CS162
Operating Systems and
Systems Programming

Lecture 10

Synchronization 4: Readers/Writers
Scheduling Intro: Pintos Concurrency, FCFS

February 20st, 2024
Prof. John Kubiatowicz
http://cs162.eecs.Berkeley.edu

emptySlots
signals space

Recall: Bounded Buffer, 3" cut (coke machine)

Semaphore fullSlots = 9; // Initially, no coke

Semaphore emptySlots = bufSize;
// Initially, num empty slots

Semaphore mutex = 1; // No one using machine

Producer(item) {

semaP (&emptySlots); // Wait until space
semaP(&mutex); // Wait until machine free
Enqueue(item);
tex);
semaV(&fullSlots); ;; ;gié ggﬂ:umers there is Critical sections
i tex
} : using mutex -
fullSlots signals coke protect integrity

Consumer() {

semaP(&fullSlots); // Check if there’s a coke of the queue
semaP (&mutex); /7 Wait until machine free

item = Dequeue();

semaV (&mutex);

semaV(&emptySlots); // tell producer need more

return item;

¥
2/20/24 Kubiatowicz CS162 © UCB Spring 2024 Lec 10.2
Recall: Monitors and Condition Variables Recall: Bounded Buffer — 4™ cut (Monitors, pthread-like)

Monitor: a lock and zero or more condition variables for managing lock buf_lock = <initially unlocked>
concurrent access to shared data condition producer_CV = <initially empty>

— Use of Monitors is a programming paradigm condition consumer_CV = <initially empty>

— Some languages like Java provide monitors in the language Producer(item) {

o, : . pr ; ol m acquire(&buf_lock);

Cor](gjltlon Variable: a queue of threads waiting for something inside a critical while (buffer full) { cond wait(&producer CV, &buf lock); }
SeCKIOH_d Il leeping inside critical section by atomically releasing lock at e e

— Key idea: allow sleeping inside critical section by atomically releasing lock a cond_signal(&consumer_CV);

time we go to sleep release(&buf lock); What ‘do.es ﬂ'.lr'.ead do

— Contrast to semaphores: Can’t wait inside critical section } when it is waiting?)
Operations: - Sleep, not busywait!

-Wait (&lock): Atomically release lock and go to sleep. Re-acquire lock later, Cogzgﬂi:ézbﬁf lock);

before returning. o while (buffer empty) { cond_wait(&consumer_CV, &buf lock); }
- Signal (): Wake up one waiter, if any item = dequeue();
- Broadcast () : Wake up all waiters CO;d_Si%gai(ﬁprﬁgucetw);
) . e . release(bur_locC 5
Rule: Must hold lock when doing condition variable ops! return item
}
2/20/24 Kubiatowicz CS162 © UCB Spring 2024 Lec 10.3 2/20/24 Kubiatowicz CS162 © UCB Spring 2024 Lec 10.4

Readers/Writers Problem

» Motivation: Consider a shared database
— Two classes of users:
» Readers — never modify database
» Writers — read and modify database
— Is using a single lock on the whole database sufficient?

Basic Structure of Mesa Monitor Program

» Monitors represent the synchronization logic of the program

— Wait if necessary

— Signal when change something so any waiting threads can proceed
 Basic structure of mesa monitor-based program:

lock
while (need to wait) { Check and/or update
condvar.wait(); state variables
Wait if necessary

unlock
do something so no need to wait

lock

. Check and/or update
condvar.signal(); } state variablre)s

» Like to have many readers at the same time unlock
» Only one writer at a time
2/20/24 Kubiatowicz CS162 © UCB Spring 2024 Lec 10.5 2/20/24 Kubiatowicz CS162 © UCB Spring 2024 Lec 10.6
Basic Readers/Writers Solution Code for a Reader
» Correctness Constraints: Reader() {
— Readers can access database when no writers // First check self into system
— Writers can access database when no readers or writers acquire (&lock) ;
— Only one thread manipulates state variables at a time while ((AW + WW) > 0) { % Is it safe to read?
« Basi tructur f lution: WR++; No. Writers exist
—aigasdeli-c(l; € ot a solutio cond_wait (&okToRead, &lock) ;// Sleep on cond var
Wait until no writers WR--; // No longer waiting
Access data base }
Check out - wake up a waiting writer AR++; // Now we are active!
-Writer() release (&lock) ;
Wait until no active readers or writers
Access database // Perform actual read-only access
Check out - wake up waiting readers or writer AccessDatabase (ReadOnly) ;
— State variables (Protected by a lock called “lock”): // Now, check out of system
» int AR: Number of active readers; initially = 0 acquire (&lock) ;
» int WR: Number of waiting readers; initially = 0 AR--; // No longer active
» int AW: Number of active writers; initially = 0 if (AR == 0 && WW > 0) // No other active readers
» int WW: Number of waiting writers; initially = 0 cond_signal (&okToWrite) ;// Wake up one writer
» Condition okToRead = NIL release (&lock) ;
» Condition okToWrite = NIL }
2/20/24 Kubiatowicz CS162 © UCB Spring 2024 Lec 10.7 2/20/24 Kubiatowicz CS162 © UCB Spring 2024 Lec 10.8

Code for a Writer

Writer() {
// First check self into system
acquire (&lock) ;

while ((AW + AR) > 0) { // Is it safe to write?

WW++; // No. Active users exist
cond wait (&okToWrite,&lock); // Sleep on cond var
WW--7 // No longer waiting

}

AW++; // Now we are active!

release (&lock) ;

// Perform actual read/write access
AccessDatabase (ReadWrite) ;

// Now, check out of system

acquire (&lock) ;

AW--; // No longer active

if (WW > 0){ // Give priority to writers
cond _signal (&okToWrite) ;// Wake up one writer

} else if (WR > 0) { // Otherwise, wake reader
cond_broadcast (&okToRead); // Wake all readers

release (&lock) ;

Simulation of Readers/Writers Solution

+ Use an example to simulate the solution

+ Consider the following sequence of operators:
-R1,R2, W1, R3

Initially: AR =0, WR =0, AW=0, WW =0

2/20/24 Kubiatowicz CS162 © UCB Spring 2024 Lec 10.9 2/20/24 Kubiatowicz CS162 © UCB Spring 2024 Lec 10.10
Simulation of Readers/Writers Solution Simulation of Readers/Writers Solution
* R1 comes along (no waiting threads) * R1 comes along (no waiting threads)
* AR=0,WR=0,AW=0,WW=0 * AR=0,WR=0,AW=0,WW=0
Reader Reader () {
acquire (&lock) ;
while ((AW + WW) > 0) { // Is it safe to read? { // Is it safe to read?
No. Writers exist ++ // No. Writers exist
cond wait (&okToRead, &lock) ;// Sleep on cond var cond walt(&okToRead &lock) ; // Sleep on cond var
WR--7 // No longer waiting WR--7 // No longer waiting
} }
AR++ // Now we are active! AR++ // Now we are active!
release(&lock) release(&lock)
AccessDBase (ReadOnly) ; AccessDBase (ReadOnly) ;
acquire (&lock) ; acquire (&lock) ;
AR--; AR--;
if (AR == 0 && WW > 0) if (AR == 0 && WW > 0)
cond si fnal(&okToerte) cond 51fna1(&okToWr1te)
releasé(&lock releasé(&lock
} }
2/20/24 Kubiatowicz CS162 © UCB Spring 2024 Lec 10.11 2/20/24 Kubiatowicz CS162 © UCB Spring 2024 Lec 10.12

Simulation of Readers/Writers Solution

* R1 comes along (no waiting threads)
* AR=1,WR=0,AW=0,WW=0

Reader () {
acquire (&lock) ;
while ((AW + WW) > 0) { // Is it safe to read?
++; No. Writers exist

cond | wait (&okToRead, &lock);// Sleep on cond var
WR- // No longer waiting
}

// Now we are active!
release (&lock) ;

AccessDBase (ReadOnly) ;

B

acqulre(&lock),
AR-

if (AR = 0 && WW > 0)
cond signal (&okToWrite) ;
releasé(&lock) ;

Simulation of Readers/Writers Solution

* R1 comes along (no waiting threads)
* AR=1,WR=0,AW=0,WW=0

Reader () {
acquire (&lock) ;
while ((AW + WW) > 0) { // Is it safe to read?
++; No. Writers exist

cond | wait (&okToRead, &lock) ; // Sleep on cond var
WR- // No longer waiting

B

}

AR++ I-

AccessDBase (ReadOnly) ;

// Now we are active!

acqulre(&lock),
AR-

if (AR = 0 && WW > 0)
cond signal (&okToWrite) ;
releasé(&lock) ;

2/20/24 Kubiatowicz CS162 © UCB Spring 2024 Lec 10.13 2/20/24 Kubiatowicz CS162 © UCB Spring 2024 Lec 10.14
Simulation of Readers/Writers Solution Simulation of Readers/Writers Solution
* R1 accessing dbase (no other threads) * R2 comes along (R1 accessing dbase)
* AR=1,WR=0,AW=0, WW=0 * AR=1,WR=0,AW=0, WW=0
Reader () { Reader
acquire (&lock) ;
while ((AW + WW) > 0) { // Is it safe to read? while ((AW + WW) > 0) { // Is it safe to read?
WR: No. Writers exist WR No. Writers exist
cond wait (&okToRead, &lock) ;// Sleep on cond var cond wait (&okToRead, &lock) ; // Sleep on cond var
N WR--7 // No longer waiting N WR--7 // No longer waiting
AR++ // Now we are active! AR++ // Now we are active!
release(&lock) release(&lock)
[EccessDEase (Readonly) | AccessDBase (ReadOnly) ;
acquire (&lock) ; acquire (&lock) ;
AR--; AR--;
if (AR == 0 && WW > 0) if (AR == 0 && WW > 0)
cond si fnal(&okToerte) cond 51fna1(&okToWr1te)
) releasé(&lock } releasé(&lock
Lec 10.15 2/20/24 Kubiatowicz CS162 © UCB Spring 2024 Lec 10.16

2/20/24 Kubiatowicz CS162 © UCB Spring 2024

Simulation of Readers/Writers Solution

* R2 comes along (R1 accessing dbase)
*+ AR=1,WR=0,AW=0,WW=0

Reader () {
acquire (&lock) ;
{ // Is it safe to read?
No. Writers exist

//
cond’ walt(&okToRead &lock) ;// Sleep on cond var
WR- // No longer waiting
}

AR++ // Now we are active!
release(&lock)

=7

AccessDBase (ReadOnly) ;

acqulre(&lock),
AR-

if (AR = 0 && WW > 0)
cond si fnal(&okToerte)
releasé(&lock

Simulation of Readers/Writers Solution

* R2 comes along (R1 accessing dbase)
*+ AR=2, WR=0,AW=0,WW=0

Reader () {
acquire (&lock) ;
while ((AW + WW) > 0) { // Is it safe to read?
++; No. Writers exist

cond | wait (&okToRead, &lock);// Sleep on cond var
WR- // No longer waiting

B

}

// Now we are active!
release (&lock) ;

AccessDBase (ReadOnly) ;

acqulre(&lock),
AR-

if (AR = 0 && WW > 0)
cond 51fnal(&okToWr1te)
releasé(&lock

2/20/24 Kubiatowicz CS162 © UCB Spring 2024 Lec 10.17 2/20/24 Kubiatowicz CS162 © UCB Spring 2024 Lec 10.18
Simulation of Readers/Writers Solution Simulation of Readers/Writers Solution
* R2 comes along (R1 accessing dbase) * R1 and R2 accessing dbase
« AR=2, WR=0,AW=0, WW=0 « AR=2, WR=0,AW=0, WW=0
Reader () { Reader () {
acquire (&lock) ; acquire (&lock) ;
while ((AW + WW) > 0) { // Is it safe to read? while ((AW + WW) > 0) { // Is it safe to read?
WR++; No. Writers exist WR++; No. Writers exist
cond wait (&okToRead, &lock) ;// Sleep on cond var cond wait (&okToRead, &lock) ;// Sleep on cond var
N WR--7 // No longer waiting N WR--7 // No longer waiting
AR++; // Now we are active! AR++ // Now we are active!
[release (&lock); | release (slock) ;
AccessDBase (Readonly) ; [Eccesshrase (ReadonlyT]
acquire (&lock) ; acquire (&lock) ;
AR--; AR--;
if (AR == 0 && > 0) i
cond si fnal(&okToerte)
) releasé(&lock
Lec 10.20

2/20/24 Kubiatowicz CS162 © UCB Spring 2024

Lec 10.19

2/20/24 Kubiatowicz CS162 © UCB Spring 2024

Simulation of Readers/Writers Solution

* W1 comes along (R1 and R2 are still accessing dbase)
* AR=2,WR=0,AW=0,WW=0

Wri

while ((AW + AR) > 0) { // Is it safe to write?
WW+ { ctlve users exist

cond walt(&okToerte & oc%? ;// Sleep on cond var

} WW- longer waiting

AW++;

release (&lock) ;

AccessDBase (ReadWrite) ;

acqulre(&lock),

AW
if (WW> 0) {

cond 51gnal(&okToWr1te),
} else—if " (WR L

cond broadcast(&o ToRead) ;

release (&lock) ;

Simulation of Readers/Writers Solution

* W1 comes along (R1 and R2 are still accessing dbase)
* AR=2,WR=0,AW=0,WW=0

Writer ()
cqulre(&lock)
// Is it safe to write?
{ Actlve users exist
cond walt(&okToerte & oc%? ;// Sleep on cond var
} WW- longer waiting
AW++;
release (&lock) ;

AccessDBase (ReadWrite) ;

acqulre(&lock),

AW
if (WW> 0) {
cond 51gnal(&okToWr1te),
} else—if " (WR L
cond broadcast(&o ToRead) ;

release (&lock) ;

} }
2/20/24 Kubiatowicz CS162 © UCB Spring 2024 Lec 10.21 2/20/24 Kubiatowicz CS162 © UCB Spring 2024 Lec 10.22
Simulation of Readers/Writers Solution Simulation of Readers/Writers Solution
* W1 comes along (R1 and R2 are still accessing dbase) * R3 comes along (R1 and R2 accessing dbase, W1 waiting)
* AR=2, WR=0,AW =0, WW =1 * AR=2, WR=0,AW =0, WW =1
Writer Read
acéglre(&lock) eages
while ((AW + AR) > 0) { // Is l§c§?5§ Egegglgizst while ((AW + WW) > 0) { // Is it safe to read?
// Sieep on cond var ++; No. Writers exist
= longer waiting cond wait (&okToRead, &lock) ; 7/ Sleep on cond var
} WR--7 // No' longer waiting
AW++; }
release (&lock) ; AR++ // Now we are active!
release(&lock)
AccessDBase (ReadWrite) ;
AccessDBase (ReadOnly) ;
acqulre(&lock),
1f (ﬁW 0){ acquire (&lock) ;
cond s1gna1(&okToWr1te), AR--;
} else—lf L if (AR == 0 && WW > 0)
cond broadcast(&o ToRead) ; cond 51fna1(&okToWr1te)
releasé(&lock
} release (&lock) ; }
2/20/24 Kubiatowicz CS162 © UCB Spring 2024 Lec 10.23 2/20/24 Kubiatowicz CS162 © UCB Spring 2024 Lec 10.24

Simulation of Readers/Writers Solution

* R3 comes along (R1 and R2 accessing dbase, W1 waiting)

* AR=2, WR=0,AW =0, WW =1

Reader () {
acquire (&lock) ;
{ // Is it safe to read?
// No. Writers exist
cond’ walt(&okToRead &lock) ;// Sleep on cond var
WR- // No longer waiting

=7

}

AR++ // Now we are active!
release(&lock)

AccessDBase (ReadOnly) ;

acqulre(&lock),

AR-

if (AR 0 && WW > 0)
cond si fnal(&okToerte)

releasé(&lock

2/20/24 Kubiatowicz CS162 © UCB Spring 2024

Lec 10.25

Simulation of Readers/Writers Solution

* R3 comes along (R1 and R2 accessing dbase, W1 waiting)

* AR=2, WR=1,, AW =0, WW =1

Reader () {
acquire (&lock) ;
i { // Is it safe to read?
// No. Writers exist
cond | wait (&okToRead, &lock);// Sleep on cond var
WR- // No longer waiting

B

}

AR++; // Now we are active!
lock.release() ;

AccessDBase (ReadOnly) ;

acqulre(&lock),

AR-

if (AR 0 && WW > 0)
cond si fnal(&okToerte)

releasé(&lock

2/20/24 Kubiatowicz CS162 © UCB Spring 2024

Lec 10.26

Simulation of Readers/Writers Solution

* R3 comes along (R1, R2 accessing dbase, W1 waiting)
* AR=2, WR=1,AW=0, WW =1

Reader () {
acquire (&lock) ;

wh11e ((AW + WW) > 0) { // Is it safe to read?
No. Writers exist

// Sleep on cond var
O longer waiting

}

AR++ // Now we are active!
release(&lock)

AccessDBase (ReadOnly) ;

acquire (&lock) ;
AR--

if (AR == 0 && WW > 0)
cond si fnal(&okToerte)
releasé(&lock

2/20/24 Kubiatowicz CS162 © UCB Spring 2024

Lec 10.27

Simulation of Readers/Writers Solution

* R1 and R2 accessing dbase, W1 and R3 waiting
*+ AR=2,WR=1,AW=0, WW =1

Reader () {
acquire (&lock) ;

while ((AW + WW) > 0) { // Is it safe to read?
+; No. Writers exist

WR+
cond wait (&okToRead, &lock) ;// Sleep on cond var
// No longer waiting
}

AR++ // Now we are active!
release(&lock),

7

AccessDBase (ReadOnly) ;

acquire (&lock) ;
AR

s

2/20/24

Lec 10.28

Simulation of Readers/Writers Solution

» R2 finishes (R1 accessing dbase, W1 and R3 waiting)
* AR=2, WR=1,AW =0, WW =1

Reader () {
acquire (&lock) ;
while ((AW + WW) > 0) { // Is it safe to read?
++; No. Writers exist
cond wait (&okToRead, &lock) ;// Sleep on cond var
// No longer waiting

B

}

AR++ // Now we are active!
release(&lock)

AccessDBase (ReadOnly) ;

if (AR == 0 && WW > 0)
cond signal (&okToWrite) ;
releasé(&lock) ;
}

Simulation of Readers/Writers Solution

» R2 finishes (R1 accessing dbase, W1 and R3 waiting)
*+ AR=1,WR=1,AW =0, WW =1

Reader () {
acquire (&lock) ;
while ((AW + WW) > 0) { // Is it safe to read?
++; No. Writers exist

cond wait (&okToRead, &lock) ; // Sleep on cond var
// No longer waiting

B

}

AR++ // Now we are active!
release(&lock)

AccessDBase (ReadOnly) ;
acquire (&lock) ;
1 ==

cond signal (&okToWrite) ;
releasé(&lock) ;

2/20/24 Kubiatowicz CS162 © UCB Spring 2024 Lec 10.29 2/20/24 Kubiatowicz CS162 © UCB Spring 2024 Lec 10.30
Simulation of Readers/Writers Solution Simulation of Readers/Writers Solution
* R2 finishes (R1 accessing dbase, W1 and R3 waiting) » R2 finishes (R1 accessing dbase, W1 and R3 waiting)
* AR=1,WR=1, AW =0, WW =1 « AR=1,WR=1, AW =0, WW =1
Reader () { Reader () {
acquire (&lock) ; acquire (&lock) ;
while ((AW + WW) > 0) { // Is it safe to read? while ((AW + WW) > 0) { // Is it safe to read?
WR++; No. Writers exist WR++; No. Writers exist
cond wait (&okToRead, &lock) ;// Sleep on cond var cond wait (&okToRead, &lock) ; // Sleep on cond var
N --7 // No longer waiting N --7 // No longer waiting
AR++ // Now we are active! AR++ // Now we are active!
release(&lock) release(&lock)
AccessDBase (ReadOnly) ; AccessDBase (ReadOnly) ;
acquire (&lock) ; acquire (&lock) ;
AR--; AR--;
if (AR == 0 && WW > 0)
cond signal (&okToWrite) ; cond signal (&okToWrite) ;
releasé(&lock) ;
} }
Lec 10.31 2/20/24 Kubiatowicz CS162 © UCB Spring 2024 Lec 10.32

2/20/24 Kubiatowicz CS162 © UCB Spring 2024

Simulation of Readers/Writers Solution

* R1 finishes (W1 and R3 waiting)
* AR=1,WR=1,,AW =0, WW =1

Reader () {
acquire (&lock) ;
while ((AW + WW) > 0) { // Is it safe to read?
++; No. Writers exist
cond wait (&okToRead, &lock) ;// Sleep on cond var
// No longer waiting

B

}

AR++ // Now we are active!
release(&lock)

AccessDBase (ReadOnly) ;

if (AR == 0 && WW > 0)
cond signal (&okToWrite) ;
releasé(&lock) ;

}

Simulation of Readers/Writers Solution

* R1 finishes (W1, R3 waiting)
*+ AR=0,WR=1,AW =0, WW =1

Reader () {
acquire (&lock) ;
while ((AW + WW) > 0) { // Is it safe to read?
++; No. Writers exist

cond wait (&okToRead, &lock) ; // Sleep on cond var
// No longer waiting

B

}

AR++ // Now we are active!
release(&lock)

AccessDBase (ReadOnly) ;
acquire (&lock) ;
1 =

cond signal (&okToWrite) ;
releasé(&lock) ;

2/20/24 Kubiatowicz CS162 © UCB Spring 2024 Lec 10.33 2/20/24 Kubiatowicz CS162 © UCB Spring 2024 Lec 10.34
Simulation of Readers/Writers Solution Simulation of Readers/Writers Solution
* R1 finishes (W1, R3 waiting) * R1 signals a writer (W1 and R3 waiting)
* AR=0,WR=1, AW =0, WW =1 *« AR=0,WR=1, AW =0, WW =1
Reader () { Reader () {
acquire (&lock) ; acquire (&lock) ;
while ((AW + WW) > 0) { // Is it safe to read? while ((AW + WW) > 0) { // Is it safe to read?
WR++; No. Writers exist WR++; No. Writers exist
cond wait (&okToRead, &lock) ;// Sleep on cond var cond wait (&okToRead, &lock) ; // Sleep on cond var
N --7 // No longer waiting N --7 // No longer waiting
AR++ // Now we are active! AR++ // Now we are active!
release(&lock) release(&lock)
AccessDBase (ReadOnly) ; AccessDBase (ReadOnly) ;
acquire (&lock) ; acquire (&lock) ;
AR--; AR--;
if (AR == 0 && WW > O
cond signa okToWrite) ;
) releasé(&lock) ; } release(&lock) ;
Lec 10.35 2/20/24 Kubiatowicz CS162 © UCB Spring 2024 Lec 10.36

2/20/24 Kubiatowicz CS162 © UCB Spring 2024

Simulation of Readers/Writers Solution

* W1 gets signal (R3 still waiting)
*+ AR=0,WR=1,AW =0, WW =1

Writer ()
cqulre(&lock)

while ((AW + AR) > 0) { // Is it safe to write?
: Active users exist
// Sleep on cond var
} ==7 longer waiting

AW++;
release (&lock) ;

AccessDBase (ReadWrite) ;

acqulre(&lock),
AW
if (WW> 0){
cond 51gnal(&okToWr1te),
} else—if " (WR L
cond broadcast(&o ToRead) ;

release (&lock) ;

2/20/24 Kubiatowicz CS162 © UCB Spring 2024

Simulation of Readers/Writers Solution

* W1 gets signal (R3 still waiting)
* AR=0,WR=1,AW=0,WW =0

Writer ()
cqulre(&lock)

while ((AW + AR) > 0) { // Is it safe to write?
WW++ Active users exist

longer waiting
AW++;
release (&lock) ;

AccessDBase (ReadWrite) ;

acqulre(&lock),

AW
if (WW> 0) {
cond 51gnal(&okToWr1te),
} else—if " (WR L
cond broadcast(&o ToRead) ;

release (&lock) ;

Lec 10.37 2/20/24 Kubiatowicz CS162 © UCB Spring 2024 Lec 10.38
Simulation of Readers/Writers Solution Simulation of Readers/Writers Solution
* W1 gets signal (R3 still waiting) * W1 accessing dbase (R3 still waiting)
* AR=0,WR=1,AW=1, WW=0 * AR=0,WR=1,AW=1, WW=0
Writer () Writer ()
acqulre(&lock) acqulre(&lock)
while ((AW + AR) > 0) { // Is it safe to write? while ((AW + AR) > 0) { // Is it safe to write?
WW++; { Active users exist WW++; { Active users exist
cond walt(&okToerte & oc%? ;// Sleep on cond var cond walt(&okToerte & oc%? ;// Sleep on cond var
} WW- o longer waiting } WW- o longer waiting
AW++;
release OCK) , release (&lock) ;
AccessDBase (ReadWrite) ; [ccessDEase (ReaaWriteT]
acqulre(&lock), acqulre(&lock),
> 0) ¢ i G > 0) ¢
cond s1gnal(&okToWr1te), cond s1gnal(&okToWr1te),
} else—lf (WR L } else—lf (WR L
cond broadcast(&o ToRead) ; cond broadcast(&o ToRead) ;
} release (&lock) ; } release (&lock) ;
2/20/24 Kubiatowicz CS162 © UCB Spring 2024 Lec 10.39

2/20/24 Kubiatowicz CS162 © UCB Spring 2024

Lec 10.40

Simulation of Readers/Writers Solution

* W1 finishes (R3 still waiting)
* AR=0,WR=1,AW=1, WW=0

Writer (). {
acquire (&lock) ;
while ((AW + AR) > 0) { // Is it safe to write?
WW++; | . {/ No. Active users exist
cond wait (&okToWrite, & oc%?;// Sleep on cond var
} WW--7 // No longer waiting

AW++;
release (&lock) ;

AccessDBase (ReadWrite) ;

if (WW > 0){ .
cond signal (&okToWrite) ;

} else—if "(WR > 0) L
cond_broadcast (&okToRead) ;

Lelease(&lock);

Simulation of Readers/Writers Solution

* W1 finishes (R3 still waiting)
* AR=0,WR=1,AW=0,WW=0

Writer () {
acquire (&lock) ;
while ((AW + AR) > 0) { // Is it safe to write?
WW++; | . {/ No. Active users exist
cond wait (&okToWrite, & oc%?;// Sleep on cond var
} WW--7 // No longer waiting

AW++;
release (&lock) ;

AccessDBase (ReadWrite) ;

1
cond signal (&okToWrite) ;

} else—if "(WR > 0) L
cond_broadcast (&okToRead) ;

release (&lock) ;

}
2/20/24 Kubiatowicz CS162 © UCB Spring 2024 Lec 10.41 2/20/24 Kubiatowicz CS162 © UCB Spring 2024 Lec 10.42
Simulation of Readers/Writers Solution Simulation of Readers/Writers Solution
* W1 finishes (R3 still waiting) * W1 signaling readers (R3 still waiting)
* AR=0,WR=1,AW=0,WW=0 * AR=0,WR=1,AW=0, WW=0
Writer (). { Writer (). {
acquire (&lock) ; acquire (&lock) ;
while ((AW + AR) > 0) { // Is it safe to write? while ((AW + AR) > 0) { // Is it safe to write?
WW++; | . {/ No. Active users exist WW++; | . {/ No. Active users exist
cond wait (&okToWrite, & oc%?;// Sleep on cond var cond wait (&okToWrite, & oc%?;// Sleep on cond var
} WW--7 // No longer waiting } WW--7 // No longer waiting
AW++; AW++;
release (&lock) ; release (&lock) ;
AccessDBase (ReadWrite) ; AccessDBase (ReadWrite) ;
acqu%re(&lock); a%qu%re(&lock);
if (WW > 0){ .
: e); cond signal (&okToWrite) ;
} else—if "(WR > 0) L
cond_broadcast (&okToRead) ; }
} release (&lock) ; } release (&lock) ;
Lec 10.43 2/20/24 Kubiatowicz CS162 © UCB Spring 2024 Lec 10.44

2/20/24 Kubiatowicz CS162 © UCB Spring 2024

Simulation of Readers/Writers Solution

* R3 gets signal (no waiting threads)
*+ AR=0,WR=1,AW=0,WW=0

Reader () {
acquire (&lock) ;
while ((AW + WW) > 0) { // Is it safe to read?
WR++; // No. Writers exist
// Sleep on cond var
== O longer waiting
}
AR++ // Now we are active!

release(&lock)
AccessDBase (ReadOnly) ;

acqulre(&lock),
AR-

if (AR = 0 && WW > 0)
cond signal (&okToWrite) ;
releasé(&lock) ;

Simulation of Readers/Writers Solution

* R3 gets signal (no waiting threads)
* AR=0,WR=0,AW=0,WW=0

Reader () {
acquire (&lock) ;

while ((AW + WW) > 0) { // Is it safe to read?
++; / No. Writers exist

/
cond wait (&okToRead, &lock) ;// Sleep on cond var
// No longer waiting

AR++ // Now we are active!
release(&lock)

AccessDBase (ReadOnly) ;

acqulre(&lock),
AR-

if (AR = 0 && WW > 0)
cond signal (&okToWrite) ;
releasé(&lock) ;

2/20/24 Kubiatowicz CS162 © UCB Spring 2024 Lec 10.45 2/20/24 Kubiatowicz CS162 © UCB Spring 2024 Lec 10.46
Simulation of Readers/Writers Solution Simulation of Readers/Writers Solution
* R3 accessing dbase (no waiting threads) * Ra3 finishes (no waiting threads)
* AR=1,WR=0,AW=0,WW=0 * AR=1,WR=0,AW=0, WW=0
Reader () { Reader () {
acquire (&lock) ; acquire (&lock) ;
while ((AW + WW) > 0) { // Is it safe to read? while ((AW + WW) > 0) { // Is it safe to read?
++; No. Writers exist ++; No. Writers exist
cond wait (&okToRead, &lock) ;// Sleep on cond var cond wait (&okToRead, &lock) ; // Sleep on cond var
N WR--7 // No longer waiting N WR--7 // No longer waiting
AR++ // Now we are active! AR++ // Now we are active!
release(&lock) release(&lock)
[EccessDEase (Readonly) | AccessDBase (ReadOnly) ;
:gquire(&lock);
if (AR == 0 && WW > 0) if (AR == 0 && WW > 0)
cond si nal(&okToerte) cond 51fna1(&okToWr1te)
) releasé(&lock) releasé(&lock
2/20/24 Kubiatowicz CS162 © UCB Spring 2024 Lec 10.47 2/20/24 Kubiatowicz CS162 © UCB Spring 2024 Lec 10.48

Simulation of Readers/Writers Solution

* Ra3 finishes (no waiting threads)
* AR=0,WR=0,AW=0,WW=0

Reader () {
acquire (&lock) ;
while ((AW + WW) > 0) { // Is it safe to read?
++; / No. Writers exist
cond | wait (&okToRead, &lock) ; // Sleep on cond var
) WR--7 / No longer waiting

AR++ // Now we are active!
release (&lock) ;

AccessDBase (ReadOnly) ;

Administrivia

« Still grading Midterm 1 (Sorry)
— Finishing soon!
— Solutions also will be up soon.
* Homework #2 due Thursday, 2/22
+ Homework #3: Released on Friday 2/23
— Option to do this in Rust!
— Rust crash course on Monday 2/26
+ Professor Kubi’s office hours changed:
— Monday (1:00-2:00PM), Thursday (3:00-4:00PM)

ggqulre (&lock) ; — 673 Soda Hall
if (AR == 0 && WW > 0) * FYI: Next Midterm on 3/14
cond signal (&okToWrite) ;
— PI Day!
}
2/20/24 Kubiatowicz CS162 © UCB Spring 2024 Lec 10.49 2/20/24 Kubiatowicz CS162 © UCB Spring 2024 Lec 10.50
Questions Use of Single CV: okContinue
o ? i : Reader() { Writer() {
Can readers starve? Consider Reader() entry code: 7/ khack into system 7/ theck into system
while ((AW + WW) > 0) { // Is it safe to read? acquire&&lock); acquireg&lock);
WR++; // No. Writers exist while ((AW + WW) > 0) { while ((AW + AR) > @) {
i kToR ,&lock) ; Sl d WR++; WW++;
;§?f7wa1t(&o oRead, & 77 &o/{ong::pw:§tffg var cond’ _wait(&okContinue,&lock); cond walt(&okContlnue &lock);
} --3 -3
AR++; // Now we are active! ARI+; glock Awi+; alock
. ., . . release(&lock); release(&lock);
+ What if we erase the condition check in Reader exit? (); ()3
. // read-only access // read/write access
AR—— — __// No 1°n°er,aétlve AccessDbase(ReadOnly); AccessDbase(ReadWrite);
‘cond s;gnal(&okToerte) 'Wake up one erter // check&gutkof system // check&gutkof system
 Further, what if we turn the signal() into broadcast() aﬁ‘.“.‘”e(ock); f\ﬁ‘_‘l.“re(ock);
AR--; // No longer active if (AR == 0 && WW > 9) if (WW > 0){
s . cond_signal(&okContinue); cond_signal(&okContinue);
. cond_broaecast(&okToerte), //.Wake uP sleepere release(&lock) ’ } else if (WR > 2 ’
+ Finally, what if we use only one condition variable (call it }) cond_broadcast(&okContinue);
okContinue”) instead of two separate ones? _ release(&lock);
— Both readers and writers sleep on this variable
— Must use broadcast() instead of signal() What if we turn okToWrite and okToRead into okContinue
(i.e. use only one condition variable instead of two)?
2/20/24 Kubiatowicz CS162 © UCB Spring 2024 Lec 10.51 2/20/24 Lec 10.52

—

Use of Single CV: okContinue

Reader() {
// check into system
acquire(&lock);
while ((AW + WW) > @) {
WR++;

cond:wait(&okContinue,&lock);

El

AR++;
release(&lock);

// read-only access
AccessDbase(ReadOnly);

// check out of system

acquire(8&lock);

AR--;

if (AR == 0 && WW > 0)
cond_signal(&okContinue);

Writer() {

// check into system
acquire(&lock);
while ((AW + AR) > @) {
WW++;
cond_wait(&okContinue,&lock);

El

AW++;
release(&lock);

// read/write access
AccessDbase(ReadWrite);

// check out of system

acquire(&lock);

AW--;

if (WW > 0){
cond_signal(&okContinue);

Use of Single CV: okContinue

Reader() {
// check into system
acquire(&lock);
while ((AW + WW) > @) {
WR++;
cond_wait(&okContinue,&lock);

El

AR++;
release(&lock);

// read-only access
AccessDbase(ReadOnly);

// check out of system

acquire(&lock);
AR--;
if (AR == © && WW > @)

cond_broadcast(&okContinue);

Writer() {

// check into system
acquire(&lock);
while ((AW + AR) > @) {
WW++;
cond_wait(&okContinue,&lock);

El

AW++;
release(&lock);

// read/write access
AccessDbase(ReadWrite);

// check out of system
acquire(&lock);

AW--;
if (W > @ || WR > 0){
cond_broadcast(&okContinue);

release(&lock); else if (WR > © .
} ¢) } cond_brg;dcast &okContinue); } release(&lock); release(&lock);
- n " Need to change to } Must broadcast ()
Consider this scenario: broadcast () ! to sort things out!
* R1 arrives
* W1, R2 arrive while R1 still reading > W1 and R2 wait for R1 to finish
2120124 : Assume R1’s signal is delivered to R2 (not W1) Lec1053 | 2120124 Kubiatowicz CS162 © UCB Spring 2024 Lec 10.54
Can we construct Monitors from Semaphores? Construction of Monitors from Semaphores (con’t)
+ Locking aspect is easy: Just use a mutex * Problem with previous try: _
« Can we implement condition variables this way? — P and V are commutative — result is the same no matter what
. * . order they occur
Wait(Semaphore *thesema) —{ semaP(thesema); } — Condition variables are NOT commutative
Signal(Semaphore *thesema) { semaV(thesema); } .
* Does this fix the problem?
« Does this work better? waiﬁé&:giexﬂgigﬁtj _Semaphore *thesema) {
Wait(Lock *thelock, Semaphore *thesema) { semaP (thesema); ’
release(thelock); acquire(thelock);
semaP (thesema) ;
acquire(thelock); Signal(Semaphore *thesema) {
. if semaphore queue is not empty
Signal(Semaphore *thesema) { semaV(thesema);
semaV(thesema);
— Not legal to look at contents of semaphore queue
— There is a race condition — signaler can slip in after lock
release and before waiter executes semaphore.P
* ltis actually possible to do this correctly
— Complex solution for Hoare scheduling in book
— Can you come up with simpler Mesa-scheduled solution?
2/20/24 Kubiatowicz CS162 © UCB Spring 2024 Lec 10.55 2/20/24 Kubiatowicz CS162 © UCB Spring 2024 Lec 10.56

C-Language Support for Synchronization

» C language: Pretty straightforward synchronization
— Just make sure you know all the code paths out of a critical section

int Rtn() {
acquire(&lock); Proc A o
oA
if (exception) { Proc B ;
release(&lock); . ©
return errRetanCode; Calls setjmp 3
Proc C g
acquire(&lock)| =
release(&lock);
return OK; Proc D
Proc E
— Watch out for set jmp/longjmp! Calls longim

» Can cause a non-local jump out of procedure
» In example, procedure E calls longjmp, poping stack back to procedure B
» If Procedure C had lock.acquire, problem!

Concurrency and Synchronization in C

» Harder with more locks
void Rtn() {
lockl.acquire();

if (error) {
lockl.release();
return;

lock2.acquire();

if (error) {
lock2.release()
lockl.release();
return;

}

lock2.release();
lockl.release();

* |Is goto a solution???
void Rtn() {
lockl.acquire();

if (errori
goto release_lockl_and_return;

lock2.acquire();

if (error) {
goto release_both_and_return;

}

release_both_and_return:
lock2.release();

release_lockl_and_return:
lockl.release();

}
2/20/24 Kubiatowicz CS162 © UCB Spring 2024 Lec 10.57 2/20/24 Kubiatowicz CS162 © UCB Spring 2024 Lec 10.58
C++ Language Support for Synchronization C++ Language Support for Synchronization (con’t)
¢ Languages with exceptions like C++ « Must catch all exceptions in critical sections
— Languages that support exceptions are problematic (easy to make a — Catch exceptions, release lock, and re-throw exception:
non-local exit without releasing lock) void Rtn() {
— Consider: lock.acquire();
try {
void Rtn() { .
lock.acquire(); DoFoo();
BoFoo(); } catch (.) { // catch exception
. lock.release(); // release lock
lock.release(); throw; // re-throw the exception
}
void DoFoo() {) lock.release();
if (exception) throw errException; void DoFoo() {
} ” if (exception) throw errException;
— Notice that an exception in DoFoo() will exit without releasing the lock! y
Lec 10.59 2/20/24 Kubiatowicz CS162 © UCB Spring 2024 Lec 10.60

2/20/24 Kubiatowicz CS162 © UCB Spring 2024

Much better: C++ Lock Guards

#include <mutex>
int global_i = 0;
std: :mutex global mutex;

void safe_increment() {
std::lock_guard<std: :mutex> lock(global mutex);

global i++;
// Mutex released when ‘lock’ goes out of scope

2/20/24

Python with Keyword

* More versatile than we show here (can be used to close files, database
connections, etc.)

lock = threading.Lock()

with lock: # Automatically calls acquire()
some_var += 1

release() called however we leave block

Kubiatowicz CS162 © UCB Spring 2024 Lec 10.61 2/20/24 Kubiatowicz CS162 © UCB Spring 2024 Lec 10.62
Java synchronized Keyword Java Support for Monitors
« Every Java object has an associated lock: « Along with a lock, every object has a single condition variable
— Lock is acquired on entry and released on exit from a synchronized method associated with it
— Lock is properly released if exception occurs inside a synchronized method
— Mutex execution of synchronized methods (beware deadlock) « To wait inside a synchronized method:
class, Account - void wait();
private int balance; - void wait(long timeout);
// object constructor
public Account (int initialBalance) { . o .
balance = initialBalance; * To signal while in a synchronized method:
publitc synbchlr‘onized int getBalance() { - void notify();
} return balance; -void notifyAll();
public synchronized void deposit(int amount) {
balance += amount;
}
2/20/24 Kubiatowicz CS162 © UCB Spring 2024 Lec 10.63 2/20/24 Kubiatowicz CS162 © UCB Spring 2024 Lec 10.64

2/20/24

Goal for Today

if (readyThreads(TCBs)) {
nextTCB = selectThread(TCBs);
run(nextTCB);

} else {
run_idle_thread();

}

+ Discussion of Scheduling:

— Which thread should run on the CPU next?
» Scheduling goals, policies
» Look at a number of different schedulers

Kubiatowicz CS162 © UCB Spring 2024

Lec 10.65

2/20/24

Recall: Stacks for Yield with Multiple Threads

» Consider the following code

blocks: Thread S Thread T
proc A() { g A A
B(); % B(while) B(while)
}
proc B() 1 f; yield yield
+
while (TRUE) { n
yield();
}
}

» Suppose we have 2 threads:
—Threads Sand T

— Assume that both have been
running for a while

Thread T's switch
returns to Thread S

Kubiatowicz CS162 © UCB Spring 2024

Lec 10.66

2/20/24

Hardware context switch support in x86

Syscall/Intr (U = K)
- PL3>0; N
— TSS € EFLAGS, CSEIP; s
— SS:ESP < k-thread stack (TSS PL 0);
— push (old) SS:ESP onto (new) k-stack Stack seq
— push (old) EFLAGS, CS:EIP, <err> e

=Ere
— CS:EIP € <k target handler> s ot
Then — e,

Figure 7-1. Structure of a Task
— Handler saves other regs, etc

— Does all its works, possibly choosing
other threads, changing PTBR (CR3)

— kernel thread has set up user GPRs
iret (K> U)

- PLO>3;

— EFLAGS, CS:EIP < popped off k-stack

— SS:ESP € popped off k-stack

Pg 2,942 of 4,922 of x86 reference manual Pintos: TSS.C, intr-stubs.S

Kubiatowicz CS162 © UCB Spring 2024

Lec 10.67

2/20/24

Pintos: Kernel Crossing on Syscall or Interrupt

user
user stack
code

e,

kernel
code

kernel
thread
stack

syscall|/ interrupt

Kubiatowicz CS162 © UCB Spring 2024

Lec 10.68

Pintos: Context Switch — Scheduling

user

user stack

— o —

code

2/20/24

L g
g

kernel]
-~

code £
~N

3

thread a

stack @

user’
stack

[PTBR™]

switch kernel threads

Pintos: switch.S

Kubiatowicz CS162 © UCB Spring 2024

MT Kernel single Thread Process ala Pintos/x86

-

Kernel stack and
> TCB stored in one

nglc#—
list 4K page
ity N
Kernel e oA /
tat
User S .
code -
data ‘
reap
IP
User User ﬁPSP
stack stack ProcRegs pi - #

» Each user process/thread associated with a kernel thread, described by a
4KB page object containing TCB and kernel stack for the kernel thread

Kubiatowicz CS162 © UCB Spring 2024

Lec 10.69 2/20/24 Kubiatowicz CS162 © UCB Spring 2024 Lec 10.70
Running User Code with Kernel stack waiting In Kernel Thread: No User Component
;o oy o M- A . N,
L data % data L
o e . ‘7% R \‘7 METE
S s N priority \\ s priority = ~
Kernel ~ » ~ stack St/ Kernel [o> LA S Stack o' T~s
User S) User ' tid
code N l code AN cod
data ‘ N data ‘ ‘ da \
heap ‘ o N heap ‘ o ‘ heap \\
~ IP IP
Utserk UtseL = = EPSP Userk UseL ﬁPSP
stac stac Proc Regs p|: 3 stac stac ProcRegs p|.q
» x86 CPU holds interrupt SP in register + Kernel threads execute with small stack in thread structure
» During user thread execution, associated kernel thread is “standing by” » Pure kernel threads have no corresponding user-mode thread
2/20/24 Kubiatowicz CS162 © UCB Spring 2024 Lec 10.71 2/20/24

Lec 10.72

User — Kernel (interrupts, syscalls)

Kernel
User

/ P B
% data
‘#’ ‘7 \‘7 \/ g
. S . R priority Moo
o : : b IRRE
tid
code code
data ‘ ‘ data X
heap ‘ . ‘ heap \
AN P
User User Y iPSP
stack stack Proc Regs L0

* Mechanism vectors through “interrupt vector”

Kernel — User

7 code P
data *

T~

/
R

rmagic# |
list AN
~ it
Kernel “ N e N /
User \ S N
A
code code
data ‘ ‘ data
A
heap ‘ . ‘ heap Q\
< \ IP
e \
User User - EPSP
stack stack Proc Regs p|- 3

« Interrupt return (iret) restores user stack, IP, and PL

2/20/24 Kubiatowicz CS162 © UCB Spring 2024 Lec 10.73 2/20/24 Kubiatowicz CS162 © UCB Spring 2024 Lec 10.74
e e g . . .
User — Kernel via “interrupt vector” (interrupts & traps) Pintos Interrupt Processing for Timer (0x20)
2 0 intrNN_stub() Wrapper for
. generic handler

This is called the o

“interrupt vector” but 0 - / intr_entry:

should be called the push 0x20 (int #) save regs as frame

“exception vector” ox20[7 jmp intr_entry set up kernel env.

Kernel — push 0x21 (int #) call intr_ handler
User jmp intr_entry A A

255 intr_exit:

code - restore regs
iret

data ‘ ‘ 255
heap ‘ o ‘ Hardware stubs.S

P interrupt

» = vector
User User || = SP
tack tack -___IKSP
stac stac ProcRegs p| -3
* Interrupts (timer) or trap (syscall, page fault) transfers through interrupt vector (IDT)
— Each slot for different exception type
2/20/24 Kubiatowicz CS162 © UCB Spring 2024 Lec 10.75 2/20/24 Kubiatowicz CS162 © UCB Spring 2024 Lec 10.76

Switch to Kernel Stack for Thread

d /
‘/ / f 2% z i\ €= User state stored
% data on stack for later
‘ Lr\¢ ‘ ‘ restart (restoring of
\7 Rl . 7 \7 malsi;slii\ stack, SP, IP, etc)
Ss. s s \. priority N4 _
Kernel - u . ~ stack o/ T~ <
status
User tid
code code
data ‘ ‘ data
\
heap ‘ . ‘ heap \
N P
User User A} SP
tack tack KSP
stac stac Proc Regs PL: 0

» Information required to restart thread stored on kernel stack
— Switching becomes simple to different kernel stack and restoring

Pintos Interrupt Processing for Timer (0x20)

interrupt.c
Wrabper for Intr handler (*frame)
intrNN_stub() pp - classify
generic handler _ dispatch
0 bl v t c - ackS;RQ
i intr_entry: - ma thread yield
/p:{;h.OxZO (’-nty/ save regs as frame b ¥
% I s intr_entry set up kernel erlv.
] Tpush 0x21 (int #) call intr_handYer
j int t.
Jmp intr_entry intr_exit: ,'timer_intr(*frame)
*kk restore regs 0 tick++
iret 7 thread tick()
255 / -
0x20[4 timer.c
Hardware stubs.S
interrupt
vector
Pintos

intr_handlers

2/20/24 Kubiatowicz CS162 © UCB Spring 2024 Lec 10.77 2/20/24 Kubiatowicz CS162 © UCB Spring 2024 Lec 10.78
Pintos Interrupt Processing for Timer (0x20) Timer may trigger thread switch
interrupt.c * thread_tick
intrNN_stub() Wrapper for Ir_lt:ﬂ::i;r(*frame) ~ Updates thread counters
- generic handler - dispatch — If quanta exhausted, sets yield flag
0 N)
- /:{ntr_entry: _ ::kgéRghread jeld M thread_y|e|d
| psh 0x20 (“‘ty save regs as frage Y Y — On path to rtn from interrupt
X jmp intr_entry set up kernel eriv.
ox2 '.// — call intr handjer \ — Sets current thread back to READY
jmp intr_ entry intr exit: [timer intr (*Erame) — Pushes it back on ready_list
- restore regs 0 tick++ — Calls schedule to select next thread to run upon iret
255 iret I, thrlead_tlck() . Schedule
Horg 0x201 4 timer.c — Selects next thread to run
araware . .
interrupt stubs.S — Calls switch_threads to change regs to point to stack for
vector thread to resume
— Sets its status to RUNNING
Pintos — If user thread, activates the process
intr_handlers — Returns back to intr_handler
2/20/24 Kubiatowicz CS162 © UCB Spring 2024 Lec 10.79 2/20/24 Kubiatowicz CS162 © UCB Spring 2024 Lec 10.80

Thread Switch (switch.S)

‘/ %/ /R 7
i e
N list <
S S N priority = M} _
Kernel - N ~ stack o/ T~ <
status
User tid
code
data data “\
heap ‘ . ‘ heap \\
IP
User User iPSP
stack stack Proc Regs L0

« switch_threads: save regs on current small stack, change
SP, return from destination threads call to switch_threads

Pintos Return from Processing for Timer (0x20)

0x20|

intrNN_stub()
0 ok

[pish 0x20 (im—.y/

jmp intr_entry

N

" push 0x20 (int #)

jmp intr_entry

ek

interrupt.c
Intr_ handl *£
Wrapper for ntr_hand er (*frame)
- - classify

generic handler - dispatch
v - . - ack IRQ
intr_entry: -_maybe read yield

save regs as frame D ki ¥h Y

restore regs
iret /

set up kernel env.
call intryk/
intr_exit: ,'timer_in r (*frame)
0 tick++

thread tick()

255

Hardware
interrupt
vector

Resume Some Thread

A 7
0x20 | ¢

stubs.S

timer.c\

thread yield()
W schedule

Nschedule ()
- switch

Pintos
intr_handlers

Lec 10.82

2/20/24 Kubiatowicz CS162 © UCB Spring 2024 Lec 10.81 2/20/24 Kubiatowicz CS162 © UCB Spring 2024
Kernel — Different User Thread Famous Quote WRT Scheduling: Dennis Richie
Dennis Richie, 2 e rou s e i s
/ J) 4 code / Unix V6, slp.c: 3 susepad outs Sat the stack lsvel to the last eall
* to savulu_ssav). This means that the return
% data l X wnich 15 executed immediatelw after the call to arety
T ¥ actually returns from tre 1ast routine which digd
4 the savu.
. Sa poHy o priority = M4} _ %
Kernel o~ Ta | 4 » Stack o' T~s
User 3 tid “If the new process paused because it was swapped out, set the
code code stack level to the last call to savu(u_ssav). This means that the
™S h return which is executed immediately after the call to aretu actually
data ‘ returns from the last routine which did the savu.”
heap ‘ heap . o “You are not expected to understand this.”
User User N SP . o . s
stack stack > KsP Source: Dennis Ritchie, Unix V6 slp.c (context-switching code) as
Proc Regs p|: 3 per The Unix Heritage Society(tuhs.org); gif by Eddie Koehler.
« iret restores user stack and priority level (PL) Included by Ali R. Butt in CS$3204 from Virginia Tech
2/20/24 Kubiatowicz CS162 © UCB Spring 2024 Lec 10.83 2/20/24 Kubiatowicz CS162 © UCB Spring 2024 Lec 10.84

Recall: Scheduling

l[e] 1/0 queue H 1/O request

time slice
expired

interrupt
oceurs

wait for an
interrupt

* Question: How is the OS to decide which of several tasks to take off a queue?
« Scheduling: deciding which threads are given access to resources from
moment to moment

— Often, we think in terms of CPU time, but could also think about access to
resources like network BW or disk access

2/20/24 Kubiatowicz CS162 © UCB Spring 2024 Lec 10.85

Scheduling: All About Queues

2/20/24

Kubiatowicz CS162 © UCB Spring 2024 Lec 10.86
Scheduling Assumptions Assumption: CPU Bursts

» CPU scheduling big area of research in early 70’s
* Many implicit assumptions for CPU scheduling: .

— One program per user o ol Weighted toward small bursts

— One thread per program .

— Programs are independent tril e fpum U‘zz
« Clearly, these are unrealistic but they simplify the problem e [pos] B0

so it can be solved il w0
— For instance: is “fair’ about fairness among users or “I
programs? ’ : } ’ L it S ®
» If | run one compilation job and you run five, you get five times as :
much CPU on many operating systems « Execution model: programs alternate between bursts of CPU and 1/O
* The high-level goal: Dole out CPU time to optimize some — Program typically uses the CPU for some period of time, then does 1/0O,
desired parameters of system then uses CPU again
— Each scheduling decision is about which job to give to the CPU for use by
USER1 USER2 USER3|USER1 USER2 its next CPU burst
. — With timeslicing, thread may be forced to give up CPU before finishing
Time ——————— current CPU burst
2/20/24 Kubiatowicz CS162 © UCB Spring 2024 Lec 10.87 2/20/24 Kubiatowicz CS162 © UCB Spring 2024 Lec 10.88

Scheduling Policy Goals/Criteria

* Minimize Response Time
— Minimize elapsed time to do an operation (or job)
— Response time is what the user sees:
» Time to echo a keystroke in editor
» Time to compile a program
» Real-time Tasks: Must meet deadlines imposed by World
* Maximize Throughput
— Maximize operations (or jobs) per second
— Throughput related to response time, but not identical:

» Minimizing response time will lead to more context switching than if you only
maximized throughput

— Two parts to maximizing throughput
» Minimize overhead (for example, context-switching)
» Efficient use of resources (CPU, disk, memory, etc)
« Fairness
— Share CPU among users in some equitable way
— Fairness is not minimizing average response time:
» Better average response time by making system /ess fair

First-Come, First-Served (FCFS) Scheduling

» First-Come, First-Served (FCFS)
— Also “First In, First Out” (FIFO) or “Run until done”

» In early systems, FCFS meant one program
scheduled until done (including 1/0O)

» Now, means keep CPU until thread blocks

+ Example: Process Burst Time
. 24
P, 3
P, 3

— Suppose processes arrive in the order: P, , P, , P,
The Gantt Chart for the schedule is:

P P, Ps

0 24 27 30
— Waiting time for P, =0; P, =24; P,=27
— Average waiting time: (0 + 24 + 27)/3 =17
— Average Completion time: (24 + 27 + 30)/3 = 27
* Convoy effect: short process stuck behind long process

2/20/24 Kubiatowicz CS162 © UCB Spring 2024 Lec 10.89 2/20/24 Kubiatowicz CS162 © UCB Spring 2024 Lec 10.90
Convoy effect FCFS Scheduling (Cont.)
» Example continued:
Scheduled Task (process, thread) — Suppose that processes arrive in order: P2 , P3 , P1
. ---_------- . Now, the Gantt chart for the schedule is:
3 | \ time P P =)
A HEE S e e . 1 1 I | | | 2 3 1
N B S e .
2) - O S B .
= arrivals O OEE B ooaeEm 0 3 6 30
3 e — Waiting time for P1=6; P2=0; P3=3
3 — Average waiting time: (6 + 0 + 3)/3 =3
— Average Completion time: (3 + 6 + 30)/3 =13
) .) * In second case:
+ With FCFS non-preemptlve scheduling, convoys of — Average waiting time is much better (before it was 17)
\r?,::]?‘lilntasks tend to build up when a large one is — Average completion time is better (before it was 27)
9- * FIFO Pros and Cons:
— Simple (+)
— Short jobs get stuck behind long ones (-)
» Safeway: Getting milk, always stuck behind cart full of items!
Upside: get to read about S?ace Aliens!
2/20/24 Kubiatowicz CS162 © UCB Spring 2024 Lec 10.91 2/20/24 Kubiatowicz CS162 © UCB Spring 2024 Lec 10.92

2/20/24

Conclusion

Monitors: A lock plus one or more condition variables

— Always acquire lock before accessing shared data

— Use condition variables to wait inside critical section

» Three Operations: Wait(), Signal(), and Broadcast()

Monitors represent the logic of the program

— Wait if necessary

— Signal when change something so any waiting threads can proceed
Readers/Writers Monitor example

— Shows how monitors allow sophisticated controlled entry to protected code

— Mesa scheduling allows a more relaxed checking of wait conditions
Monitors supported natively in a number of languages
Scheduling Goals:

— Minimize Response Time (e.g. for human interaction)

— Maximize Throughput (e.g. for large computations)

— Fairness (e.g. Proper Sharing of Resources)

— Predictability (e.g. Hard/Soft Realtime)
Round-Robin Scheduling:

- Givg ez?lch tgread a small amount of CPU time when it executes; cycle between all
ready threads
— Pros: Better for short jobs

Kubiatowicz CS162 © UCB Spring 2024

Lec 10.93

