CS162
Operating Systems and
Systems Programming

Lecture 9

Synchronization 3:
Semaphores, Monitors and Readers/Writers

February 13th, 2024
Prof. John Kubiatowicz

Recall: Atomic Instruction Operations

* test&set (&address) { /* most architectures */
result = M[address]; // return result from “address” and
M[address] = 1; // set value at “address” to 1
return result;
}
+ swap (&address, register) { /* x86 */
temp = M[address]; // swap register’s value to
M[address] = register; // value at “address”
register = temp; // value from “address” put back to register
return temp; // value from “address” considered return from swap
}

« compare&swap (&address, regl, reg2) { /* x86 (returns old value), 68000 */
if (regl == M[address]) { // If memory still == regil,
M[address] = reg2; // then put reg2 => memory
return success;
} else {
return failure;

// Otherwise do not change memory

}
}
http://cs162.eecs.BerkeIey.edu « load-linked&store-conditional(&address) { /* R4000, alpha */
loop:
11 r1, M[address];
movi r2, 1; // Can do arbitrary computation
sc r2, M[address];
beqz r2, loop;
2/13/2024 } Kubiatowicz C$162 © UCB Spring 2024 Lec9.2
Recall: Implementing Locks with test&set Better Locks using test&set
» Simple lock that doesn’t require entry into the kernel: « Can we build test&set locks without busy-waiting?
// (Free) Can access this memory location from user space! — Mostly. Idea: only busy-wait to atomically check lock value
int mylock = ©; // Interface: acquire(&mylock); — int guard = @; // Global Variable!
/7 release(&mnylock); int mylock = 1; // Interface: acquire(&mylock);
acquire(int *thelock) { // release(&mylock);
while (test&set(thelock)); // Atomic operation!
} acquire(int *thelock) { release(int *thelock) {
release(int *thelock) { // Short busy-wait time // Short busy-wait time
*thelock = 0; // Atomic operation! while (test&set(guard)); while (test&set(guard));
} if (*thelock == 1) { if anyone on wait queue {
« Discussion: put thread on wait queue; take thread off walt.queue
Place on ready queue;
. go to sleep() & guard = @ ???? 1
— Can have as many locks as memory locations! . } else {
] . . // guard == © on wakup; *thelock = ©:
— If lock is free, only one thread will get to run test&set which reads 0 and sets lock=1 } else { } ’
— If lock is busy, test&set reads 1 and sets lock=1 (no change) *thelock = 1; guard = 0;
It returns 1, so while loop continues. guard = 0;
— When we set thelock = 0, someone else can get lock. } }
+ Busy-Waiting: thread consumes cycles while waiting .
. * Note: sleep has to be sure to reset the guard variable
— For multiprocessors: every test&set() is a write, which makes value ping-pong around in Why can't we do it just before or just after the sleep?
23024 C@CHE (using lots of network BW). . csi620 uce Spring 2024 Lec9.3 2/13/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 9.4

Analysis: Lock Implementation using interrupts
Desired API

Naive Implementation Better Inplementation

acquire(int *thelock) {
// Short busy-wait time
disable interrupts;
if (*thelock == 1) {
put thread on wait-queue;

acquire (int *thelock) {

disable interrupts;
}
acquire (&mylock) ;

critical section;

int mylock=0;

-~

else {
*thelock = 1;
enable interrupts;

}

release(&mylock);_____________________________‘ }
\ release (int *thelock) release (int *thelock) {
{ // Short busy-wait time
enable interrupts; disable interrupts;
} if anyone on wait queue {

. Lo take thread off wait-queue
If one thread in critical Place on ready queue;

section, no other activity } else {
(including OS) can run! *thelock = 0;

enable interrupts;
Lock argument not used! }

2/13/2024 Kubiatowicz CS162 © UCB Spring 2024

go to sleep() //See Lecture 8!

Lec 9.5

Analysis: Lock Implementation using test&set
Desired API

Naive Implementation Better Inplementation??

int guard = 0; // global!
acquire (int *thelock) {
// Short busy-wait time
while (test&set (guard)) ;
if (*thelock == 1) {
put thread on wait-queue;
go to sleep()& guard = 0;
// guard == 0 on wakeup

. lock=0; int mylock = 0;
int mylock=0 acquire (int *thelock) {
while (testé&set (thelock)) ;

acquire (&mylock) ; }

critical section;

} else {
- *thelock = 1;
release (&mylock) ; guard = 0;

}

ielease(int *thelock) {

// Short busy-wait time

while (testé&set(guard));

if anyone on wait queue {
take thread off wait-queue
Place on ready queue;

} else {
*thelock = 0;

release (int *thelock) {
*thelock = 0;
}

Threads waiting to enter
critical section busy-wait! guard = 0;
}

2/13/2024

Kubiatowicz CS162 © UCB Spring 2024 Lec 9.6
Linux futex: Fast Userspace Mutex Example: First try: T&S and futex

#%nclude <1inux(futex.h> int mylock = @; // Interface: acquire(&mylock);

#include <sys/time.h> // release(&mylock);

int futex(int *uaddr, int futex_op, int val, acquire(int *thelock) { release(int *thelock) {

const struct timespec *timeout); while (test&set(thelock)) { *thelock = @; // unlock
. . . . futex(thelock, FUTEX_WAKE, 1);

uaddr points to a 32-bit value in user space) futex(thelock, FUTEX WAIT, 1); (-)
futex_op } }

- FUTEX_WAIT —if val == *uaddr sleep till FUTEX_WAIT

» Atomic check that condition still holds after we disable interrupts (in kernel!) * Properties:

- FUTEX_WAKE — wake up at most val waiting threads _ : ; _ "

- FUTEX_FD, FUTEX_WAKE_OP, FUTEX_CMP_REQUEUE: More interesting operations! Sleep interface by u.smg futex —no busywaiting
timeout * No overhead to acquire lock

— ptr to a timespec structure that specifies a timeout for the op — Good!

. . + Every unlock has to call kernel to potentially wake someone up — even if none
e Interface to the kernel sleep() functionality! Y P y . p .
- Let thread put themselves to sleep - conditionally! — Slows dé)wn the'uncontested case where only one thread acquiring and releasing
o futex is not exposed in libc; it is used within the implementation of pthreads overandover...:
— Can be used to implement locks, semaphores, monitors, etc...
2/13/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec9.7 2/13/2024

Kubiatowicz CS162 © UCB Spring 2024 Lec9.8

Example: Try #2: T&S and futex

bool maybe_waiters = false;
int mylock = @; // Interface: acquire(&mylock,&maybe_waiters);
// release(&mylock,&maybe_waiters);

release(int *thelock, bool *maybe) {
*thelock = ©;
if (*maybe) {
*maybe = false;
// Try to wake up someone
futex(thelock, FUTEX_WAKE, 1);

acquire(int *thelock, bool *maybe) {
while (test&set(thelock)) {
// Sleep, since lock busy!
*maybe = true;
futex(thelock, FUTEX_WAIT, 1);

// Make sure other sleepers not stuck }
*maybe = true; }
}
}

» This is syscall-free in the uncontended case

— Temporarily falls back to syscalls if multiple waiters, or concurrent acquire/release
» But it can be considerably optimized!

— See “Futexes are Tricky” by Ulrich Drepper

Try #3: Better, using more atomics

* Much better: Three (3) states:
— UNLOCKED: No one has lock
— LOCKED: One thread has lock

— CONTESTED: Possibly more
than one (with someone sleeping)

* Clean interface!

* Lock grabbed cleanly by either
- compare&swap()
— First swap()

* No overhead if uncontested!

« Could build semaphores in a similar }
way!

typedef enum { UNLOCKED,LOCKED,CONTESTED } Lock;
Lock mylock = UNLOCKED; // Interface: acquire(&mylock);
// release(&mylock);

acquire(Lock *thelock) {
// If unlocked, grab lock!
if (compare&swap(thelock,UNLOCKED,LOCKED))
return;

// Keep trying to grab lock, sleep in futex
while (swap(thelock,CONTESTED) != UNLOCKED))
// Sleep unless someone releases here!
futex(thelock, FUTEX_WAIT, CONTESTED);

release(Lock *thelock) {
// If someone sleeping,
if (swap(thelock,UNLOCKED) == CONTESTED)
futex(thelock, FUTEX_WAKE,1);

}
2/13/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 9.9 2/13/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 9.10
Recall: Where are we going with synchronization? Administrivia
* Midterm This Thursday, 8-10pm (February 15)!
Shared Programs — In person: Dwinelle 155 (here) or VLSB 2050
» Look on ED for which room you should go to
— You are responsible for all materials up to and including today’s lecture!
» Including Semaphores and Monitors
» | have a complete version of the synchronization lectures available on YouTube from my
Fall 2020 class. [Note — the names of the lectures have changed slightly!]
Load/Store Disable Ints Test&Set * You get one (1) double-side page of handwritten notes
Compare&Swap — Hand drawn figures, hand written notes
— No copying of figures directly from slides, no microfiche, etc
- We are going to implement various higher-level synchronization — Redraw them if you want them on your notes!
primitives using atomic operations * If you are sick, let us know.
— Everything is pretty painful if only atomic primitives are load and store — Do not come fo the midterm!
. A * No class on Thursday
— Need to provide primitives useful at user-level) i . .
— | will have extra office hours during class time
* No section this week!
* No OH on Monday (it is a holiday!)
2/13/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec9.11 2/13/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec9.12

Producer-Consumer with a Bounded Buffer
Problem Definition
— Producer(s) put things into a shared buffer

| Producer -)-) Consumer r
— Consumer(s) take them out

— Need synchronization to coordinate producer/consumer

Don’t want producer and consumer to have to work in lockstep, so put
a fixed-size buffer between them
— Need to synchronize access to this buffer
— Producer needs to wait if buffer is full
— Consumer needs to wait if buffer is empty

Example 1: GCC compiler
-cpp | ccl | cc2 | as | 1d
Example 2: Coke machine
— Producer can put limited number of Cokes in machine
— Consumer can’t take Cokes out if machine is empty
Others: Web servers, Routers,

Bounded Buffer Data Structure (sequential case)

typedef struct buf {
int write_ index;]
int read index;
8, 4 8,

<type> *entries [BUFSIZE];
} buf t;

* Insert: write & bump write ptr (enqueue)

* Remove: read & bump read ptr (dequeue)

* How to tell if Full (on insert) Empty (on remove)?
* And what do you do if it is?

» What needs to be atomic?

2/13/2024 Kubiatowicz C$162 © UCB Spring 2024 Lec9.13 2/13/2024 Kubiatowicz C$162 © UCB Spring 2024 Lec9.14
Bounded Buffer — first cut Bounded Buffer — 2" cut
mutex buf_lock = <initially unlocked> mutex buf_lock = <initially unlocked>
Producer(item) { Producer(item) {
acquire(&buf_lock); acquire(&buf_lock);
while (buffer full) {}; // Wait for a free slot while (buffer full) {release(&buf_lock); acquire(&buf_lock);}
enqueue(item); enqueue(item);
release(&buf_lock); \ release(&buf_lock); What happens when one
} Will we ever come out } is waiting for the other?
of the wait loop? - Multiple cores ?
Consumer() { Consumer() { o Single core ?
acquire(&buf_lock); acquire(&buf_lock);
while (buffer empty) {}; // Wait for arrival while (buffer empty) {release(&buf_lock); acquire(&buf_lock);}
item = dequeue(); item = dequeue();
release(&buf_lock); release(&buf_lock);
return item return item
} }
2/13/2024 Kubiatowicz C$162 © UCB Spring 2024 Lec9.15 2/13/2024 Kubiatowicz C$162 © UCB Spring 2024 Lec9.16

O
A=)

Better Primitive: Semaphores LI:[!

» Semaphores are a kind of generalized lock
— First defined by Dijkstra in late 60s
— Main synchronization primitive used in original UNIX
» Definition: a Semaphore has a non-negative integer value and supports
the following operations:
— Set value when you initialize
- Down () or P(): an atomic operation that waits for sesmaphore to become
positive, then decrements it by 1
» Think of this as the wait() operation
- Up() or V(): an atomic operation that increments the semaphore by 1, waking
up a waiting P, if any
» This of this as the signal() operation
» Technically examining value after initialization is not allowed.

Semaphores Like Integers Except...

+ Semaphores are like integers, except:
— No negative values
— Only operations allowed are P and V — can’t read or write value, except initially

— Operations must be atomic
» Two P’s together can’t decrement value below zero
» Thread going to sleep in P won’t miss wakeup from V — even if both happen at same time

+ POSIX adds ability to read value, but technically not part of proper interface!
» Semaphore from railway analogy
— Here is a semaphore initialized to 2 for resource control:

Value=2 P|) V()

2/13/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec9.17 2/13/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec9.18
Two Uses of Semaphores Revisit Bounded Buffer: Correctness constraints for solution

Mutual Exclusion (initial value = 1) + Correctness Constraints:
* Also called “Binary Semaphore” or “mutex”. — Consumer must wait for producer to fill buffers, if none full (scheduling constraint)
+ Can be used for mutual exclusion, just like a lock: — Producer must wait for consumer to empty buffers, if all full (scheduling constraint)

semaP (&mysem) ; — Only one thread can manipulate buffer queue at a time (mutual exclusion)

// Critical section goes here « Remember why we need mutual exclusion
semaV(&mysem); B ¢ tupid
. . L — Because computers are s
Scheduling Constraints (initial value = Q) use compurie up! - .
. , —Imagine if in real life: the delivery person is filling the machine and somebody
* Allow thread 1 to wait for a signal from thread 2 comes up and tries to stick their money into the machine
— thread 2 schedules thread 1 when a given event occurs + General rule of thumb: Use a separate semaphore for each constraint
+ Example: suppose you had to implement ThreadJoin which must wait for - Semaphore fullBuffers; // consumer’s constraint
thread to terminate: - Semaphore emptyBuffers;// producer’s constraint
Initial value of semaphore = © . .
X - Semaphore mutex; // mutual exclusion
ThreadJoin {
semaP (&mysem) ;
ThreadFinish {
semaV(&mysem) ;
2/13/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec9.19 2/13/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 9.20

emptySlots
signals space

Bounded Buffer, 3" cut (coke machine)

Semaphore fullSlots = 9; // Initially, no coke

Semaphore emptySlots = bufSize;
// Initially, num empty slots

Semaphore mutex = 1; // No one using machine

Producer(item) {

semaP (&emptySlots); // Wait until space
semaP(&mutex); // Wait until machine free
Enqueue(item); H
tex);
semaV(&fullSlots); // Tell consumers there is (Critical sections
} // more coke using mutex
fullSlots signals coke

Consumer() {

semaP(&fullSlots); // Check if there’s a coke

semaP (&mutex); // Wait until machine free

item = Dequeue(); A
semaV(&mutex);

semaV(&emptySlots); // tell producer need more

return item;

protect integrity
of the queue

Discussion about Solution

Decrease # of

* Why asymmetry? empty

— Producer does: semaP (&emptyBuffer), semaV(&fullBuffer)
— Consumer does: semaP (&fullBuffer), semaV(&emptyBuffer)

Increase # of
slots occupied slots

Increase # of
empty slots

Decrease # of
occupied slots

* |s order of P’s important?

* |Is order of V’s important?

» What if we have 2 producers
or 2 consumers?

Producer(item) {
semaP (&mutex);
semaP (&emptySlots);
Enqueue(item);
semaV(&mutex);
semaV(&fullSlots);

Consumer() {
semaP (&fullSlots);
semaP (&mutex);
item = Dequeue();
semaV(&mutex);
semaV(&emptySlots);

return item;

¥
2/13/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 9.21 2/13/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 9.22
Semaphores are good but...Monitors are better! Condition Variables
« Semaphores are a huge step up; just think of trying to do the bounded How do wg) change the consumer() routine to wait until something is on
buffer with only loads and stores or even with locks! the queue? _ _ _
. . — Could do this by keeping a count of the number of things on the queue (with
* Problem is that semaphores are dual purpose: semaphores), but error prone
— They are used for both mutex and scheduling constraints Condition Variable: a queue of threads waiting for something inside a
— Example: the fact that flipping of P’s in bounded buffer gives deadlock is not critical section
immediately obvious. How do you prove correctness to someone? — Key idea: allow sleeping inside critical section by atomically releasing lock at
+ Cleaner idea: Use locks for mutual exclusion and condition variables for time we go to sleep L .
scheduling constraints — Contrast to semaphores: Can’t wait inside critical section
« Definition: Monitor: a lock and zero or more condition variables for O_pﬁii'(()gi’;ck)_ Atomically release lock and go to sleep
managing Concurrer]t access to _shargd dqta Re-acquire lock later, before returning.
— Some languages like Java provide this natively - signal(): Wake up one waiter, if any
— Most others use actual locks and condition variables - Broadcast(): Wake up all waiters
* A “Monitor” is a paradigm for concurrent programming! Rule: Must hold lock when doing condition variable ops!
— Some languages support monitors explicitly
2/13/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec9.23 2/13/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec9.24

Monitor with Condition Variables
B o
=

S
* Lock: the lock provides mutual exclusion to shared data
— Always acquire before accessing shared data structure
— Always release after finishing with shared data
— Lock initially free
» Condition Variable: a queue of threads waiting for something inside a critical
section

— Key idea: make it possible to go to sleep inside critical section by atomically
releasing lock at time we go to sleep

— Contrast to semaphores: Can’t wait inside critical section

Infinite Synchronized Buffer (with condition variable)
» Here is an (infinite) synchronized queue:

lock buf_lock; // Initially unlocked
condition buf_CV; // Initially empty
queue queue; // Actual queue!

Producer(item) {
acquire(&buf_lock);
enqueue(&queue,item);
cond_signal(&buf_CV);

) release(&buf_lock);

// Get Lock

// Add item

// Signal any waiters
// Release Lock

Consumer() {
acquire(&buf_lock);
while (isEmpty(&queue)) {

cond_wait(&buf_CV, &buf_lock); // If empty, sleep

// Get Lock

item = dequeue(&queue);
release(&buf_lock);
return(item);

// Get next item
// Release Lock

2/13/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 9.25 2/13/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 9.26
Mesa vs. Hoare monitors Hoare monitors
* Need to be careful about precise definition of signal and wait. + Signaler gives up lock, CPU to waiter; waiter runs immediately
Consider a piece of our dequeue code: * Then, Waiter gives up lock, processor back to signaler when it exits
while (isEmpty(&queue)) { critical section or if it waits again
cond_wait(&buf_CV,&buf_lock); // If nothing, sleep
} acquire (&buf_lock) ;
item = dequeue(&queue); // Get next item acquire (&buf_lock) ; -
o . Lock, cpy if (isEmpty (&queue)) {
— Why didn’t we do this? cond_signal (sbuf_CV) ; — cond wait (sbuf CV,sbuf lock) ;
if (isEmpty(&queue)) { - Ock, o }
cond_wait(&buf_CV,&buf_lock); // If nothing, sleep release (&buf_lock) ; Py
} release (&buf_lock) ;
item = dequeue(&queue); // Get next item])) .
+ Answer: depends on the type of scheduling > On f|r§t glance, this seems like good .slem.ant|.cs
M e N d after X Park M o fing Svst — Waiter gets to run immediately, condition is still correct!
— Mesa-slyle. Named after Aerox- e'" esa Uperaling system « Most textbooks talk about Hoare scheduling
» Most OSes use Mesa SChe_d.““r‘g' - — However, hard to do, not really necessary!
— Hoare-style: Named after British logician Tony Hoare — Forces a lot of context switching (inefficient!)
2/13/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec9.27 2/13/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec9.28

Mesa monitors

» Signaler keeps lock and processor
» Waiter placed on ready queue with no special priority

Put waiting
thread on

acquire (&buf_lock) ;

acquire (&buf_lock)
while (isEmpty (&queue)) {
cond_signal (&buf_ CV) ;

release (&buf_lock)); d\’\e\“
© lock.Release() ;

» Practically, need to check condition again after wait

— By the time the waiter gets scheduled, condition may be false again — so,
just check again with the “while” loop

* Most real operating systems do this!
— More efficient, easier to implement
— Signaler’s cache state, etc still good

cond wait (&buf CV, sbuf lock) ;

Bounded Buffer — 4 cut (Monitors, pthread-like)

lock buf_lock = <initially unlocked>
condition producer_CV = <initially empty>
condition consumer_CV = <initially empty>

Producer(item) {
acquire(&buf_lock);
while (buffer full) { cond_wait(&producer_CV, &buf_lock); }
enqueue(item);
cond_signal(&consumer_CV);
release(&buf_lock); VVhat‘dqes *hrgad do
} when it is waiting?
- Sleep, not busywait!
Consumer() {
acquire(buf_lock);
while (buffer empty) { cond_wait(&consumer_CV, &buf_lock); }
item = dequeue();
cond_signal(&producer_CV);
release(buf_lock);
return item

¥
2/13/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 9.29 2/13/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 9.30
Again: Why the while Loop? OS Library Monitor Pattern: pthreads
. // Locks
* MESA semantics int pthread_mutex_init(pthread_mutex_t *mutex,
+ For most operating systems, when a thread is woken up by const pthread_mutexattr_t *attr);
signal(), itis simply put on the ready queue
It may or may not reacquire the lock immediately! int pthread_mutex_lock(pthread_mutex_t *mutex);
— Another thread could be scheduled first and "sneak in" to empty int pthread_mutex_unlock(pthread_mutex_t *mutex);
the queue
- N.eed aloop to re-check condition on wakeup // Condition Variables
* Is this busy waiting? int pthread_cond_init(pthread_cond_t *cond,
const pthread_mutexattr_t *attr);
int pthread_cond_wait(pthread_cond_t *cond, pthread_mutex_t *mutex);
int pthread_cond_signal(pthread_cond_t *cond);
int pthread_cond_broadcast(pthread_cond_t *cond);
2/13/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 9.31 2/13/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 9.32

Readers/Writers Problem

» Motivation: Consider a shared database
— Two classes of users:
» Readers — never modify database
» Writers — read and modify database
— Is using a single lock on the whole database sufficient?

Basic Structure of Mesa Monitor Program

» Monitors represent the synchronization logic of the program

— Wait if necessary

— Signal when change something so any waiting threads can proceed
 Basic structure of mesa monitor-based program:

lock
while (need to wait) { Check and/or update
condvar.wait(); state variables
Wait if necessary

unlock
do something so no need to wait

lock

. Check and/or update
condvar.signal(); } state variablre)s

» Like to have many readers at the same time unlock
» Only one writer at a time
2/13/2024 Kubiatowicz C$162 © UCB Spring 2024 Lec9.33 2/13/2024 Kubiatowicz C$162 © UCB Spring 2024 Lec9.34
Basic Readers/Writers Solution Code for a Reader
» Correctness Constraints: . Reader () {
— Readers can access database when no writers // First check self into system
— Writers can access database when no readers or writers acquire (&lock) ;
— Only one thread manipulates state variables at a time while ((AW + WW) > 0) { // Is it safe to read?
+ Basic structure of a solution: WR++; // No. Writers exist
- Reader () cond_wait(&okToRead,&lock):// Sleep og gond var
Wait until no writers WR--; // No longer waiting
Access data base o . }
Wr.ii:f?)out - wake up a waiting writer AR++; /] Now we are active!
CWri .
Wait until no active readers or writers release (&lock) ;
Access database // Perform actual read-only access
Check out - wake up waiting readers or writer AccessDatabase (ReadOnly) ;
— State variables (Protected by a lock called “lock”): // Now, check out of system
» int AR: Number of active readers; initially = 0 acquire (&lock) ;
» int WR: Number of waiting readers; initially = 0 AR--; // No longer active
» int AW: Number of active writers; initially = 0 if (AR == 0 && WW > 0) // No other active readers
» int WW: Number of waiting writers; initially = 0 cond_signal (&okToWrite) ;// Wake up one writer
» Condition okToRead = NIL release (&lock) ;
» Condition okToWrite = NIL }
2/13/2024 Kubiatowicz C$162 © UCB Spring 2024 Lec9.35 2/13/2024 Kubiatowicz C$162 © UCB Spring 2024 Lec9.36

Code for a Writer

Writer() {
// First check self into system
acquire (&lock) ;

while ((AW + AR) > 0) { // Is it safe to write?

WW++; // No. Active users exist
cond wait (&okToWrite,&lock); // Sleep on cond var
WW--7 // No longer waiting

}

AW++; // Now we are active!

release (&lock) ;

// Perform actual read/write access
AccessDatabase (ReadWrite) ;

// Now, check out of system

acquire (&lock) ;

AW--; // No longer active

if (WW > 0){ // Give priority to writers
cond _signal (&okToWrite) ;// Wake up one writer

} else if (WR > 0) { // Otherwise, wake reader
cond_broadcast (&okToRead); // Wake all readers

release (&lock) ;

Simulation of Readers/Writers Solution

+ Use an example to simulate the solution

+ Consider the following sequence of operators:
-R1,R2, W1, R3

Initially: AR =0, WR =0, AW=0, WW =0

2/13/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec9.37 2/13/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec9.38
Simulation of Readers/Writers Solution Simulation of Readers/Writers Solution
* R1 comes along (no waiting threads) * R1 comes along (no waiting threads)
* AR=0,WR=0,AW=0,WW=0 * AR=0,WR=0,AW=0,WW=0
Reader Reader () {
acquire (&lock) ;
while ((AW + WW) > 0) { // Is it safe to read? { // Is it safe to read?
No. Writers exist ++ // No. Writers exist
cond wait (&okToRead, &lock) ;// Sleep on cond var cond walt(&okToRead &lock) ; // Sleep on cond var
WR--7 // No longer waiting WR--7 // No longer waiting
} }
AR++ // Now we are active! AR++ // Now we are active!
release(&lock) release(&lock)
AccessDBase (ReadOnly) ; AccessDBase (ReadOnly) ;
acquire (&lock) ; acquire (&lock) ;
AR--; AR--;
if (AR == 0 && WW > 0) if (AR == 0 && WW > 0)
cond si fnal(&okToerte) cond 51fna1(&okToWr1te)
releasé(&lock releasé(&lock
} }
2/13/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec9.39 2/13/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 9.40

Simulation of Readers/Writers Solution

* R1 comes along (no waiting threads)
* AR=1,WR=0,AW=0,WW=0

Reader () {
acquire (&lock) ;
while ((AW + WW) > 0) { // Is it safe to read?
++; No. Writers exist

cond | wait (&okToRead, &lock);// Sleep on cond var
WR- // No longer waiting
}

// Now we are active!
release (&lock) ;

AccessDBase (ReadOnly) ;

B

acqulre(&lock),
AR-

if (AR = 0 && WW > 0)
cond signal (&okToWrite) ;
releasé(&lock) ;

Simulation of Readers/Writers Solution

* R1 comes along (no waiting threads)
* AR=1,WR=0,AW=0,WW=0

Reader () {
acquire (&lock) ;
while ((AW + WW) > 0) { // Is it safe to read?
++; No. Writers exist

cond | wait (&okToRead, &lock) ; // Sleep on cond var
WR- // No longer waiting

B

}

AR++ I-

AccessDBase (ReadOnly) ;

// Now we are active!

acqulre(&lock),
AR-

if (AR = 0 && WW > 0)
cond signal (&okToWrite) ;
releasé(&lock) ;

2/13/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 9.41 2/13/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 9.42
Simulation of Readers/Writers Solution Simulation of Readers/Writers Solution
* R1 accessing dbase (no other threads) * R2 comes along (R1 accessing dbase)
* AR=1,WR=0,AW=0, WW=0 * AR=1,WR=0,AW=0, WW=0
Reader () { Reader
acquire (&lock) ;
while ((AW + WW) > 0) { // Is it safe to read? while ((AW + WW) > 0) { // Is it safe to read?
WR: No. Writers exist WR- No. Writers exist
cond wait (&okToRead, &lock) ;// Sleep on cond var cond wait (&okToRead, &lock) ; // Sleep on cond var
N WR--7 // No longer waiting N WR--7 // No longer waiting
AR++ // Now we are active! AR++ // Now we are active!
release(&lock) release(&lock)
[EccessDEase (ReadonTyT] AccessDBase (ReadOnly) ;
acquire (&lock) ; acquire (&lock) ;
AR--; AR--;
if (AR == 0 && WW > 0) if (AR == 0 && WW > 0)
cond si fnal(&okToerte) cond 51fna1(&okToWr1te)
) releasé(&lock } releasé(&lock
Lec 9.44

2/13/2024 Kubiatowicz CS162 © UCB Spring 2024

Lec9.43

2/13/2024

Kubiatowicz CS162 © UCB Spring 2024

Simulation of Readers/Writers Solution

* R2 comes along (R1 accessing dbase)
*+ AR=1,WR=0,AW=0,WW=0

Reader () {
acquire (&lock) ;
{ // Is it safe to read?
No. Writers exist

//
cond’ walt(&okToRead &lock) ;// Sleep on cond var
WR- // No longer waiting
}

AR++ // Now we are active!
release(&lock)

=7

AccessDBase (ReadOnly) ;

acqulre(&lock),
AR-

if (AR = 0 && WW > 0)
cond si fnal(&okToerte)
releasé(&lock

Simulation of Readers/Writers Solution

* R2 comes along (R1 accessing dbase)
*+ AR=2, WR=0,AW=0,WW=0

Reader () {
acquire (&lock) ;
while ((AW + WW) > 0) { // Is it safe to read?
++; No. Writers exist

cond | wait (&okToRead, &lock);// Sleep on cond var
WR- // No longer waiting

B

}

// Now we are active!
release (&lock) ;

AccessDBase (ReadOnly) ;

acqulre(&lock),
AR-

if (AR = 0 && WW > 0)
cond 51fnal(&okToWr1te)
releasé(&lock

2/13/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 9.45 2/13/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 9.46
Simulation of Readers/Writers Solution Simulation of Readers/Writers Solution
* R2 comes along (R1 accessing dbase) * R1 and R2 accessing dbase
« AR=2, WR=0,AW=0, WW=0 « AR=2, WR=0,AW=0, WW=0
Reader () { Reader () {
acquire (&lock) ; acquire (&lock) ;
while ((AW + WW) > 0) { // Is it safe to read? while ((AW + WW) > 0) { // Is it safe to read?
WR++; No. Writers exist WR++; No. Writers exist
cond wait (&okToRead, &lock) ;// Sleep on cond var cond wait (&okToRead, &lock) ;// Sleep on cond var
N WR--7 // No longer waiting N WR--7 // No longer waiting
AR++; // Now we are active! AR++ // Now we are active!
[release (&lock); | release (slock) ;
AccessDBase (Readonly) ; [Eccesshrase (ReadonlyT]
acquire (&lock) ; acquire (&lock) ;
AR--; AR--;
if (AR == 0 && > 0) i
cond si fnal(&okToerte)
) releasé(&lock
Lec 9.47 2/13/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 9.48

2/13/2024 Kubiatowicz CS162 © UCB Spring 2024

Simulation of Readers/Writers Solution

* W1 comes along (R1 and R2 are still accessing dbase)
* AR=2,WR=0,AW=0,WW=0

Wri

while ((AW + AR) > 0) { // Is it safe to write?
WW+ { ctlve users exist

cond walt(&okToerte & oc%? ;// Sleep on cond var

} WW- longer waiting

AW++;

release (&lock) ;

AccessDBase (ReadWrite) ;

acqulre(&lock),

AW
if (WW> 0) {

cond 51gnal(&okToWr1te),
} else—if " (WR L

cond broadcast(&o ToRead) ;

release (&lock) ;

Simulation of Readers/Writers Solution

* W1 comes along (R1 and R2 are still accessing dbase)
* AR=2,WR=0,AW=0,WW=0

Writer ()
cqulre(&lock)

// Is it safe to write?
{ Actlve users exist
cond walt(&okToerte & oc%? ;// Sleep on cond var
} WW- longer waiting
AW++;
release (&lock) ;

AccessDBase (ReadWrite) ;

acqulre(&lock),

AW
if (WW> 0) {
cond 51gnal(&okToWr1te),
} else—if " (WR L
cond broadcast(&o ToRead) ;

release (&lock) ;

} }
2/13/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 9.49 2/13/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 9.50
Simulation of Readers/Writers Solution Simulation of Readers/Writers Solution
* W1 comes along (R1 and R2 are still accessing dbase) * R3 comes along (R1 and R2 accessing dbase, W1 waiting)
* AR=2, WR=0,AW =0, WW =1 * AR=2, WR=0,AW =0, WW =1
Writer
t acéglre(&lock) Reager
while ((AW + AR) > 0) { // Is l§c§?5§ Egegglgizst while ((AW + WW) > 0) { // Is it safe to read?
// Sieep on cond var ++; No. Writers exist
== longer waiting cond wait (&okToRead, &lock) ;// Sleep on cond var
} WR--7 // W& longer waiting
AW++; }
release (&lock) ; AR++ // Now we are active!
. release(&lock)
AccessDBase (ReadWrite) ;
AccessDBase (ReadOnly) ;
acqulre(&lock),
1f (ﬁW 0){ acquire (&lock) ;
cond s1gnal(&okToWr1te), AR--;
} else—lf L if (AR == 0 && WW > 0)
cond broadcast(&o ToRead) ; cond 51fna1(&okToWr1te)
releasé(&lock
} release (&lock) ; }
2/13/2024

Kubiatowicz CS162 © UCB Spring 2024

Lec 9.51

2/13/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 9.52

Simulation of Readers/Writers Solution

* R3 comes along (R1 and R2 accessing dbase, W1 waiting)
*+ AR=2, WR=0,AW =0, WW =1

Reader () {
acquire (&lock) ;
{ // Is it safe to read?
// No. Writers exist
cond’ walt(&okToRead &lock) ;// Sleep on cond var
WR- // No longer waiting

=7

}

AR++ // Now we are active!
release(&lock)

AccessDBase (ReadOnly) ;

acqulre(&lock),

AR-
if (AR 0 && WW > 0)
cond si fnal(&okToerte)

Simulation of Readers/Writers Solution

* R3 comes along (R1 and R2 accessing dbase, W1 waiting)
*« AR=2, WR=1,, AW =0, WW =1

Reader () {
acquire (&lock) ;
i { // Is it safe to read?
// No. Writers exist
cond | wait (&okToRead, &lock);// Sleep on cond var
WR- // No longer waiting

B

}

AR++; // Now we are active!
lock.release() ;

AccessDBase (ReadOnly) ;

acqulre(&lock),

AR-

if (AR 0 && WW > 0)
cond si fnal(&okToerte)

releasé(&lock

releasé(&lock

} }

2/13/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 9.53 2/13/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 9.54
Simulation of Readers/Writers Solution Simulation of Readers/Writers Solution
* R3 comes along (R1, R2 accessing dbase, W1 waiting) * R1 and R2 accessing dbase, W1 and R3 waiting
« AR=2, WR=1, AW=0, WW =1 « AR=2, WR=1,, AW=0, WW =1
Reader () { Reader () {
acquire (&lock) ; acquire (&lock) ;
wh11e ((AW + WW) > 0) { // Is it safe to read? while ((AW + WW) > 0) { // Is it safe to read?
No. Writers exist WR++; No. Writers exist
// Sleep on cond var cond wait (&okToRead, &lock) ;// Sleep on cond var
) -= © longer waiting } -=7 // No longer waiting
AR++ // Now we are active! AR++ // Now we are active!
release(&lock) release(&lock),
AccessDBase (ReadOnly) ; AccessDBase (ReadOnly) ;
acquire (&lock) ; acquire (&lock) ;
AR--; AR--;
if (AR == 0 && WW > 0) j
cond si fnal(&okToerte)
; releasé(&lock
Lec 9.55 2/13/2024 Lec 9.56

2/13/2024 Kubiatowicz CS162 © UCB Spring 2024

Simulation of Readers/Writers Solution

» R2 finishes (R1 accessing dbase, W1 and R3 waiting)
* AR=2, WR=1,AW =0, WW =1

Reader () {
acquire (&lock) ;
while ((AW + WW) > 0) { // Is it safe to read?
++; No. Writers exist
cond wait (&okToRead, &lock) ;// Sleep on cond var
// No longer waiting

B

}

AR++ // Now we are active!
release(&lock)

AccessDBase (ReadOnly) ;

if (AR == 0 && WW > 0)
cond signal (&okToWrite) ;
releasé(&lock) ;
}

2/13/2024 Kubiatowicz CS162 © UCB Spring 2024

Lec 9.57

Simulation of Readers/Writers Solution

» R2 finishes (R1 accessing dbase, W1 and R3 waiting)
*+ AR=1,WR=1,AW =0, WW =1

Reader () {
acquire (&lock) ;
while ((AW + WW) > 0) { // Is it safe to read?
++; No. Writers exist
cond wait (&okToRead, &lock) ; // Sleep on cond var
// No longer waiting

B

}

AR++ // Now we are active!
release(&lock)

AccessDBase (ReadOnly) ;

acquire (&lock) ;

1 ==
cond signal (&okToWrite) ;
releasé(&lock) ;

2/13/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 9.58

Simulation of Readers/Writers Solution

* R2 finishes (R1 accessing dbase, W1 and R3 waiting)
* AR=1,WR=1,AW=0, WW =1

Reader () {
acquire (&lock) ;

while ((AW + WW) > 0) { // Is it safe to read?
No. Writers exist

WR++;
cond wait (&okToRead, &lock) ;// Sleep on cond var
// No longer waiting
}

AR++ // Now we are active!
release(&lock)

;

AccessDBase (ReadOnly) ;

acquire (&lock) ;
AR--;

cond signal (&okToWrite) ;
releasé(&lock) ;

2/13/2024 Kubiatowicz CS162 © UCB Spring 2024

Lec 9.59

Simulation of Readers/Writers Solution

» R2 finishes (R1 accessing dbase, W1 and R3 waiting)
*« AR=1,WR=1,AW =0, WW =1

Reader () {
acquire (&lock) ;

while ((AW + WW) > 0) { // Is it safe to read?
No. Writers exist

WR++;
cond wait (&okToRead, &lock) ; // Sleep on cond var
// No longer waiting
}

AR++ // Now we are active!
release(&lock)

;

AccessDBase (ReadOnly) ;

acquire (&lock) ;
AR--;
if (AR == 0 && WW > 0)

cond siinali&okToWrite);

}
Kubiatowicz CS162 © UCB Spring 2024 Lec 9.60

2/13/2024

Simulation of Readers/Writers Solution

* R1 finishes (W1 and R3 waiting)
* AR=1,WR=1,,AW =0, WW =1

Reader () {
acquire (&lock) ;
while ((AW + WW) > 0) { // Is it safe to read?
++; No. Writers exist
cond wait (&okToRead, &lock) ;// Sleep on cond var
// No longer waiting

B

}

AR++ // Now we are active!
release(&lock)

AccessDBase (ReadOnly) ;

if (AR == 0 && WW > 0)
cond signal (&okToWrite) ;
releasé(&lock) ;

}

2/13/2024 Kubiatowicz CS162 © UCB Spring 2024

Lec 9.61

Simulation of Readers/Writers Solution

* R1 finishes (W1, R3 waiting)
*+ AR=0,WR=1,AW =0, WW =1

Reader () {
acquire (&lock) ;
while ((AW + WW) > 0) { // Is it safe to read?
++; No. Writers exist

cond wait (&okToRead, &lock) ; // Sleep on cond var
// No longer waiting

B

}

AR++ // Now we are active!
release(&lock)

AccessDBase (ReadOnly) ;
acquire (&lock) ;
1 =

cond signal (&okToWrite) ;
releasé(&lock) ;

2/13/2024 Kubiatowicz CS162 © UCB Spring 2024

Lec 9.62

Simulation of Readers/Writers Solution

* R1 finishes (W1, R3 waiting)
*+ AR=0,WR=1,AW =0, WW =1

Reader () {
acquire (&lock) ;

while ((AW + WW) > 0) { // Is it safe to read?
No. Writers exist

WR++;
cond wait (&okToRead, &lock) ;// Sleep on cond var
// No longer waiting
}

AR++ // Now we are active!
release(&lock)

;

AccessDBase (ReadOnly) ;

acquire (&lock) ;
AR--;

cond_signa okToWrite) ;
releasé(&lock) ;

2/13/2024 Kubiatowicz CS162 © UCB Spring 2024

Lec 9.63

Simulation of Readers/Writers Solution

* R1 signals a writer (W1 and R3 waiting)
*+ AR=0,WR=1,AW =0, WW =1

Reader () {
acquire (&lock) ;

while ((AW + WW) > 0) { // Is it safe to read?
No. Writers exist

WR++;
cond wait (&okToRead, &lock) ; // Sleep on cond var
// No longer waiting
}

AR++ // Now we are active!
release(&lock)

;

AccessDBase (ReadOnly) ;

acquire (&lock) ;

AR--;

if (AR == 0 && WW > O
re!ease!&!oc!!;

2/13/2024 Kubiatowicz CS162 © UCB Spring 2024

Lec 9.64

Simulation of Readers/Writers Solution

* W1 gets signal (R3 still waiting)
*+ AR=0,WR=1,AW =0, WW =1

Writer ()
cqulre(&lock)

while ((AW + AR) > 0) { // Is it safe to write?
: Active users exist
// Sleep on cond var
} ==7 longer waiting

AW++;
release (&lock) ;

AccessDBase (ReadWrite) ;

acqulre(&lock),
AW
if (WW> 0){
cond 51gnal(&okToWr1te),
} else—if " (WR L
cond broadcast(&o ToRead) ;

release (&lock) ;

2/13/2024 Kubiatowicz CS162 © UCB Spring 2024

Lec 9.65

Simulation of Readers/Writers Solution

* W1 gets signal (R3 still waiting)
* AR=0,WR=1,AW=0,WW =0
Writer ()

cqulre(&lock)

while ((AW + AR) > 0) { // Is it safe to write?
WW++ Active users exist

longer waiting

AW++;
release (&lock) ;

AccessDBase (ReadWrite) ;

acqulre(&lock),

AW
if (WW> 0) {
cond 51gnal(&okToWr1te),
} else—if " (WR L
cond broadcast(&o ToRead) ;

release (&lock) ;

2/13/2024 Kubiatowicz CS162 © UCB Spring 2024

Lec 9.66

Simulation of Readers/Writers Solution

* W1 gets signal (R3 still waiting)
* AR=0,WR=1,AW=1, WW=0
Writer ()
acqulre(&lock)
while ((AW + AR) > 0) { // Is it safe to write?
WW++; Active users exist

cond walt(&okToerte &f;c§3 '// Sleep on cond var
} WW- o longer waiting

release ocC H

AccessDBase (ReadWrite) ;

acqulre(&lock),

Y Thw > 0) {
cond s1gnal(&okToWr1te),
} else—lf (WR L

cond broadcast(&o ToRead) ;

release (&lock) ;

2/13/2024 Kubiatowicz CS162 © UCB Spring 2024

Lec 9.67

Simulation of Readers/Writers Solution

* W1 accessing dbase (R3 still waiting)
* AR=0,WR=1,AW=1, WW=0

Writer ()
acqulre(&lock)
while ((AW + AR) > 0) { // Is it safe to write?
WW++; { Active users exist
cond walt(&okToerte & oc%? ;// Sleep on cond var
WW- o longer waiting

}
AW++;
release (&lock) ;

acqulre(&lock),

¥ W > 0) {
cond s1gnal(&okToWr1te),
} else—lf (WR L

cond broadcast(&o ToRead) ;

release (&lock) ;

2/13/2024 Kubiatowicz CS162 © UCB Spring 2024

Lec 9.68

Simulation of Readers/Writers Solution

* W1 finishes (R3 still waiting)
* AR=0,WR=1,AW=1, WW=0

Writer (). {
acquire (&lock) ;
while ((AW + AR) > 0) { // Is it safe to write?
WW++; | . {/ No. Active users exist
cond wait (&okToWrite, & oc%?;// Sleep on cond var
} WW--7 // No longer waiting

AW++;
release (&lock) ;

AccessDBase (ReadWrite) ;

if (WW > 0){ .
cond signal (&okToWrite) ;

} else—if "(WR > 0) L
cond_broadcast (&okToRead) ;

Lelease(&lock);

Simulation of Readers/Writers Solution

* W1 finishes (R3 still waiting)
* AR=0,WR=1,AW=0,WW=0

Writer () {
acquire (&lock) ;
while ((AW + AR) > 0) { // Is it safe to write?
WW++; | . {/ No. Active users exist
cond wait (&okToWrite, & oc%?;// Sleep on cond var
} WW--7 // No longer waiting

AW++;
release (&lock) ;

AccessDBase (ReadWrite) ;

1
cond signal (&okToWrite) ;

} else—if "(WR > 0) L
cond_broadcast (&okToRead) ;

release (&lock) ;

}
2/13/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 9.69 2/13/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 9.70
Simulation of Readers/Writers Solution Simulation of Readers/Writers Solution
* W1 finishes (R3 still waiting) * W1 signaling readers (R3 still waiting)
* AR=0,WR=1,AW=0,WW=0 * AR=0,WR=1,AW=0, WW=0
Writer (). { Writer (). {
acquire (&lock) ; acquire (&lock) ;
while ((AW + AR) > 0) { // Is it safe to write? while ((AW + AR) > 0) { // Is it safe to write?
WW++; | . {/ No. Active users exist WW++; | . {/ No. Active users exist
cond wait (&okToWrite, & oc%?;// Sleep on cond var cond wait (&okToWrite, & oc%?;// Sleep on cond var
} WW--7 // No longer waiting } WW--7 // No longer waiting
AW++; AW++;
release (&lock) ; release (&lock) ;
AccessDBase (ReadWrite) ; AccessDBase (ReadWrite) ;
acqu%re(&lock); a%qu%re(&lock);
if (WW > 0){ .
: e); cond signal (&okToWrite) ;
} else—if "(WR > 0) L
cond_broadcast (&okToRead) ; }
} release (&lock) ; } release (&lock) ;
Lec9.71 2/13/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec9.72

2/13/2024 Kubiatowicz CS162 © UCB Spring 2024

Simulation of Readers/Writers Solution

* R3 gets signal (no waiting threads)
*+ AR=0,WR=1,AW=0,WW=0

Reader () {
acquire (&lock) ;
while ((AW + WW) > 0) { // Is it safe to read?
WR++; // No. Writers exist
// Sleep on cond var
== O longer waiting
}
AR++ // Now we are active!

release(&lock)
AccessDBase (ReadOnly) ;

acqulre(&lock),
AR-
if (AR = 0 && WW > 0)

cond signal (&okToWrite) ;
releasé(&lock) ;

2/13/2024 Kubiatowicz CS162 © UCB Spring 2024

Lec9.73

Simulation of Readers/Writers Solution

* R3 gets signal (no waiting threads)
* AR=0,WR=0,AW=0,WW=0

Reader () {
acquire (&lock) ;

while ((AW + WW) > 0) { // Is it safe to read?
++; / No. Writers exist

/
cond wait (&okToRead, &lock) ;// Sleep on cond var
// No longer waiting

AR++ // Now we are active!
release(&lock)

AccessDBase (ReadOnly) ;

acqulre(&lock),
AR-
if (AR = 0 && WW > 0)

cond signal (&okToWrite) ;
releasé(&lock) ;

2/13/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec9.74

Simulation of Readers/Writers Solution

* R3 accessing dbase (no waiting threads)
* AR=1,WR=0,AW=0,WW=0

Reader () {
acquire (&lock) ;
while ((AW + WW) > 0) { // Is it safe to read?
No. Writers exist
cond wait (&okToRead, &lock) ;// Sleep on cond var

WR--7 // No'longer waiting
}
AR++ // Now we are active!
release(&lock)
[EccessDEase (Readonly) |

acquire (&lock) ;
AR--;
if (AR == 0 && WW > 0)

cond si fnal(&okToerte)
releasé(&lock

2/13/2024 Kubiatowicz CS162 © UCB Spring 2024

Lec9.75

Simulation of Readers/Writers Solution

* Ra3 finishes (no waiting threads)
* AR=1,WR=0,AW=0,WW=0

Reader () {
acquire (&lock) ;
while ((AW + WW) > 0) { // Is it safe to read?
No. Writers exist

cond wait (&okToRead, &lock) ; // Sleep on cond var
WR--7 // No longer waiting

}

AR++ // Now we are active!

release(&lock)

AccessDBase (ReadOnly) ;

if (AR = 0 && WW > 0)
cond 51fna1(&okToWr1te)
releasé(&lock

2/13/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 9.76

Simulation of Readers/Writers Solution

* Ra3 finishes (no waiting threads)
*« AR=0,WR=0,AW=0,WW=0

Reader () {
acquire (&lock) ;
while ((AW + WW) > 0) { // Is it safe to read?
++; / No. Writers exist
cond wait (&okToRead, &lock) ;// Sleep on cond var
N WR--7 // No longer waiting

AR++ // Now we are active!
release(&lock)

AccessDbase (ReadOnly) ;

acqulre(&lock),
AR-

Questions

» Can readers starve? Consider Reader() entry code:
while ((AW + WW) > 0) { // Is it safe to read?

WR++; // No. Writers exist
cond wait (&okToRead, &lock) ;// Sleep on cond var
WR--; // No longer waiting

}

AR++; // Now we are active!

* What if we erase the condition check in Reader exit?

AR--; // No longer active
cond_signal(&okToWrite);!! Wake up one writer
+ Further, what if we turn the signal() into broadcast()

AR--; // No longer active
cond_broadcast (&okToWrite); // Wake up sleepers

+ Finally, what if we use only one condition variable (call it

if (AR 0 && WW > 0) “ - »y
cond s:.inal i&okToWrite) ; okContinue”) instead of two separate ones?
} — Both readers and writers sleep on this variable
— Must use broadcast() instead of signal()
2/13/2024 Kubiatowicz C$162 © UCB Spring 2024 Lec9.77 2/13/2024 Kubiatowicz C$162 © UCB Spring 2024 Lec9.78
Use of Single CV: okContinue Use of Single CV: okContinue
Reader() { Writer() { Reader() { Writer() {

// check into system // check into system // check into system // check into system
acquire(&lock); acqu1re§&lock) acqu1re2&lock) acqu1re€&lock)
whkﬁs (gAw + ww) >0) { thif ((AW + AR) > 0) { whkis ((AW + WW) > 0) { thi? ((AW + AR) > 0) {

++;
cond_walt(&okContlnue,&lock);
W

E}

AR++;
release(&lock);

// read-only access
AccessDbase(ReadOnly);

// check out of system
acqu1re(&lock)

1f (AR == @ 8& WW > 0)
cond_signal(&okContinue);
release(&lock);

2/13/2024

++;
cond_walt(&okContlnue,&lock);
Wi

E}

AW++;
release(&lock);

// read/write access
AccessDbase(ReadWrite);

// check out of system
acquire(&lock);
w-_
if (ww > 0){
cond 51gna1(&okCont1nue),
} else if (WR >
cond_| broadcast &okContinue);

¥
release(&lock);

Lec9.79

++;
cond_walt(&okContlnue,&lock);
W

E}

AR++;
release(&lock);

// read-only access
AccessDbase(ReadOnly);

// check out of system
acqu1re(&lock)

1f (AR == @ 8& WW > 0)

cond_signal(&okContinue);
release(&lock);

2/13/2024

++;
cond_walt(&okContlnue,&lock);
W

E}

AW++;
release(&lock);

// read/write access
AccessDbase(ReadWrite);

// check out of system
acquire(&lock);
w-_
if (ww > 0){
cond 51gnal(&okCont1nue),
} else if (WR >
cond_| broadcast &okContinue);

Lec 9.80

Use of Single CV: okContinue

Reader() {
// check into system
acquire(&lock);
while ((AW + WW) > @) {
WR++
cond_wait(&okContinue,&lock);

E}

AR++;
release(&lock);

// read-only access
AccessDbase(ReadOnly);

// check out of system

acquire(&lock);

AR--;

if (AR == 0 && WW > 0)
cond_broadcast(&kContinue);

release(&lock);

Need to change to
broadcast () !

2/13/2024

Writer() {
// check into system
acquire(&lock);
while ((AW + AR) > @) {
WW++;
cond_wait(&okContinue,&lock);

E}

AW++;
release(&lock);

// read/write access
AccessDbase(ReadWrite);

// check out of system

acquire(&lock);

AW--;

if (WW > @ || WR > 0){
cond_broadcast(&okContinue);

¥

release(&lock);
Must broadcast ()
to sort things out!

Can we construct Monitors from Semaphores?

* Locking aspect is easy: Just use a mutex

» Can we implement condition variables this way?
Wait(Semaphore *thesema) { semaP(thesema); }
Signal(Semaphore *thesema) { semaV(thesema); }

* Does this work better?

Wait(Lock *thelock, Semaphore *thesema) {
release(thelock);
semaP(thesema);
acquire(thelock);

Signal(Semaphore *thesema) {
semaV(thesema);

Kubiatowicz CS162 © UCB Spring 2024 Lec 9.81 2/13/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 9.82
Construction of Monitors from Semaphores (con’t) Mesa Monitor Conclusion
* Problem with previous try: , + Monitors represent the synchronization logic of the program
—P and V are commutative — result is the same no matter what — Wait if necessar
order they occur / y . 3
— Condition variables are NOT commutative — Signal when change something so any waiting threads can proceed
« Does this fix the problem? » Typical structure of monitor-based program:
Wait(Lock *thelock, Semaphore *thesema lock
rélease(thelocki; P) 1 while (need to wait) { Check and/or update
semaP(thesema); condvar.wait(); state variables
acquire(thelock); } Wait if necessary
unlock
Signal(Semaphore *thesema) { . .
if semaphope queue is not empty do SOmethlng so no need to wait
semaV(thesema);
lock
— Not Iegal to look at cgntents pf semaphorg queue .) Check and/or update
— There is a race condition — signaler can slip in after lock condvar.signal(); state variables
release and before waiter executes semaphore.P()
« Itis actually possible to do this correctly unlock
— Complex solution for Hoare scheduling in book
— Can you come up with simpler Mesa-scheduled solution?
2/13/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 9.83 2/13/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 9.84

C-Language Support for Synchronization

» C language: Pretty straightforward synchronization
— Just make sure you know all the code paths out of a critical section

int Rtn() {
acquire(&lock); Proc A o
oA
if (exception) { Proc B ;
release(&lock); . ©
return errRetanCode; Calls setjmp 3
Proc C g
acquire(&lock)| =
release(&lock);
return OK; Proc D
Proc E
— Watch out for set jmp/longjmp! Calls longim

» Can cause a non-local jump out of procedure
» In example, procedure E calls longjmp, poping stack back to procedure B
» If Procedure C had lock.acquire, problem!

Concurrency and Synchronization in C

» Harder with more locks
void Rtn() {
lockl.acquire();

if (error) {
lockl.release();
return;

lock2.acquire();

if (error) {
lock2.release()
lockl.release();
return;

}

lock2.release();
lockl.release();

* |Is goto a solution???
void Rtn() {
lockl.acquire();

if (errori
goto release_lockl_and_return;

lock2.acquire();

if (error) {
goto release_both_and_return;

}

release_both_and_return:
lock2.release();

release_lockl_and_return:
lockl.release();

}
2/13/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 9.85 2/13/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 9.86
C++ Language Support for Synchronization C++ Language Support for Synchronization (con’t)
¢ Languages with exceptions like C++ « Must catch all exceptions in critical sections
— Languages that support exceptions are problematic (easy to make a — Catch exceptions, release lock, and re-throw exception:
non-local exit without releasing lock) void Rtn() {
— Consider: lock.acquire();
try {
void Rtn() { .
lock.acquire(); DoFoo();
BoFoo(); } catch (.) { // catch exception
. lock.release(); // release lock
lock.release(); throw; // re-throw the exception
¥
void DoFoo() {) lock.release();
if (exception) throw errException; void DoFoo() {
} ” if (exception) throw errException;
— Notice that an exception in DoFoo() will exit without releasing the lock! y
Lec 9.87 2/13/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 9.88

2/13/2024 Kubiatowicz CS162 © UCB Spring 2024

Much better: C++ Lock Guards

#include <mutex>
int global_i = 0;
std: :mutex global mutex;

void safe_increment() {
std::lock_guard<std: :mutex> lock(global mutex);

global i++;
// Mutex released when ‘lock’ goes out of scope

Python with Keyword

* More versatile than we show here (can be used to close files, database
connections, etc.)

lock = threading.Lock()

with lock: # Automatically calls acquire()
some_var += 1

release() called however we leave block

}
2/13/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 9.89 2/13/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 9.90
Java synchronized Keyword Java Support for Monitors
« Every Java object has an associated lock: « Along with a lock, every object has a single condition variable
— Lock is acquired on entry and released on exit from a synchronized method associated with it
— Lock is properly released if exception occurs inside a synchronized method
— Mutex execution of synchronized methods (beware deadlock) « To wait inside a synchronized method:
class, Account - void wait();
private int balance; - void wait(long timeout);
// object constructor
public Account (int initialBalance) { . o .
balance = initialBalance; * To signal while in a synchronized method:
publitc synbchlr‘onized int getBalance() { - void notify();
} return balance; -void notifyAll();
public synchronized void deposit(int amount) {
balance += amount;
}
2/13/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 9.91 2/13/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 9.92

Conclusion

« Semaphores: Like integers with restricted interface
— Two operations:
» P(): Wait if zero; decrement when becomes non-zero
» V(): Increment and wake a sleeping task (if exists)
» Can initialize value to any non-negative value
— Use separate semaphore for each constraint
Monitors: A lock plus one or more condition variables
— Always acquire lock before accessing shared data
— Use condition variables to wait inside critical section
» Three Operations: Wait(), Signal(), and Broadcast()
» Monitors represent the logic of the program
— Wait if necessary
— Signal when change something so any waiting threads can proceed
— Monitors supported natively in a number of languages
» Readers/Writers Monitor example
— Shows how monitors allow sophisticated controlled entry to protected code

2/13/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 9.93

