CS 162 HW 3

Tasks / Servers

Servers

In this section, you will implement several different servers. With the conditional compilation
preprocessor directives (i.e. the #ifdef directives), we only need to change how we call the request
handler in each of these different servers.

Fork server

Implement forkserver. You won't be writing much new code.

« The child process should call request_handler with the client socket fd. After serving a response,
the child process will terminate.

« The parent process will continue listening and accepting incoming connections. It will not wait
for the child.

* Remember to close sockets appropriately in both the parent and child process.

Thread server

Implement threadserver .

« Create a new pthread to send the proper response to the client.

« The original thread continues listening and accepting incoming connections. It will not join with
the new thread.

Pool server

Implement poolserver.

+ Your thread pool should be able to concurrently serve exactly --num-threads clients and no more.
Note that we typically use --num-threads + 1 threads in our program. The original thread is
responsible for accepting client connections in a while loop and dispatching the associated
requests to be handled by the threads in the thread pool.

+ Begin by looking at the functions in wq.h.

« The original thread (i.e. the thread you started the httpserver program with) should wq_push
the client socket file descriptors received from accept into the wq_t work_queue declared at the

top of nttpserver.c and defined in wg.h.
« Then, threads in the thread pool should use wq_pop to get the next client socket file descriptor
to handle.
« You'll need to make your server spawn --num-threads hew threads which will spin in a loop doing
the following:
« Make blocking calls to wq_pop for the next client socket file descriptor.

« After successfully popping a to-be-served client socket fd, call the appropriate request

handler to handle the client request.

Copyright © 2022 CS 162 staff.

