *thelock = 0;

enable interrupts;

_ Lock argument not used!)}
2/13/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 9.5

Analysis: Lock Implementation using test&set
Desired API Naive Implementation Better Implementation??

== int guard = 0; // global!
acquire (int *thelock) {
// Short busy-wait time

int mylock=0; int mylock = 0; while (testé&set (guard)) ;
//’acqulre(lnt *thelock) { if (*thelock == 1) {
] . while (testé&set (thelock)) ; put thread on wait-queue;
acquire (&mylock) ; } go to sleep()& guard = 0;

o // guard == 0 on wakeup
critical section; } else {

. *thelock = 1;
release (&mylock) ; guard = 0;

}
}
release (int *thelock) {
release (int *thelock) { // Short busy-wait time
*thelock = 0; while (testé&set(guard)) ;
} if anyone on wait queue {

take thread off wait-queue
Place on ready queue;

} else {
Threads waiting to enter *thelock = 0;
critical section busy-wait! guard = 0;

}
2/13/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 9.6

Linux futex: Fast Userspace Mutex

#include <linux/futex.h>
#include <sys/time.h>

int futex(int *uaddr, int futex op, int val,
const struct timespec *timeout);

uaddr points to a 32-bit value in user space

futex_op
— FUTEX_WAIT —if val == *uaddr sleep till FUTEX_WAIT
» Atomic check that condition still holds after we disable interrupts (in kernel!)
- FUTEX_WAKE — wake up at most val waiting threads
— FUTEX_FD, FUTEX_WAKE_OP, FUTEX_CMP_REQUEUE: More interesting operations!

timeout
— ptr to a timespec structure that specifies a timeout for the op

e Interface to the kernel sleep() functionality!
- Let thread put themselves to sleep - conditionally!
e futex is not exposed in libc; it is used within the implementation of pthreads

— Can be used to implement locks, semaphores, monitors, etc...
2/13/2024 Kubiatowicz CS162 © UCB Spring 2024

Lec 9.7

Example: First try: T&S and futex

int mylock = @; // Interface: acquire(&mylock);

// release(&mylock);
acquire(int *thelock) { release(int *thelock) {
while (test&set(thelock)) { *thelock = 0; // unlock
futex(thelock, FUTEX WAIT, 1); futex(thelock, FUTEX_WAKE, 1);
}
} }
* Properties:

— Sleep interface by using futex — no busywaiting
* No overhead to acquire lock
— Good!
« Every unlock has to call kernel to potentially wake someone up — even if none

— Slows down the uncontested case where only one thread acquiring and releasing
over and over...!

2/13/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 9.8

Example: Try #2: T&S and futex

bool maybe waiters = false;
int mylock = @; // Interface: acquire(&mylock,&maybe waiters);

// release(&mylock,&maybe waiters);
acquire(int *thelock, bool *maybe) { release(int *thelock, bool *maybe) {
while (test&set(thelock)) { *thelock = 6;
// Sleep, since lock busy! if (*maybe) {
*maybe = true; *maybe = false;
futex(thelock, FUTEX WAIT, 1); // Try to wake up someone
futex(thelock, FUTEX WAKE, 1);
// Make sure other sleepers not stuck }
*maybe = true; }

}
}

» This is syscall-free in the uncontended case

— Temporarily falls back to syscalls if multiple waiters, or concurrent acquire/release
« But it can be considerably optimized!

— See “Futexes are Tricky” by Ulrich Drepper

2/13/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 9.9

Try #3: Better, using more atomics

* Much better: Three (3) states: typedef enum { UNLOCKED,LOCKED,CONTESTED } Lock;
— UNLOCKED: No one has lock Lock mylock = UNLOCKED; // Interface: acquire(&mylock);
// release(&mylock);
— LOCKED: One thread has lock (&mylock)
— CONTESTED: Possibly more acquire(Lock *thelock) {
than one (with someone sleeping) // If unlocked, grab lock!
« Clean interface! if (compare&swap(thelock,UNLOCKED,LOCKED))
return;

* Lock grabbed cleanly by either

— compare&swap() // Keep trying to grab lock, sleep in futex

— First swap() while (swap(thelock,CONTESTED) != UNLOCKED))

, // Sleep unless someone releases here!

* No overhead if uncontested! futex(thelock, FUTEX WAIT, CONTESTED);

» Could build semaphores in a similar }
way!

release(Lock *thelock) {

// If someone sleeping,
if (swap(thelock,UNLOCKED) == CONTESTED)

futex(thelock, FUTEX WAKE,1);
}

2/13/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 9.10

Recall: Where are we going with synchronization?

« We are going to implement various higher-level synchronization
primitives using atomic operations

— Everything is pretty painful if only atomic primitives are load and store
— Need to provide primitives useful at user-level

2/13/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 9.11

2/13/2024

Administrivia

Midterm This Thursday, 8-10pm (February 15)!
— In person: Dwinelle 155 (here) or VLSB 2050
» Look on ED for which room you should go to
— You are responsible for all materials up to and including today’s lecture!
» Including Semaphores and Monitors

» | have a complete version of the synchronization lectures available on YouTube from my

Fall 2020 class. [Note — the names of the lectures have changed slightly!]

You get one (1) double-side page of handwritten notes

— Hand drawn figures, hand written notes

— No copying of figures directly from slides, no microfiche, etc

— Redraw them if you want them on your notes!
If you are sick, let us know.

— Do not come to the midterm!
No class on Thursday

— | will have extra office hours during class time
No section this week!

No OH on Monday (it is a holiday!)

Kubiatowicz CS162 © UCB Spring 2024

Lec 9.12

Producer-Consumer with a Bounded Buffer

Problem Definition I Consumer |:|
— Producer(s) put things into a shared buffer '

— Consumer(s) take them out
— Need synchronization to coordinate producer/consumer

Don’t want producer and consumer to have to work in lockstep, so put
a fixed-size buffer between them

— Need to synchronize access to this buffer
— Producer needs to wait if buffer is full
— Consumer needs to wait if buffer is empty

Example 1: GCC compiler
-cpp | ccl | cc2 | as | 1d

Example 2: Coke machine
— Producer can put limited number of Cokes in machine
— Consumer can'’t take Cokes out if machine is empty

« Others: Web servers, Routers,

2/13/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 9.13

Bounded Buffer Data Structure (sequential case)

W |
r

typedef struct buf {

int write index;

int read index;

<type> *entries [BUFSIZE]; L{
} buf t;

* Insert: write & bump write ptr (enqueue)
 Remove: read & bump read ptr (dequeue)

« How to tell if Full (on insert) Empty (on remove)?
« And what do you do if it is?

What needs to be atomic?

2/13/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 9.14

Bounded Buffer — first cut

mutex buf_lock = <initially unlocked>

Producer(item) {
acquire(&buf_lock);
while (buffer full) {}; // Wait for a free slot

enqueue(item);
release(&buf_lock); \
Will we ever come out
of the wait loop?
Consumer() {
acquire(&buf_lock);
while (buffer empty) {}; // Wait for arrival
item = dequeue();

release(&buf_lock);
return item

2/13/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 9.15

Bounded Buffer — 2" cut

mutex buf_lock = <initially unlocked>

Producer(item) {
acquire(&buf_lock);
while (buffer full) {release(&buf_lock); acquire(&buf_lock);}

enqueue(item);
release(&buf_lock); What happens when one
} is waiting for the other?
- Multiple cores ?
Consumer() { , - Single core ?

acquire(&buf_lock);

while (buffer empty) {release(&buf_lock); acquire(&buf_lock);}
item = dequeue();

release(&buf_lock);

return item

2/13/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 9.16

Better Primitive: Semaphores

« Semaphores are a kind of generalized lock
— First defined by Dijkstra in late 60s
— Main synchronization primitive used in original UNIX
» Definition: a Semaphore has a non-negative integer value and supports
the following operations:
— Set value when you initialize

— Down () or P(): an atomic operation that waits for semaphore to become
positive, then decrements it by 1

» Think of this as the wait() operation

- Up () or V(): an atomic operation that increments the semaphore by 1, waking
up a waiting P, if any
» This of this as the signal() operation

« Technically examining value after initialization is not allowed.

2/13/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 9.17

Semaphores Like Integers Except...

« Semaphores are like integers, except:
— No negative values
— Only operations allowed are P and V — can’t read or write value, except initially

— Operations must be atomic
» Two P’s together can’t decrement value below zero
» Thread going to sleep in P won’t miss wakeup from V — even if both happen at same time

« POSIX adds ability to read value, but technically not part of proper interface!

« Semaphore from railway analogy
— Here is a semaphore initialized to 2 for resource control:

g : j
Value=2 P|) V()

2/13/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 9.18

Two Uses of Semaphores

Mutual Exclusion (initial value = 1)
» Also called “Binary Semaphore” or “mutex”.

« Can be used for mutual exclusion, just like a lock:

semaP (&mysem) ;
// Critical section goes here
semaV(&mysem) ;

Scheduling Constraints (initial value = 0)
 Allow thread 1 to wait for a signal from thread 2
—thread 2 schedules thread 1 when a given event occurs

« Example: suppose you had to implement ThreadJoin which must wait for
thread to terminate:
Initial value of semaphore = 0
ThreadJoin {

semaP (&mysem) ;
}
ThreadFinish {
semaV(&mysem) ;
}

2/13/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 9.19

Revisit Bounded Buffer: Correctness constraints for solution

« Correctness Constraints:
— Consumer must wait for producer to fill buffers, if none full (scheduling constraint)
— Producer must wait for consumer to empty buffers, if all full (scheduling constraint)
— Only one thread can manipulate buffer queue at a time (mutual exclusion)

« Remember why we need mutual exclusion
— Because computers are stupid

— Imagine if in real life: the delivery person is filling the machine and somebody
comes up and tries to stick their money into the machine

* General rule of thumb: Use a separate semaphore for each constraint
- Semaphore fullBuffers; // consumer’s constraint
- Semaphore emptyBuffers;// producer’s constraint
- Semaphore mutex; // mutual exclusion

2/13/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 9.20

Bounded Buffer, 3" cut (coke machine)

Semaphore fullSlots = 0; // Initially, no coke

Semaphore emptySlots = bufSize;
// Initially, num empty slots

Semaphore mutex = 1; // No one using machine

Producer(item) {

semaP (&emptySlots); // Wait until space
semaP (&mutex); // Walt until machine free
Enqueue(item); ﬁ
semaV(&mutex);
semaV(&fullSlots); // Tell consumers there is Critical sections
} P li/ lmcjcpe (_:Okel . using mutex
Consumer() { ullSlots signals coke protect integrity
semaP(&fullSlots); // Check if there’s a coke of the queue
semaP(&mutex); // Walt until machine free '
emptySlots item ? Dequege();
: semaV(&mutex);
signals space semaV(&emptySlots); // tell producer need more

return item;

2/13/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 9.21

Discussion about Solution

Decrease # of
Why asymmetry? empty slots

— Producer does: semaP(\&gmptyBuffer'), semaV(TéullBuffer')
— Consumer does: semaP(&fullBuffer), semaV(&emptyBuffer)

Increase # of
occupied slots

R /\
Decrease # of Increase # of
occupied slots empty slots

|s order of P’s important?

|s order of V’s important?

What if we have 2 producers
or 2 consumers?

Producer(item) {
semaP (&mutex);
semaP (&emptySlots);
Enqueue(item);
semaV(&mutex);
semaV(&fullSlots);

Consumer() {
semaP(&fullSlots);
semaP (&mutex);
item = Dequeue();
semaV(&mutex);
semaV(&emptySlots);
return item;

2/13/2024 Kubiatowicz CS162 © UCB Spring 2024

Lec 9.22

2/13/2024

Semaphores are good but...Monitors are better!

Semaphores are a huge step up; just think of trying to do the bounded
buffer with only loads and stores or even with locks!

Problem is that semaphores are dual purpose:

— They are used for both mutex and scheduling constraints

— Example: the fact that flipping of P’s in bounded buffer gives deadlock is not
immediately obvious. How do you prove correctness to someone?

Cleaner idea: Use locks for mutual exclusion and condition variables for
scheduling constraints

Definition: Monitor: a lock and zero or more condition variables for
managing concurrent access to shared data

— Some languages like Java provide this natively
— Most others use actual locks and condition variables

A “Monitor” is a paradigm for concurrent programming!
— Some languages support monitors explicitly

Kubiatowicz CS162 © UCB Spring 2024

Lec 9.23

Condition Variables

How do we change the consumer() routine to wait until something is on
the queue?

— Could do this by keeping a count of the number of things on the queue (with
semaphores), but error prone

Condition Variable: a queue of threads waiting for something inside a
critical section

— Key idea: allow sleeping inside critical section by atomically releasing lock at
time we go to sleep

— Contrast to semaphores: Can’t wait inside critical section
Operations:

- Wait(&lock): Atomically release lock and go to sleep.
Re-acquire lock later, before returning.

- Signal(): Wake up one waiter, if any
- Broadcast(): Wake up all waiters

Rule: Must hold lock when doing condition variable ops!

2/13/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 9.24

» Lock: the lock provides mutual exclusion to shared data
— Always acquire before accessing shared data structure

p—

——

juetes associated with :-
x, v conditions ..
!

\\H initializ ation p
— __GDdF.-" -

— Always release after finishing with shared data

— Lock initially free

« Condition Variable: a queue of threads waiting for something inside a critical

2/13/2024

section

— Key idea: make it possible to go to sleep inside critical section by atomically

releasing lock at time we go to sleep

— Contrast to semaphores: Can’t wait inside critical section

Kubiatowicz CS162 © UCB Spring 2024

Lec 9.25

Infinite Synchronized Buffer (with condition variable)

* Here is an (infinite) synchronized queue:

lock buf_lock; //
condition buf CV; //
queue queue; //

Producer(item) {

acquire(&buf lock); //
enqueue (&queue,item); //
cond 51gnal(&buf CV), //

Initially unlocked
Initially empty
Actual queue!

Get Lock

Add item

Signal any waiters
Release Lock

Get Lock

cond wait(&buf_CV, &buf lock); // If empty, sleep

release(&buf lock); //

}

Consumer() {
acquire(&buf lock); //
while (1sEmpty(&queue)) {
item = dequeue(&queue); //
release(&buf_lock); //
return(item);

}

Get next item
Release Lock

2/13/2024 Kubiatowicz CS162 © UCB Spring 2024

Lec 9.26

Mesa vs. Hoare monitors

» Need to be careful about precise definition of signal and wait.

Consider a piece of our dequeue code:
while (isEmpty(&queue)) {
cond_wait(&buf_CV,8&buf_lock); // If nothing, sleep

}
item = dequeue(&queue); // Get next item
— Why didn’t we do this?

if (isEmpty(&queue)) {
cond wait(&buf_CV,&buf lock); // If nothing, sleep
}

item = dequeue(&queue); // Get next item
« Answer: depends on the type of scheduling

— Mesa-style: Named after Xerox-Park Mesa Operating System
» Most OSes use Mesa Scheduling!

— Hoare-style: Named after British logician Tony Hoare

2/13/2024 Kubiatowicz CS162 © UCB Spring 2024

Lec 9.27

Hoare monitors

« Signaler gives up lock, CPU to waiter; waiter runs immediately

« Then, Waiter gives up lock, processor back to signaler when it exits
critical section or if it waits again

. acquire (&buf lock) ;
acquire (&buf lock) ; "
Lock, CPU if (isEmpty (&queue)) ({

cond wait (&buf CV, &buf lock) ;
Lo - - -
k, .)
release (&buf lock) ; by

cond signal (&buf CV) ;

release (&buf lock);

« On first glance, this seems like good semantics

— Waiter gets to run immediately, condition is still correct!
* Most textbooks talk about Hoare scheduling

— However, hard to do, not really necessary!

— Forces a lot of context switching (inefficient!)

2/13/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 9.28

Mesa monitors

» Signaler keeps lock and processor
« Waiter placed on ready queue with no special priority

Put waiting
thread on
ready queue

acquire (&buf lock);

acquire (&buf lock) .
while (isEmpty (&queue)) ({

cond signal (&buf CV) ; cond wait (&buf CV, &buf lock) ;

}

release (&buf_lock)) ; d&e&\\gﬁ\
“W@ lock.Release();

\60‘“

Practically, need to check condition again after wait

— By the time the waiter gets scheduled, condition may be false again — so,
just check again with the “while” loop

* Most real operating systems do this!
— More efficient, easier to implement
— Signaler’s cache state, etc still good

2/13/2024 Kubiatowicz CS162 © UCB Spring 2024

Lec 9.29

2/13/2024

Bounded Buffer — 4™ cut (Monitors, pthread-like)

lock buf lock = <initially unlocked>
condition producer CV = <initially empty>
condition consumer CV = <initially empty>

Producer(item) {
acquire(&buf lock);
while (buffer full) { cond wait(&producer CV, &buf lock); }
enqueue(item);
cond_signal(&consumer_ CV);
release(&buf_lock);

}

What does thread do
when it is waiting?
- Sleep, not busywait!
Consumer() {
acquire(buf_lock);
while (buffer empty) { cond wait(&consumer CV, &buf lock); }
item = dequeue();
cond_signal(&producer_CV);
release(buf_lock);
return item

Kubiatowicz CS162 © UCB Spring 2024

Lec 9.30

Again: Why the while Loop?

MESA semantics

For most operating systems, when a thread is woken up by
signal(), itis simply put on the ready queue

It may or may not reacquire the lock immediately!

— Another thread could be scheduled first and "sneak in" to empty
the queue

— Need a loop to re-check condition on wakeup
Is this busy waiting?

2/13/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 9.31

OS Library Monitor Pattern: pthreads

// Locks

int pthread mutex_init(pthread mutex_ t *mutex,
const pthread mutexattr_t *attr);

int pthread mutex_ lock(pthread mutex_t *mutex);
int pthread mutex_unlock(pthread mutex_t *mutex);

// Condition Variables
int pthread cond init(pthread cond t *cond,
const pthread mutexattr_t *attr);
int pthread cond wait(pthread cond t *cond, pthread mutex t *mutex);
int pthread cond signal(pthread cond t *cond);
int pthread cond broadcast(pthread cond t *cond);

2/13/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 9.32

ReaderS/erters Problem

* Motivation: Consider a shared database

— Two classes of users:
» Readers — never modify database
» Writers — read and modify database
— Is using a single lock on the whole database sufficient?
» Like to have many readers at the same time
» Only one writer at a time

2/13/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 9.33

2/13/2024

Basic Structure of Mesa Monitor Program

* Monitors represent the synchronization logic of the program

— Wait if necessary

— Signal when change something so any waiting threads can proceed
» Basic structure of mesa monitor-based program:

lock

while (need to wait) { Check and/or update
condvar.wait(); state variables
}

Wait if necessary
unlock

do something so no need to wait

lock

. Check and/or update
condvar.signal(); :}—' s&ﬂevaﬂamgs
unlock

Kubiatowicz CS162 © UCB Spring 2024

Lec 9.34

Basic Readers/\Writers Solution

* Correctness Constraints:
— Readers can access database when no writers
— Writers can access database when no readers or writers
— Only one thread manipulates state variables at a time

» Basic structure of a solution:

— Reader ()
Wait until no writers
Access data base
Check out - wake up a waiting writer

—Writer ()
Wait until no active readers or writers
Access database
Check out - wake up waiting readers or writer

— State variables (Protected by a lock called “lock”):
» int AR: Number of active readers; initially = 0
» int WR: Number of waiting readers; initially = 0
» int AW: Number of active writers; initially = 0
» int WW: Number of waiting writers; initially = 0
» Condition okToRead = NIL
» Condition okToWrite = NIL

2/13/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 9.35

2/13/2024

Code for a Reader

Reader () {

// First check self into system
acquire (&lock) ;

while ((AW + WW) > 0) { // Is it safe to read?

WR++; // No. Writers exist
cond wait (&okToRead, &lock) ;// Sleep on cond var
WR--; // No longer waiting

}

AR++; // Now we are active!

release (&lock) ;

// Perform actual read-only access
AccessDatabase (ReadOnly) ;

// Now, check out of system

acquire (&lock) ;

AR--; // No longer active

if (AR == 0 && WW > 0) // No other active readers
cond signal (&okToWrite) ;// Wake up one writer

release (&lock) ;

Kubiatowicz CS162 © UCB Spring 2024

Lec 9.36

Code for a Writer
Writer () {

// First check self into system
acquire (&lock) ;

while ((AW + AR) > 0) { // Is it safe to write?

WW++; // No. Active users exist
cond wait (&okToWrite, &lock); // Sleep on cond var
WW--; // No longer waiting

}

AW++; // Now we are active!

release (&lock) ;

// Perform actual read/write access
AccessDatabase (ReadWrite) ;

// Now, check out of system
acquire (&lock) ;

AW--; // No longer active

if (WWw > 0){ // Give priority to writers
cond signal (&okToWrite) ;// Wake up one writer

} else if (WR > 0) { // Otherwise, wake reader

cond broadcast (&okToRead); // Wake all readers
}

release (&lock) ;

}
2/13/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 9.37

Simulation of Readers/Writers Solution

« Use an example to simulate the solution

« Consider the following sequence of operators:
- R1, R2, W1, R3

* Initially: AR=0, WR=0,AW =0, WW =0

2/13/2024 Kubiatowicz CS162 © UCB Spring 2024

Lec 9.38

Simulation of Readers/Writers Solution

« R1 comes along (no waiting threads)
« AR=0,WR=0,AW=0,WW=0

N Y T Y (3 10) —

while ((AW + WW) > 0) { // Is it safe to read?

WR++; // No. Writers exist
cond wait (&okToRead, &lock) ;// Sleep on cond var
WR--7 // No longer waiting

}

AR++; // Now we are active!

release (&lock) ;
AccessDBase (ReadOnly) ;

acquire (&lock) ;
AR--;
if (AR == 0 && WW > 0)

cond signal (&okToWrite) ;
release(&lock) ;

2/13/2024 Kubiatowicz CS162 © UCB Spring 2024

Lec 9.39

Simulation of Readers/Writers Solution

« R1 comes along (no waiting threads)
« AR=0,WR=0,AW=0,WW=0

Reader () {
acquire (&lock) ;

P{ // Is it safe to read?
++; // No. Writers exist

cond wait (&okToRead, &lock) ;// Sleep on cond var
WR--7 // No longer waiting

}

AR++; // Now we are active!
release (&lock) ;

AccessDBase (ReadOnly) ;

acquire (&lock) ;
AR--;
if (AR == 0 && WW > 0)

cond signal (&okToWrite) ;
release(&lock) ;

2/13/2024 Kubiatowicz CS162 © UCB Spring 2024

Lec 9.40

Simulation of Readers/Writers Solution

« R1 comes along (no waiting threads)
« AR=1,WR=0,AW=0,WW=0

Reader () {
acquire (&lock) ;

while ((AW + WW) > 0) { // Is it safe to read?

WR++; // No. Writers exist
cond wait (&okToRead, &lock) ;// Sleep on cond var
WR--7 // No longer waiting

}

// Now we are active!

release (&lock) ;

AccessDBase (ReadOnly) ;

acquire (&lock) ;
AR--;
if (AR == 0 && WW > 0)

cond signal (&okToWrite) ;
release(&lock) ;

2/13/2024 Kubiatowicz CS162 © UCB Spring 2024

Lec 9.41

Simulation of Readers/Writers Solution

« R1 comes along (no waiting threads)
« AR=1,WR=0,AW=0,WW=0

Reader () {
acquire (&lock) ;

while ((AW + WW) > 0) { // Is it safe to read?
WR++; // No. Writers exist
cond wait (&okToRead, &lock) ;// Sleep on cond var

WR--7 / No longer waiting
}

AR++;

(Peleise(alocky;] | 0 e ooeme

AccessDBase (ReadOnly) ;

acquire (&lock) ;
AR--;

if (AR == 0 && WW > 0)
cond signal (&okToWrite) ;
release(&lock) ;

2/13/2024 Kubiatowicz CS162 © UCB Spring 2024

Lec 9.42

Simulation of Readers/Writers Solution

* R1 accessing dbase (no other threads)
« AR=1,WR=0,AW=0, WW=0

Reader () {
acquire (&lock) ;

while ((AW + WW) > 0) { // Is it safe to read?

WR++; // No. Writers exist
cond wait (&okToRead, &lock) ;// Sleep on cond var
WR--7 // No longer waiting
}
AR++; // Now we are active!
release (&lock) ;
acquire (&lock) ;
AR--;
if (AR == 0 && WW > 0)

cond signal (&okToWrite) ;
release(&lock) ;

2/13/2024 Kubiatowicz CS162 © UCB Spring 2024

Lec 9.43

Simulation of Readers/Writers Solution

 R2 comes along (R1 accessing dbase)
« AR=1,WR=0,AW=0, WW=0

N Y T Y (3 10 S r—

while ((AW + WW) > 0) { // Is it safe to read?

WR++; // No. Writers exist
cond wait (&okToRead, &lock) ;// Sleep on cond var
WR--7 // No longer waiting

}

AR++; // Now we are active!

release (&lock) ;
AccessDBase (ReadOnly) ;

acquire (&lock) ;
AR--;
if (AR == 0 && WW > 0)

cond signal (&okToWrite) ;
release(&lock) ;

2/13/2024 Kubiatowicz CS162 © UCB Spring 2024

Lec 9.44

Simulation of Readers/Writers Solution

 R2 comes along (R1 accessing dbase)
« AR=1,WR=0,AW=0, WW=0

Reader () {
acquire (&lock) ;

P{ // Is it safe to read?
++; // No. Writers exist

cond wait (&okToRead, &lock) ;// Sleep on cond var
WR--7 // No longer waiting

}

AR++; // Now we are active!
release (&lock) ;

AccessDBase (ReadOnly) ;

acquire (&lock) ;
AR--;
if (AR == 0 && WW > 0)

cond signal (&okToWrite) ;
release(&lock) ;

2/13/2024 Kubiatowicz CS162 © UCB Spring 2024

Lec 9.45

Simulation of Readers/Writers Solution

 R2 comes along (R1 accessing dbase)
« AR=2, WR=0,AW=0, WW=0

Reader () {
acquire (&lock) ;

while ((AW + WW) > 0) { // Is it safe to read?

WR++; // No. Writers exist
cond wait (&okToRead, &lock) ;// Sleep on cond var
WR--7 // No longer waiting

}

// Now we are active!

release (&lock) ;

AccessDBase (ReadOnly) ;

acquire (&lock) ;
AR--;
if (AR == 0 && WW > 0)

cond signal (&okToWrite) ;
release(&lock) ;

2/13/2024 Kubiatowicz CS162 © UCB Spring 2024

Lec 9.46

Simulation of Readers/Writers Solution

 R2 comes along (R1 accessing dbase)
« AR=2, WR=0,AW=0, WW=0

Reader () {
acquire (&lock) ;

while ((AW + WW) > 0) { // Is it safe to read?
WR++; // No. Writers exist
cond wait (&okToRead, &lock) ;// Sleep on cond var

WR--7 / No longer waiting
}

AR++;

(Peleise(alocky;] | 0 e ooeme

AccessDBase (ReadOnly) ;

acquire (&lock) ;
AR--;

if (AR == 0 && WW > 0)
cond signal (&okToWrite) ;
release(&lock) ;

2/13/2024 Kubiatowicz CS162 © UCB Spring 2024

Lec 9.47

Simulation of Readers/Writers Solution

 R1 and R2 accessing dbase
« AR=2, WR=0,AW=0, WW=0

Reader () {
acquire (&lock) ;

while ((AW + WW) > 0) { // Is it safe to read?

WR++; // No. Writers exist
cond wait (&okToRead, &lock);// Sleep on cond var
WR--7 // No longer waiting
}
AR++; // Now we are active!
release (&lock) ;

acquire (&lock) ;
AR--;

14

2/13/2024 Kubiatowicz CS162 © UCB Spring 2024

Lec 9.48

Simulation of Readers/Writers Solution

W1 comes along (R1 and R2 are still accessing dbase)
« AR=2, WR=0,AW=0,WW=0

B Yo 501 €) 3 S —
// Is it safe to write?

while ((AW + AR) > 0) {
WW++; No. Active users exist

cond wait (&okToWrite, & oc%? ;// Sleep on cond var
) WW--7 o longer waiting

AW++;
release(&lock)

AccessDBase (ReadWrite) ;

acquire (&lock
Aun (),

if (WW > 0)

cond 31gngl(&okToWr1te),
} else—if 0

cond broadcast(&o ToRead) ;
release (&lock) ;

2/13/2024 Kubiatowicz CS162 © UCB Spring 2024

Lec 9.49

2/13/2024

Simulation of Readers/Writers Solution

W1 comes along (R1 and R2 are still accessing dbase)
« AR=2, WR=0,AW=0,WW=0

Writer () ({
acquire (&lock) ;

// Is it safe to write?
.] No. Active users exist
cond wait (&okToWrite, & oc%?;// Sleep on cond var
WW--7 // No longer waiting

}

AW++;
release (&lock) ;

AccessDBase (ReadWrite) ;

acquire (&lock) ;
if (WW > 0){]
cond signal (&okToWrite) ;
} else—if"(WR > 0
cond broadcast (&okToRead) ;

release (&lock) ;

Kubiatowicz CS162 © UCB Spring 2024

Lec 9.50

Simulation of Readers/Writers Solution

W1 comes along (R1 and R2 are still accessing dbase)
« AR=2, WR=0,AW =0, WW =1

Writer () ({
acquire (&lock) ;

while ((AW + AR) > 0) { // Is it safe to write?

: Active users exist
// Sleep on cond var
longer waiting

4

}

AW++;
release (&lock) ;

AccessDBase (ReadWrite) ;

gﬁqu%re(&lock);
if (WW > 0){ _
cond signal (&okToWrite) ;
} else—if"(WR > 0
cond broadcast (&okToRead) ;

release (&lock) ;

2/13/2024 Kubiatowicz CS162 © UCB Spring 2024

Lec 9.51

Simulation of Readers/Writers Solution

« R3 comes along (R1 and R2 accessing dbase, W1 waiting)
« AR=2, WR=0,AW =0, WW =1

N Y T Y (3 10 S r—

while ((AW + WW) > 0) { // Is it safe to read?

WR++; // No. Writers exist
cond wait (&okToRead, &lock) ;// Sleep on cond var
WR--7 // No longer waiting

}

AR++; // Now we are active!

release (&lock) ;
AccessDBase (ReadOnly) ;

acquire (&lock) ;
AR--;
if (AR == 0 && WW > 0)

cond signal (&okToWrite) ;
release(&lock) ;

2/13/2024 Kubiatowicz CS162 © UCB Spring 2024

Lec 9.52

Simulation of Readers/Writers Solution

« R3 comes along (R1 and R2 accessing dbase, W1 waiting)
« AR=2, WR=0,AW =0, WW =1

Reader () {
acquire (&lock) ;

P{ // Is it safe to read?
++; // No. Writers exist

cond wait (&okToRead, &lock) ;// Sleep on cond var
WR--7 // No longer waiting

}

AR++; // Now we are active!
release (&lock) ;

AccessDBase (ReadOnly) ;

acquire (&lock) ;
AR--;
if (AR == 0 && WW > 0)

cond signal (&okToWrite) ;
release(&lock) ;

2/13/2024 Kubiatowicz CS162 © UCB Spring 2024

Lec 9.53

Simulation of Readers/Writers Solution

« R3 comes along (R1 and R2 accessing dbase, W1 waiting)
« AR=2, WR=1, AW =0, WW =1

Reader () {
acquire (&lock) ;

{ // Is it safe to read?

/ No. Writers exist
cond wait (&okToRead, &lock) ;// Sleep on cond var
WR--7 // No longer waiting

}

AR++; // Now we are active!
lock.release() ;

AccessDBase (ReadOnly) ;

acquire (&lock) ;
AR--;
if (AR == 0 && WW > 0)

cond signal (&okToWrite) ;
release(&lock) ;

2/13/2024 Kubiatowicz CS162 © UCB Spring 2024

Lec 9.54

Simulation of Readers/Writers Solution

* R3 comes along (R1, R2 accessing dbase, W1 waiting)
« AR=2, WR=1, AW =0, WW =1

Reader () {
acquire (&lock) ;

while ((AW + WW) > 0) { // Is it safe to read?
WR++; No. Writers exist

// Sleep on cond var
-= © longer waiting

}

AR++; // Now we are active!
release (&lock) ;

AccessDBase (ReadOnly) ;

acquire (&lock) ;
AR--;
if (AR == 0 && WW > 0)

cond signal (&okToWrite) ;
release(&lock) ;

2/13/2024 Kubiatowicz CS162 © UCB Spring 2024

Lec 9.55

Simulation of Readers/Writers Solution
 R1 and R2 accessing dbase, W1 and R3 waiting
« AR=2, WR=1 AW =0, WW = 1

Reader () {
acquire (&lock) ;

while ((AW + WW) > 0) { // Is it safe to read?

WR++; // No. Writers exist
cond wait (&okToRead, &lock) ;// Sleep on cond var
WR--7 // No longer waiting

}

AR++; // Now we are active!

release (&lock) ;

AccessDBase (ReadOnly) ;

acquire (&lock) ;
AR--;

14

2/13/2024 ubiatowicz Lec 9.56

Simulation of Readers/Writers Solution

« R2 finishes (R1 accessing dbase, W1 and R3 waiting)
« AR=2, WR=1 AW=0, WW =1

Reader () {
acquire (&lock) ;

while ((AW + WW) > 0) { // Is it safe to read?

WR++; // No. Writers exist
cond wait (&okToRead, &lock) ;// Sleep on cond var
WR--7 // No longer waiting

}

AR++; // Now we are active!

release (&lock) ;

AccessDBase (ReadOnly) ;

lacquire (¢lock); |
AR--;
if (AR == 0 && WW > 0)

cond signal (&okToWrite) ;
release(&lock) ;

}

2/13/2024 Kubiatowicz CS162 © UCB Spring 2024

Lec 9.57

Simulation of Readers/Writers Solution

« R2 finishes (R1 accessing dbase, W1 and R3 waiting)
« AR=1,WR=1 AW=0, WW =1

Reader () {
acquire (&lock) ;

while ((AW + WW) > 0) { // Is it safe to read?

WR++; // No. Writers exist
cond wait (&okToRead, &lock) ;// Sleep on cond var

WR--7 / No longer waiting
}

AR++;

// Now we are active!
release (&lock) ;

AccessDBase (ReadOnly) ;

acquire(&lock) ;

1 == &&
cond signal (&okToWrite) ;
release(&lock) ;

2/13/2024 Kubiatowicz CS162 © UCB Spring 2024

Lec 9.58

Simulation of Readers/Writers Solution

« R2 finishes (R1 accessing dbase, W1 and R3 waiting)
« AR=1,WR=1 AW=0, WW =1

Reader () {
acquire (&lock) ;

while ((AW + WW) > 0) { // Is it safe to read?

WR++; // No. Writers exist
cond wait (&okToRead, &lock) ;// Sleep on cond var

WR--7 / No longer waiting
}

AR++;

// Now we are active!
release (&lock) ;

AccessDBase (ReadOnly) ;

acquire (&lock) ;
AR--;

cond signal (&okToWrite) ;
release(&lock) ;

2/13/2024 Kubiatowicz CS162 © UCB Spring 2024

Lec 9.59

Simulation of Readers/Writers Solution

« R2 finishes (R1 accessing dbase, W1 and R3 waiting)
« AR=1,WR=1 AW=0, WW =1

Reader () {
acquire (&lock) ;

while ((AW + WW) > 0) { // Is it safe to read?
WR++; // No. Writers exist
cond wait (&okToRead, &lock) ;// Sleep on cond var

WR--7 / No longer waiting
}

AR++;

// Now we are active!
release (&lock) ;

AccessDBase (ReadOnly) ;

acquire (&lock) ;
AR--;
if (AR == 0 && WW > 0)

cond siinali&okToWrite);

}

2/13/2024 Kubiatowicz CS162 © UCB Spring 2024

Lec 9.60

Simulation of Readers/Writers Solution

« R1 finishes (W1 and R3 waiting)
« AR=1,WR=1 AW=0, WW =1

Reader () {
acquire (&lock) ;

while ((AW + WW) > 0) { // Is it safe to read?

WR++; // No. Writers exist
cond wait (&okToRead, &lock) ;// Sleep on cond var
WR--7 // No longer waiting

}

AR++; // Now we are active!

release (&lock) ;

AccessDBase (ReadOnly) ;

!!—— 4
7

if (AR == 0 && WW > 0)
cond signal (&okToWrite) ;
release(&lock) ;

}

2/13/2024 Kubiatowicz CS162 © UCB Spring 2024

Lec 9.61

Simulation of Readers/Writers Solution

« R1 finishes (W1, R3 waiting)
« AR=0,WR=1, AW=0, WW =1

Reader () {
acquire (&lock) ;

while ((AW + WW) > 0) { // Is it safe to read?

WR++; // No. Writers exist
cond wait (&okToRead, &lock) ;// Sleep on cond var

WR--7 / No longer waiting
}

AR++;

// Now we are active!
release (&lock) ;

AccessDBase (ReadOnly) ;

acquire(&lock) ;

l ——
cond signal (&okToWrite) ;
release(&lock) ;

2/13/2024 Kubiatowicz CS162 © UCB Spring 2024

Lec 9.62

Simulation of Readers/Writers Solution

« R1 finishes (W1, R3 waiting)
« AR=0,WR=1, AW=0, WW =1

Reader () {
acquire (&lock) ;

while ((AW + WW) > 0) { // Is it safe to read?

WR++; // No. Writers exist
cond wait (&okToRead, &lock) ;// Sleep on cond var

WR--7 / No longer waiting
}

AR++;

// Now we are active!
release (&lock) ;

AccessDBase (ReadOnly) ;

acquire (&lock) ;
AR--;

cond signal (&okToWrite) ;
release(&lock) ;

2/13/2024 Kubiatowicz CS162 © UCB Spring 2024

Lec 9.63

Simulation of Readers/Writers Solution

* R1 signals a writer (W1 and R3 waiting)
« AR=0,WR=1, AW=0, WW =1

Reader () {
acquire (&lock) ;

while ((AW + WW) > 0) { // Is it safe to read?

WR++; // No. Writers exist
cond wait (&okToRead, &lock) ;// Sleep on cond var
WR--7 // No longer waiting

}

AR++; // Now we are active!

release (&lock) ;
AccessDBase (ReadOnly) ;

acquire (&lock) ;

AR--;

if (AR == 0 && WW > O
re!ease!&!oc!!;

2/13/2024 Kubiatowicz CS162 © UCB Spring 2024

Lec 9.64

2/13/2024

Simulation of Readers/Writers Solution

« W1 gets signal (R3 still waiting)
« AR=0,WR=1, AW=0, WW =1

Writer () ({
acquire (&lock) ;

while ((AW + AR) > 0) { // Is it safe to write?

Active users exist
// Sleep on cond var
longer waiting

4

}

AW++;
release (&lock) ;

AccessDBase (ReadWrite) ;

gﬁqu%re(&lock);
if (WW > 0){ _
cond signal (&okToWrite) ;
} else—if"(WR > 0
cond broadcast (&okToRead) ;

release (&lock) ;

Kubiatowicz CS162 © UCB Spring 2024

Lec 9.65

Simulation of Readers/Writers Solution

« W1 gets signal (R3 still waiting)
« AR=0,WR=1,AW=0, WW=0

Writer () ({
acquire (&lock) ;

while ((AW + AR) > 0) { // Is it safe to write?
WW++; No. Active users exist

] i &f;ck ; Sleep on cond var
M 7Y Honger watting

AW++;
release (&lock) ;

AccessDBase (ReadWrite) ;

acquire (&lock) ;
if (WW > 0){]
cond signal (&okToWrite) ;
} else—if"(WR > 0
cond broadcast (&okToRead) ;

release (&lock) ;

2/13/2024 Kubiatowicz CS162 © UCB Spring 2024

Lec 9.66

Simulation of Readers/Writers Solution

« W1 gets signal (R3 still waiting)
« AR=0,WR=1,AW=1, WW=0

Writer () ({
acquire (&lock) ;

while ((AW + AR) > 0) { // Is it safe to write?
WW++ ;

A] No. Active users exist
cond wait (&okToWrite, & oc%?;// Sleep on cond var
WW--7 // No longer waiting

}

Yelease ocC

AccessDBase (ReadWrite) ;

acquire (&lock) ;

AWC-IE ;

if (WW > 0){]
cond signal (&okToWrite) ;

} else—if"(WR > 0

cond broadcast (&okToRead) ;
release (&lock) ;

2/13/2024 Kubiatowicz CS162 © UCB Spring 2024

Lec 9.67

Simulation of Readers/Writers Solution

« W1 accessing dbase (R3 still waiting)
« AR=0,WR=1,AW=1, WW=0

Writer () ({
acquire (&lock) ;

while ((AW + AR) > 0) { // Is it safe to write?
WW++; . No. Active users exist
cond wait (&okToWrite, & oc%?;// Sleep on cond var
WW--7 // No longer waiting

4

}

AW++;
release (&lock) ;

acquire (&lock) ;
if (WW > 0){]
cond signal (&okToWrite) ;
} else—if"(WR > 0
cond broadcast (&okToRead) ;

release (&lock) ;

2/13/2024 Kubiatowicz CS162 © UCB Spring 2024

Lec 9.68

Simulation of Readers/Writers Solution

« W1 finishes (R3 still waiting)
« AR=0,WR=1,AW=1 WW=0

Writer () ({
acquire (&lock) ;
while ((AW + AR) > 0) { // Is it safe to write?
WW++; . No. Active users exist
cond wait (&okToWrite, & oc%?;// Sleep on cond var
WW--7 // No longer waiting

4

}

AW++;
release (&lock) ;

AccessDBase (ReadWrite) ;

if (WW > 0){]
cond signal (&okToWrite) ;
} else—if"(WR > 0
cond broadcast (&okToRead) ;

release (&lock) ;

2/13/2024 Kubiatowicz CS162 © UCB Spring 2024

Lec 9.69

Simulation of Readers/Writers Solution

« W1 finishes (R3 still waiting)
« AR=0,WR=1,AW=0, WW=0

Writer () ({
acquire (&lock) ;

while ((AW + AR) > 0) { // Is it safe to write?
WW++; . No. Active users exist
cond wait (&okToWrite, & oc%?;// Sleep on cond var
WW--7 // No longer waiting

4

}

AW++;
release (&lock) ;

AccessDBase (ReadWrite) ;

1
cond signal (&okToWrite) ;
} else—if"(WR > 0

cond broadcast (&okToRead) ;

release (&lock) ;

2/13/2024 Kubiatowicz CS162 © UCB Spring 2024

Lec 9.70

Simulation of Readers/Writers Solution

« W1 finishes (R3 still waiting)
« AR=0,WR=1,AW=0, WW=0

Writer () ({
acquire (&lock) ;

while ((AW + AR) > 0) { // Is it safe to write?
WW++; . No. Active users exist
cond wait (&okToWrite, & oc%?;// Sleep on cond var
| WW--7 // No longer waiting

AW++;
release (&lock) ;

4

AccessDBase (ReadWrite) ;

acquire (&lock) ;

0) e);
t(&oLToRead);

} else—if "(WR >
cond broadcas

release (&lock) ;

2/13/2024 Kubiatowicz CS162 © UCB Spring 2024

Lec 9.71

Simulation of Readers/Writers Solution

« W1 signaling readers (R3 still waiting)
« AR=0,WR=1,AW=0,WW=0

Writer () ({
acquire (&lock) ;

while ((AW + AR) > 0) { // Is it safe to write?
WW++; . No. Active users exist

cond wait (&okToWrite, & oc%?;// Sleep on cond var

WW--7 // No longer waiting

}

AW++;
release (&lock) ;

AccessDBase (ReadWrite) ;
acquire (&lock) ;
acqui ()

if (WW > 0){ _
cond signal (&okToWrite) ;

release (&lock) ;

2/13/2024 Kubiatowicz CS162 © UCB Spring 2024

Lec 9.72

Simulation of Readers/Writers Solution

« R3 gets signal (no waiting threads)
« AR=0,WR=1,AW=0,WW=0

Reader () {
acquire (&lock) ;

while ((AW + WW) > 0) { // Is it safe to read?

WR++; No. Writers exist
H/ / Sleep on cond var

O longer waiting

AR++ // Now we are active!

release(&lock);
AccessDBase (ReadOnly) ;

acqulre(&lock),
AR-
if (AR == 0 && WW > 0)

cond signal (&okToWrite) ;
release(&lock) ;

2/13/2024 Kubiatowicz CS162 © UCB Spring 2024

Lec 9.73

Simulation of Readers/Writers Solution

« R3 gets signal (no waiting threads)
« AR=0,WR=0,AW=0,WW=0

Reader () {
acquire (&lock) ;

while ((AW + WW) > 0) { // Is it safe to read?

WR++; // No. Writers exist
cond wait (&okToRead, &lock) ;// Sleep on cond var

// No longer waiting

AR++; // Now we are active!

release (&lock) ;
AccessDBase (ReadOnly) ;

acquire (&lock) ;
AR--;
if (AR == 0 && WW > 0)

cond signal (&okToWrite) ;
release(&lock) ;

2/13/2024 Kubiatowicz CS162 © UCB Spring 2024

Lec 9.74

Simulation of Readers/Writers Solution

« R3 accessing dbase (no waiting threads)
« AR=1,WR=0,AW=0, WW=0

Reader () {
acquire (&lock) ;

while ((AW + WW) > 0) { // Is it safe to read?

WR++; // No. Writers exist
cond wait (&okToRead, &lock) ;// Sleep on cond var
WR--7 // No longer waiting
}
AR++; // Now we are active!
release (&lock) ;
acquire (&lock) ;
AR--;
if (AR == 0 && WW > 0)

cond signal (&okToWrite) ;
release(&lock) ;

2/13/2024 Kubiatowicz CS162 © UCB Spring 2024

Lec 9.75

Simulation of Readers/Writers Solution

« R3 finishes (no waiting threads)
« AR=1,WR=0,AW=0, WW=0

Reader () {
acquire (&lock) ;

while ((AW + WW) > 0) { // Is it safe to read?

WR++; // No. Writers exist
cond wait (&okToRead, &lock) ;// Sleep on cond var
WR--7 // No longer waiting

}

AR++; // Now we are active!

release (&lock) ;

AccessDBase (ReadOnly) ;

!!—— 4
7

if (AR == 0 && WW > 0)
cond signal (&okToWrite) ;
release(&lock) ;

}

2/13/2024 Kubiatowicz CS162 © UCB Spring 2024

Lec 9.76

Simulation of Readers/Writers Solution

« R3 finishes (no waiting threads)
« AR=0,WR=0,AW=0, WW=0
Reader () {

acquire (&lock) ;

while ((AW + WW) > 0) { // Is it safe to read?
WR++; // No. Writers exist
cond wait (&okToRead, &lock) ;// Sleep on cond var

WR--7 / No longer waiting
}

AR++; // Now we are active!
release (&lock) ;

AccessDbase (ReadOnly) ;

acquire (&lock) ;
AR--;
if (AR == 0 && WW > 0)

cond siinali&okToWrite);

}

2/13/2024 Kubiatowicz CS162 © UCB Spring 2024

Lec 9.77

Questions

« Can readers starve? Consider Reader() entry code:

while ((AW + WW) > 0) { // Is it safe to read?
WR++; // No. Writers exist
cond wait (&okToRead, &lock) ;// Sleep on cond var
WR--; // No longer waiting

}

AR++; // Now we are active!
What if we erase the condition check in Reader exit?

AR--; // No longer active

cond signal (&okToWrite) ;// Wake up one writer

Further, what if we turn the signal() into broadcast()

AR--; // No longer active
cond broadcast (&okToWrite); // Wake up sleepers

Finally, what if we use only one condition variable (call it
“‘okContinue”) instead of two separate ones?

— Both readers and writers sleep on this variable
— Must use broadcast() instead of signal()

2/13/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 9.78

Use of Single CV: okContinue

Reader() { Writer() {
// check into system // check into system
acquireg&lock); acquireg&lock);
while ((AW + WW) > @) { while ((AW + AR) > 0) {
WR++; WW++;
cond_wait(&okContinue,&lock); cond_wait(&okContinue,&lock);
WR--; WW--;
} }
AR++; AW++;
release(&lock); release(&lock);
// read-only access // read/write access
AccessDbase(ReadOnly); AccessDbase(ReadWrite);
// check out of system // check out of system
acquire(&lock); acquire(&lock);
abE AW--;
if (AR == 0 && WW > 0) if (WW > 0){
cond_signal(&okContinue); cond_signal (&okContinue);
release(&lock); } else 1f (WR > ©
} cond_broadcast(&okContinue);
release(&lock);

What if we turn okToWrite and okToRead into okContinue

(i.e. use only one condition variable instead of two)?

2/13/2024 Lec 9.79

Use of Single CV: okContinue

Reader() { Writer() {

// check into system // check into system

acquire(&lock); acquire(&lock);

while ((AW + WW) > 0) { while ((AW + AR) > 0) {
WR++; WW++ ;
cond_wait(&okContinue,&lock); cond_wait(&okContinue,&lock);
WR--; WW- -3

} }

AR++; AW++;

release(&lock); release(&lock);

// read-only access
AccessDbase(ReadOnly);

// check out of system
acquire(&lock);

if (AR == © && WW > 0)

cond_signal(&okContinue);
release(&lock);

2/13/2024

// read/write access
AccessDbase(ReadWrite);

// check out of system
acquire(&lock);

if (WW > 9){
cond_signal (&okContinue);

} else if (WR > %8 ﬂ(
cond_broadcast(&okContinue);

Lec 9.80

Use of Single CV: okContinue

Reader() { Writer() {

// check into system // check into system

acquire2&lock); acquireg&lock);

while ((AW + WW) > 0) { while ((AW + AR) > @) {
WR++; WW++;

cond_wait(&okContinue,&lock); cond_wait(&okContinue,&lock);

WR--; WW- - ;

} }

AR++; AW++;

release(&lock); release(&lock);

// read-only access // read/write access

AccessDbase(ReadOnly); AccessDbase(ReadWrite);

// check out of system // check out of system

acquire(&lock); acquire(&lock);

if (AR == © && WW > 0) if (WW >0 || WR > 0){
cond_broadcast(&okContinue); cond_broadcast(&okContinue);

release(&lock); release(&lock);

Need to change To] } Must broadcast () J

broadcast () ! to sort things out!

2/13/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 9.81

Can we construct Monitors from Semaphores?

» Locking aspect is easy: Just use a mutex

« Can we implement condition variables this way?
Wait(Semaphore *thesema) { semaP(thesema); }
Signal(Semaphore *thesema) { semaV(thesema); }

* Does this work better?

Wait(Lock *thelock, Semaphore *thesema) {
release(thelock);
semaP (thesema);
acquire(thelock);

Signal(Semaphore *thesema) {
semaV(thesema);

}

2/13/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 9.82

Construction of Monitors from Semaphores (con't)

» Problem with previous try:

— P and V are commutative — result is the same no matter what
order they occur

— Condition variables are NOT commutative
* Does this fix the problem?

Wait(Lock *thelock, Semaphore *thesema) {
release(thelock);
semaP(thesema);
acquire(thelock);

Signal(Semaphore *thesema) {
if semaphore queue is not empty
semaV(thesema);
}

— Not legal to look at contents of semaphore queue

— There is a race condition — signaler can slip in after lock
release and before waiter executes semaphore.P()

* It is actually possible to do this correctly
— Complex solution for Hoare scheduling in book
— Can you come up with simpler Mesa-scheduled solution?

2/13/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 9.83

2/13/2024

Mesa Monitor Conclusion

* Monitors represent the synchronization logic of the program

— Wait if necessary

— Signal when change something so any waiting threads can proceed
« Typical structure of monitor-based program:

lock

while (need to wait) { Check and/qr update
condvar.wait(); state variables

} Wait if necessary

unlock

do something so no need to wait

lock

) Check and/or update
condvar.signal(); :]—' state variables
unlock

Kubiatowicz CS162 © UCB Spring 2024

Lec 9.84

C-Language Support for Synchronization

« C language: Pretty straightforward synchronization
— Just make sure you know all the code paths out of a critical section

int Rtn() {
acquire(&lock); Proc A W
-+
if (exception) { ProcB | &
release(&lock); Call i o
return errReturnCode; = se'l'Jm_p ;
} Proc C g
acquire(&lock)| =
release(&lock);
return OK; Proc D
) . . Proc E
— Watch out for setjmp/longjmp! Calls longjmp

» Can cause a non-local jump out of procedure

» In example, procedure E calls longjmp, poping stack back to procedure B
» If Procedure C had lock.acquire, problem!

2/13/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 9.85

Concurrency and Synchronization in C

 Harder with more locks
void Rtn() {
lockl.acquire();

if (error) {
lockl.release();
return;

lock2.acquire();

if (error) {
lock2.release()
lockl.release();
return;

}

lock2.release();
lockl.release();

}

2/13/2024

* |s goto a solution???

void Rtn() {
lockl.acquire();

if (error

goto Peiease_lockl_and_return;

lock2.acquire();

if (error) {
goto release both_and return;

¥

release both _and return:
lock2.release();

release lockl and return:
lockl.release();

Kubiatowicz CS162 © UCB Spring 2024

Lec 9.86

C++ Language Support for Synchronization

« Languages with exceptions like C++

— Languages that support exceptions are problematic (easy to make a
non-local exit without releasing lock)

— Consider;

void Rtn() {
lock.acquire();

BoFoo();
lock.release();
}
void DoFoo() {

if (exception) throw errException;

}
— Notice that an exception in DoFoo() will exit without releasing the lock!

2/13/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 9.87

C++ Language Support for Synchronization (con’t)

* Must catch all exceptions in critical sections

— Catch exceptions, release lock, and re-throw exception:

void Rtn() {
lock.acquire();

try {
BoFoo();

} catch (..) { // catch exception
lock.release(); // release lock
throw; // re-throw the exception

lock.release();
void DoFoo() {

if (exception) throw errException;

2/13/2024 Kubiatowicz CS162 © UCB Spring 2024

Lec 9.88

Much better: C++ Lock Guards
#include <mutex>
int global 1 = ©;
std: :mutex global mutex;

void safe _increment() {

std::lock_guard<std: :mutex> lock(global mutex);

global i++;

// Mutex released when ‘lock’ goes out of scope

2/13/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 9.89

Python with Keyword

* More versatile than we show here (can be used to close files, database
connections, etc.)

lock = threading.Lock()

with lock: # Automatically calls acquire()
some_var += 1

release() called however we leave block

2/13/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 9.90

Java synchronized Keyword

« Every Java object has an associated lock:
— Lock is acquired on entry and released on exit from a synchronized method
— Lock is properly released if exception occurs inside a synchronized method
— Mutex execution of synchronized methods (beware deadlock)
class Account

private int balance;

// object constructor

public Account (int initialBalance) {

balance = initialBalance;

public synchronized int getBalance() {
return balance;

public synchronized void deposit(int amount) {
balance += amount;

2/13/2024 Kubiatowicz CS162 © UCB Spring 2024

Lec 9.91

Java Support for Monitors

» Along with a lock, every object has a single condition variable
associated with it

* To wait inside a synchronized method:
- void wait();
- void wait(long timeout);

* To signal while in a synchronized method:
- void notify();
- void notifyAll();

2/13/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 9.92

Conclusion

Semaphores: Like integers with restricted interface
— Two operations:
» P(): Walit if zero; decrement when becomes non-zero
» V(): Increment and wake a sleeping task (if exists)
» Can initialize value to any non-negative value
— Use separate semaphore for each constraint

Monitors: A lock plus one or more condition variables
— Always acquire lock before accessing shared data
— Use condition variables to wait inside critical section
» Three Operations: Wait(), Signal(), and Broadcast()
Monitors represent the logic of the program
— Wait if necessary
— Signal when change something so any waiting threads can proceed
— Monitors supported natively in a number of languages
Readers/Writers Monitor example
— Shows how monitors allow sophisticated controlled entry to protected code

2/13/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 9.93

