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Recall: SRTF Example continued:
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SRTF Further discussion
• Starvation

– SRTF can lead to starvation if many small jobs!
– Large jobs never get to run

• Somehow need to predict future
– How can we do this? 
– Some systems ask the user

» When you submit a job, have to say how long it will take
» To stop cheating, system kills job if takes too long

– But: hard to predict job’s runtime even for non-malicious users
• Bottom line, can’t really know how long job will take

– However, can use SRTF as a yardstick for measuring other policies
– Optimal, so can’t do any better

• SRTF Pros & Cons
– Optimal (average response time) (+)
– Hard to predict future (-)
– Unfair (-)
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Predicting the Length of the Next CPU Burst
• Adaptive: Changing policy based on past behavior

– CPU scheduling, in virtual memory, in file systems, etc
– Works because programs have predictable behavior

» If program was I/O bound in past, likely in future
» If computer behavior were random, wouldn’t help

• Example: SRTF with estimated burst length
– Use an estimator function on previous bursts: Let tn-1, tn-2, tn-3, etc. be previous 

CPU burst lengths. Estimate next burst n = f(tn-1, tn-2, tn-3, …)
– Function f could be one of many different time series estimation schemes 

(Kalman filters, etc)
– For instance: exponential averaging

n = tn-1+(1-)n-1
with (0<1)



Lec 12.52/27/2024 Kubiatowicz CS162 © UCB Spring 2024

• Consider mix of interactive and high throughput apps:
– How to best schedule them?
– How to recognize one from the other?

» Do you trust app to say that it is “interactive”?
– Should you schedule the set of apps identically on 

servers, workstations, pads, and cellphones?
• For instance, is Burst Time (observed) useful to 

decide which application gets CPU time?
– Short Bursts  Interactivity  High Priority?

• Assumptions encoded into many schedulers:
– Apps that sleep a lot and have short bursts must 

be interactive apps – they should get high priority
– Apps that compute a lot should get low(er?) priority, since they won’t notice 

intermittent bursts from interactive apps
• Hard to characterize apps:

– What about apps that sleep for a long time, but then compute for a long time?
– Or, what about apps that must run under all circumstances (say periodically)

How to Handle Simultaneous Mix of Diff Types of Apps?

Weighted toward small bursts
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Multi-Level Feedback Scheduling

• Another method for exploiting past behavior (first use in CTSS)
– Multiple queues, each with different priority

» Higher priority queues often considered “foreground” tasks
– Each queue has its own scheduling algorithm

» e.g. foreground – RR, background – FCFS
» Sometimes multiple RR priorities with quantum increasing exponentially 

(highest:1ms, next: 2ms, next: 4ms, etc)
• Adjust each job’s priority as follows (details vary)

– Job starts in highest priority queue
– If timeout expires, drop one level
– If timeout doesn’t expire, push up one level (or to top)

Long-Running Compute
Tasks Demoted to 

Low Priority
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Scheduling Details

• Result approximates SRTF:
– CPU bound jobs drop like a rock
– Short-running I/O bound jobs stay near top

• Scheduling must be done between the queues
– Fixed priority scheduling: 

» serve all from highest priority, then next priority, etc.
– Time slice:

» each queue gets a certain amount of CPU time 
» e.g., 70% to highest, 20% next, 10% lowest

Long-Running Compute
Tasks Demoted to 

Low Priority
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Scheduling Details

• Countermeasure: user action that can foil intent of the OS designers
– For multilevel feedback, put in a bunch of meaningless I/O to keep job’s 

priority high
– Of course, if everyone did this, wouldn’t work!

• Example of Othello program:
– Playing against competitor, so key was to do computing at higher priority the 

competitors. 
» Put in printf’s, ran much faster!

Long-Running Compute
Tasks Demoted to 

Low Priority
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Case Study: Linux O(1) Scheduler

• Priority-based scheduler: 140 priorities
– 40 for “user tasks” (set by “nice”), 100 for “Realtime/Kernel”
– Lower priority value  higher priority (for realtime values)
– Highest priority value  Lower priority (for nice values)
– All algorithms O(1)

» Timeslices/priorities/interactivity credits all computed when job finishes time slice
» 140-bit bit mask indicates presence or absence of job at given priority level

• Two separate priority queues: “active” and “expired”
– All tasks in the active queue use up their timeslices and get placed on the expired 

queue, after which queues swapped
• Timeslice depends on priority – linearly mapped onto timeslice range

– Like a multi-level queue (one queue per priority) with different timeslice at each level
– Execution split into “Timeslice Granularity” chunks – round robin through priority

Kernel/Realtime Tasks User Tasks

0 100 139
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Linux O(1) Scheduler

• Lots of ad-hoc heuristics
–Try to boost priority of 

I/O-bound tasks
–Try to boost priority of 

starved tasks

Lec 12.112/27/2024 Kubiatowicz CS162 © UCB Spring 2024

O(1) Scheduler Continued
• Heuristics 

– User-task priority adjusted ±5 based on heuristics
» p->sleep_avg = sleep_time – run_time
» Higher sleep_avg  more I/O bound the task, more reward (and vice versa)

– Interactive Credit
» Earned when a task sleeps for a “long” time
» Spend when a task runs for a “long” time
» IC is used to provide hysteresis to avoid changing interactivity for temporary changes in 

behavior
– However, “interactive tasks” get special dispensation

» To try to maintain interactivity
» Placed back into active queue, unless some other task has been starved for too long…

• Real-Time Tasks
– Always preempt non-RT tasks
– No dynamic adjustment of priorities
– Scheduling schemes:

» SCHED_FIFO: preempts other tasks, no timeslice limit
» SCHED_RR: preempts normal tasks, RR scheduling amongst tasks of same priority
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So, Does the OS Schedule Processes or Threads?
• Many textbooks use the “old model”—one thread per process
• Usually it's really: threads (e.g., in Linux) but can be task groups (also Linux)

• Note: switching threads vs. switching processes incurs different costs:
– Switch threads: Save/restore registers
– Switch processes: Change active address space too!

» Expensive
» Disrupts caching

• Recall, However: Simultaneous Multithreading (or “Hyperthreading”)
– Different threads interleaved on a cycle-by-cycle basis and can be in different 

processes (have different address spaces)
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Administrivia

• Midterm 1 results: Mean: 52.4, StdDev: 15.0, Min: 9.6, Max: 93.2!
• Project 1 due tomorrow (Wednesday, 2/28)

– Code and final report
• Also due Tomorrow: Peer evaluations

– These are a required mechanism for evaluating group dynamics
– Project scores are a zero-sum game

» In the normal/best case, all partners get the same grade
» In groups with issues, we may take points from non-participating group members and give 

them to participating group members!
• Homework 3:

– Due Tuesday 3/5
– Can be done in Rust (if you want!)

0            10            20            30            40           50            60           70            80           90 100
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Multi-Core Scheduling
• Algorithmically, not a huge difference from single-core scheduling

• Implementation-wise, helpful to have per-core scheduling data structures
– Cache coherence

• Affinity scheduling: once a thread is scheduled on a CPU, OS tries to 
reschedule it on the same CPU

– Cache reuse, branch prediction
– Example for O(1) scheduler: 1 set of queues/core with background rebalancing
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Recall: Spinlocks for multiprocessing
• Spinlock implementation:

int value = 0; // Free
Acquire() {

while (test&set(&value)) {}; // spin while busy
}
Release() {

value = 0;                  // atomic store
}

• Spinlock doesn’t put the calling thread to sleep—it just busy waits
– When might this be preferable? 

» Waiting for limited number of threads at a barrier in a multiprocessing (multicore) program
» Wait time at barrier would be greatly increased if threads must be woken inside kernel

• Every test&set() is a write, which makes value ping-pong around between core-local caches 
(using lots of memory!)

– So – really want to use test&test&set() !
• As we discussed in Lecture 8, the extra read eliminates the ping-ponging issues:

// Implementation of test&test&set():
Acquire() {

do {
while(value); // wait until might be free

} while (test&set(&value)); // exit if acquire lock
}
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Gang Scheduling and Parallel Applications
• When multiple threads work together on a multi-core 

system, try to schedule them together
– Makes spin-waiting more efficient (inefficient to spin-wait

for a thread that’s suspended)
– Multiple phases of parallel and serial execution

• Additionally: OS informs a parallel program how many 
processors its threads are scheduled on (Scheduler 
Activations)

– Application adapts to number of cores that it has scheduled
– “Space sharing” with other parallel programs can be more 

efficient, because parallel speedup is often sublinear with the 
number of cores

Ba
rr
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r
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Real-Time Scheduling
• Goal: Predictability of Performance!

– We need to predict with confidence worst case response times for systems!
– In RTS, performance guarantees are:

» Task- and/or class centric and often ensured a priori
– In conventional systems, performance is:

» System/throughput oriented with post-processing (… wait and see …)
– Real-time is about enforcing predictability, and does not equal fast computing!!!

• Hard real-time: for time-critical safety-oriented systems
– Meet all deadlines (if at all possible)
– Ideally: determine in advance if this is possible
– Earliest Deadline First (EDF), Least Laxity First (LLF), 

Rate-Monitonic Scheduling (RMS), Deadline Monotonic Scheduling (DM)
• Soft real-time: for multimedia

– Attempt to meet deadlines with high probability
– Constant Bandwidth Server (CBS)
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Example: Workload Characteristics
• Tasks are preemptable, independent with arbitrary arrival (=release) times
• Tasks have deadlines (D) and known computation times (C) 
• Example Setup:
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Example: Round-Robin Scheduling Doesn’t Work

Time
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• Tasks periodic with period P and computation C in each period:  (𝑃௜, 𝐶௜) for 
each task 𝑖

• Preemptive priority-based dynamic scheduling:
– Each task is assigned a (current) priority based on how close the absolute 

deadline is (i.e. 𝐷௜௧ାଵ ൌ 𝐷௜௧ ൅ 𝑃௜for each task!)
– The scheduler always schedules the active task with the closest absolute deadline

Earliest Deadline First (EDF)

0 5 10 15

)1,4(1 T

)2,5(2 T

)2,7(3 T
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EDF Feasibility Testing
• Even EDF won’t work if you have too many tasks
• For 𝑛 tasks with computation time 𝐶 and deadline 𝐷, a feasible schedule 

exists if:
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Ensuring Progress
• Starvation: thread fails to make progress for an indefinite period of time

• Starvation ≠ Deadlock because starvation could resolve under right 
circumstances

– Deadlocks are unresolvable, cyclic requests for resources

• Causes of starvation:
– Scheduling policy never runs a particular thread on the CPU
– Threads wait for each other or are spinning in a way that will never be resolved

• Let’s explore what sorts of problems we might encounter and how to avoid 
them…
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Strawman: Non-Work-Conserving Scheduler
• A work-conserving scheduler is one that does not leave the CPU idle when 

there is work to do

• A non-work-conserving scheduler could trivially lead to starvation

• In this class, we’ll assume that the scheduler is work-conserving (unless 
stated otherwise)
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Strawman: Last-Come, First-Served (LCFS)
• Stack (LIFO) as a scheduling data structure 

– Late arrivals get fast service
– Early ones wait – extremely unfair
– In the worst case – starvation

• When would this occur?
– When arrival rate (offered load) exceeds service rate (delivered load)
– Queue builds up faster than it drains

• Queue can build in FIFO too, but “serviced in the order received”…
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Is FCFS Prone to Starvation?

time

Sc
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g 
Q
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Scheduled Task (process, thread)

arrivals

• If a task never yields (e.g., goes into an infinite loop), then other tasks 
don’t get to run

• Problem with all non-preemptive schedulers…
– And early personal OSes such as original MacOS, Windows 3.1, etc
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Is Round Robin (RR) Prone to Starvation?
• Each of N processes gets ~1/N of CPU (in window)

– With quantum length Q ms, process waits at most (N-1)*Q ms to run again
– So a process can’t be kept waiting indefinitely

• So RR is fair in terms of waiting time
– Not necessarily in terms of throughput… (if you give up your time slot early, 

you don’t get the time back!)
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Is Priority Scheduling Prone to Starvation?
• Recall: Priority Scheduler always runs the

thread with highest priority
– Low priority thread might never run!
– Starvation…

• But there are more serious problems as well…
– Priority inversion: even high priority threads might become starved

Priority 3
Priority 2
Priority 1
Priority 0 Job 5 Job 6

Job 1 Job 2 Job 3

Job 7

Job 4
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Priority Inversion

• At this point, which job does the scheduler choose?
• Job 3 (Highest priority)

Priority 3

Priority 2

Priority 1 Job 1

Job 3

Job 2

Acquire()
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Priority Inversion

• Job 3 attempts to acquire lock held by Job 1

Priority 3

Priority 2

Priority 1 Job 1

Job 3

Job 2

Acquire()
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Priority Inversion

• At this point, which job does the scheduler choose?
• Job 2 (Medium Priority)
• Priority Inversion

Priority 3

Priority 2

Priority 1 Job 1

Job 3

Job 2

Blocked on Acquire
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Priority Inversion

• Where high priority task is blocked waiting on low priority task
• Low priority one must run for high priority to make progress
• Medium priority task can starve a high priority one

• When else might priority lead to starvation or “live lock”?

lock.acquire(…)
…
lock.release(…)

Low Priority
while (try_lock) {
…
}

High Priority
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One Solution: Priority Donation/Inheritance

• Job 3 temporarily grants Job 1 its “high priority” to run on its behalf

Priority 3

Priority 2

Priority 1 Job 1

Job 3

Job 2

Acquire()
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One Solution: Priority Donation/Inheritance

• Job 3 temporarily grants Job 1 its “high priority” to run on its behalf

Priority 3

Priority 2

Priority 1

Job 1

Job 3

Job 2

Blocked on Acquire

Release()
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One Solution: Priority Donation/Inheritance

• Job 1 completes critical section and releases lock
• Job 3 acquires lock, runs again
• How does the scheduler know?

Priority 3

Priority 2

Priority 1 Job 1

Job 3

Job 2

Acquire()

Project 2: 
Scheduling
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• July 4, 1997 – Pathfinder lands on Mars
– First US Mars landing since Vikings in 1976; first rover
– Novel delivery mechanism: inside air-filled balloons 

bounced to stop on the surface from orbit!
• And then…a few days into mission…:

– Multiple system resets occur to realtime OS (VxWorks)
– System would reboot randomly, losing valuable time and progress

• Problem? Priority Inversion!
– Low priority task grabs mutex trying to 

communicate with high priority task:
– Realtime watchdog detected lack of forward progress and invoked reset to safe state

» High-priority data distribution task was supposed to complete with regular deadline
• Solution: Turn priority donation back on and upload fixes!
• Original developers turned off priority donation (also called priority inheritance)

– Worried about performance costs of donating priority!

Case Study: Martian Pathfinder Rover

Priority 2
Priority 1
Priority 0 ASI/MET collector: grab lock

Lots of random medium stuff
Data Distribution Task: needs lock
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Are SRTF and MLFQ Prone to Starvation?

• In SRTF, long jobs are starved in favor of short ones
– Same fundamental problem as priority scheduling

• MLFQ is an approximation of SRTF, so it suffers from the same problem

Long-Running Compute
Tasks Demoted to 

Low Priority
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Cause for Starvation: Priorities?
• The policies we’ve studied so far:

– Always prefer to give the CPU to a prioritized job
– Non-prioritized jobs may never get to run

• But priorities were a means, not an end
• Our end goal was to serve a mix of CPU-bound, I/O bound, and Interactive 

jobs effectively on common hardware
– Give the I/O bound ones enough CPU to issue their next file operation and 

wait (on those slow discs)
– Give the interactive ones enough CPU to respond to an input and wait (on 

those slow humans)
– Let the CPU bound ones grind away without too much disturbance
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Recall: Changing Landscape…

years
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Per Person

103:1

1:106
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of Things!
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Interactive

Streaming 
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physical 
world
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Changing Landscape of Scheduling
• Priority-based scheduling rooted in “time-sharing”

– Allocating precious, limited resources across a diverse workload
» CPU bound, vs interactive, vs I/O bound

• 80’s brought about personal computers, workstations, and servers on 
networks

– Different machines of different types for different purposes
– Shift to fairness and avoiding extremes (starvation)

• 90’s emergence of the web, rise of internet-based services, the data-
center-is-the-computer

– Server consolidation, massive clustered services, huge flashcrowds
– It’s about predictability, 95th percentile performance guarantees
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Key Idea: Proportional-Share Scheduling
• The policies we’ve studied so far:

– Always prefer to give the CPU to a prioritized job
– Non-prioritized jobs may never get to run

• Instead, we can share the CPU proportionally
– Give each job a share of the CPU according to its priority
– Low-priority jobs get to run less often
– But all jobs can at least make progress (no starvation)
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Lottery Scheduling
• Simple Idea:

– Give each job some number of lottery tickets
– On each time slice, randomly pick a winning ticket
– On average, CPU time is proportional to number of tickets 

given to each job
• How to assign tickets?

– To approximate SRTF, short running jobs get more, long running jobs get fewer
– To avoid starvation, every job gets at least one ticket (everyone makes 

progress)
• Advantage over strict priority scheduling: behaves gracefully as load changes

– Adding or deleting a job affects all jobs proportionally, independent of how 
many tickets each job possesses
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Lottery Scheduling Example (Cont.)
• Lottery Scheduling Example

– Assume short jobs get 10 tickets, long jobs get 1 ticket

– What if too many short jobs to give reasonable response time?  
» If load average is 100, hard to make progress
» One approach: log some user out

# short jobs/
# long jobs

% of CPU each 
short jobs gets

% of CPU each 
long jobs gets

1/1 91% 9%
0/2 N/A 50%
2/0 50% N/A

10/1 9.9% 0.99%
1/10 50% 5%
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Lottery Scheduling: Simple Mechanism

• 𝑁𝑡𝑖𝑐𝑘𝑒𝑡 ൌ  ∑Ni
• Pick a number 𝑑 in 1  . .  𝑁𝑡𝑖𝑐𝑘𝑒𝑡 as the 

random “dart”
• Jobs record their Ni of allocated tickets
• Order them by Ni
• Select the first j such that ∑Ni up to j 

exceeds d.

1

10

Lec 12.442/27/2024 Kubiatowicz CS162 © UCB Spring 2024

Unfairness

• E.g., Given two jobs A and B of same run time 
(# Qs) that are each supposed to receive 50%, 

U = finish time of first / finish time of last
• As a function of run time
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Stride Scheduling
• Achieve proportional share scheduling without resorting to randomness, 

and overcome the “law of small numbers” problem.

• “Stride” of each job is ௕௜௚#ௐே೔ 
– The larger your share of tickets, the smaller your stride
– Ex: W = 10,000,  A=100 tickets, B=50, C=250
– A stride: 100, B: 200, C: 40

• Each job has a “pass” counter 
• Scheduler: pick job with lowest pass, runs it, add its stride to its pass
• Low-stride jobs (lots of tickets) run more often

– Job with twice the tickets gets to run twice as often
• Some messiness of counter wrap-around, new jobs, …
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Conclusion
• Multi-Level Feedback Scheduling:

– Multiple queues of different priorities and scheduling algorithms
– Automatic promotion/demotion of process priority in order to approximate SJF/SRTF

• Realtime Schedulers such as EDF
– Guaranteed behavior by meeting deadlines
– Realtime tasks defined by tuple of compute time and period
– Schedulability test: is it possible to meet deadlines with proposed set of processes?

• Priority Inversion
– A higher-priority task is prevented from running by a lower-priority task
– Often caused by locks and through the intervention of a middle-priority task

• Proportional Share Scheduling
– Give each job a share of the CPU according to its priority
– Low-priority jobs get to run less often
– But all jobs can at least make progress (no starvation)


