C3S162
Operating Systems and
Systems Programming

Lecture 13

Scheduling 3: Proportional Share Scheduling, Deadlock

February 29, 2024
Prof. John Kubiatowicz
http://cs162.eecs.Berkeley.edu

Recall: Real-Time Scheduling

» Goal: Predictability of Performance!
— We need to predict with confidence worst case response times for systems!

— In RTS, performance guarantees are:
» Task- and/or class centric and often ensured a priori

— In conventional systems, performance is:
» System/throughput oriented with post-processing (... wait and see ...)
— Real-time is about enforcing predictability, and does not equal fast computing!!!
» Hard real-time: for time-critical safety-oriented systems
— Meet all deadlines (if at all possible)
— Ideally: determine in advance if this is possible

— Earliest Deadline First (EDF), Least Laxity First (LLF),
Rate-Monitonic Scheduling (RMS), Deadline Monotonic Scheduling (DM)

« Soft real-time: for multimedia

— Attempt to meet deadlines with high probability
— Constant Bandwidth Server (CBS)

2/29/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 13.2

Recall: Changing Landscape...

Computers
1 crunching,
1:106 Data Storage,
Massive Inet
Services,
Bell’s Law: New ML, ...
computer class 1:103
Productivity,

every 10 years

 Interactive

1:1
Streaming
from/to the
103:1 physical
world
years Mote
! The Internet
of Things!

2/29/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 13.3

Changing Landscape of Scheduling

 Priority-based scheduling rooted in “time-sharing”
— Allocating precious, limited resources across a diverse workload
» CPU bound, vs interactive, vs |/0O bound

« 80’s brought about personal computers, workstations, and servers on
networks

— Different machines of different types for different purposes
— Shift to fairness and avoiding extremes (starvation)

« 90’s emergence of the web, rise of internet-based services, the data-
center-is-the-computer

— Server consolidation, massive clustered services, huge flashcrowds
— It's about predictability, 95t percentile performance guarantees

2/29/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 13.4

Key Idea: Proportional-Share Scheduling

The policies we've studied so far:
— Always prefer to give the CPU to a prioritized job
— Non-prioritized jobs may never get to run
But priorities were a means, not an end:
— Give priority to interactive tasks or 1/O tasks for responsiveness
— Lower priority given to long running tasks
Instead, we can share the CPU proportionally
— Give each job a share of the CPU according to its priority
— Low-priority jobs get smaller share of CPU
— But all jobs can at least make progress (no starvation)
This idea is closely related to fair queueing

2/29/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 13.5

Lottery Scheduling

« Simple Idea:
— Give each job some number of lottery tickets
— On each time slice, randomly pick a winning ticket

—On average, CPU time is proportional to number of tickets
given to each job

« How to assign tickets?
— To approximate SRTF, short running jobs get more, long running jobs get fewer

—To avoid starvation, every job gets at least one ticket (everyone makes
progress)

« Advantage over strict priority scheduling: behaves gracefully as load changes

— Adding or deleting a job affects all jobs proportionally, independent of how
many tickets each job possesses

2/29/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 13.6

Lottery Scheduling Example (Cont.)

* Lottery Scheduling Example
— Assume short jobs get 10 tickets, long jobs get 1 ticket

short jobs/ | % of CPU each | % of CPU each
long jobs short jobs gets | long jobs gets
1/1 91% 9%
0/2 N/A 50%
2/0 950% N/A
10/1 9.9% 0.99%
1/10 950% 5%

— What if too many short jobs to give reasonable response time?

» If load average is 100, hard to make progress
» One approach: log some user out

2/29/2024

Kubiatowicz CS162 © UCB Spring 2024

Lec 13.7

Lottery Scheduling: Simple Mechanism

10 ° tlcket Z N

 Pickanumberdinl .. N, asthe
random “dart”

 Jobs record their N, of allocated tickets
* Order them by N,

Select the first j such that), N. up to j
exceeds d.

2/29/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 13.8

Unfairness

L « E.g., Given two jobs A and B of same run time

- (# Qs) that are each supposed to receive 50%,
™" U = finish time of first / finish time of last
;% * As a function of run time
5 0.4-

0.2

0.0 T T .

1 10 100 1000

Job Length
Figure 9.2: Lottery Fairness Study

2/29/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 13.9

Stride Scheduling

« Achieve proportional share scheduling without resorting to randomness,
and overcome the “law of small numbers” problem.

. “Stride” of each job is 2V

l

— The larger your share of tickets, the smaller your stride
— Ex: W =10,000, A=100 tickets, B=50, C=250
— A stride: 100, B: 200, C: 40
« Each job has a “pass” counter
« Scheduler: pick job with lowest pass, runs it, add its stride to its pass
« Low-stride jobs (lots of tickets) run more often
— Job with twice the tickets gets to run twice as often
« Some messiness of counter wrap-around, new jobs, ...

2/29/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 13.10

Linux Completely Fair Scheduler (CFS)

» Goal: Each process gets an equal share of CPU Model: “Perfectly”

— N threads “simultaneously” execute on % of CPU subdivided CPU:

— The model is somewhat like simultaneous
multithreading — each thread gets % of the cycles

swll NdO

* In general, can’t do this with real hardware
— OS needs to give out full CPU in time slices

— Thus, we must use something to keep the threads
roughly in sync with one another

2/29/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 13.11

Linux Completely Fair Scheduler (CFS)

Basic Idea: track CPU time per thread and schedule CFS: Average rate of
threads to match up average rate of execution

Scheduling Decision:
—“Repair” illusion of complete fairness
— Choose thread with minimum CPU time
— Closely related to Fair Queueing

Use a heap-like scheduling queue for this...

—O(log N) to add/remove threads, where N is
number of threads

Sleeping threads don'’t advance their CPU time, so
they get a boost when they wake up again...

— Get interactivity automatically!

. 1
execution = N:

.
>

swll NdO

2/29/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 13.12

Linux CFS: Responsiveness/Starvation Freedom

In addition to fairness, we want low response time and starvation freedom
— Make sure that everyone gets to run at least a bit!
Constraint 1: Target Latency

— Period of time over which every process gets service
— Quanta = Target_Latency / n

Target Latency: 20 ms, 4 Processes
— Each process gets 5ms time slice

Target Latency: 20 ms, 200 Processes
— Each process gets 0.1ms time slice (I!!)
— Recall Round-Robin: large context switching overhead if slice gets to small

2/29/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 13.13

Linux CFS: Throughput

* Goal: Throughput
— Avoid excessive overhead

« Constraint 2: Minimum Granularity
— Minimum length of any time slice

« Target Latency 20 ms, Minimum Granularity 1 ms, 200 processes
— Each process gets 1 ms time slice

2/29/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 13.14

Aside: Priority in Unix — Being Nice

« The industrial operating systems of the 60s and 70’s provided priority to
enforced desired usage policies.

— When it was being developed at Berkeley, instead it provided ways to “be nice”.
e nice values range from -20 to 19

— Negative values are “not nice”

— If you wanted to let your friends get more time, you would nice up your job
« Scheduler puts higher nice-value tasks (lower priority) to sleep more ...

— In O(1) scheduler, this translated fairly directly to priority (and time slice)
 How does this idea translate to CFS?

— Change the rate of CPU cycles given to threads to change relative priority

2/29/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 13.15

Linux CFS: Proportional Shares

 What)ifr;/ve want to give more CPU to some and less to others in CFS (proportional
share)

— Allow different threads to have different rates of execution (cycles/time)
« Use weights! Key Idea: Assign a weight w;to each process / to compute the
switching quanta @,

— Basic equal share: Q, = Target Latency %

— Weighted Share: Q; = (Wi/zp Wp) - Target Latency

* Reuse nice value to reflect share, rather than priority,
— Remember that lower nice value = higher priority

— CFS uses nice values to scale weights exponentially: Weight=1024/(1.25)nice

» Two CPU tasks separated by nice value of 5 =
Task with lower nice value has 3 times the weight, since (1.25)°~ 3

e So, we use “Virtual Runtime” instead of CPU time
— Virtual Runtime = Real CPU Time / Weight

2/29/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 13.16

Example: Linux CFS: Proportional Shares

Target Latency = 20ms
Minimum Granularity = 1ms

Example: Two CPU-Bound Threads
— Thread A has weight 1
— Thread B has weight 4

Time slice for A? 4 ms
Time slice for B? 16 ms

2/29/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 13.17

Linux CFS: Proportional Shares

A A

16 (wg=4)

Physical Virtual
CPU Time CPU Time

4 (wy=1)

» Track a thread's virtual runtime rather than its true physical runtime
— Higher weight: Virtual runtime increases more slowly
— Lower weight: Virtual runtime increases more quickly

» Scheduler’s Decisions are based on Virtual CPU Time

» Use of Red-Black tree to hold all runnable processes as
sorted on vruntime variable

— O(log N) time to perform insertions/deletions
» Cache the item at far left (item with earliest vruntime)

— When ready to schedule, grab version with smallest vruntime (which will be item at the far left).
2/29/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 13.18

How to Evaluate a Scheduling algorithm?

* Deterministic modeling

— takes a predetermined workload and compute the performance of each algorithm

for that workload
* Queueing models

— Mathematical approach for handling stochastic workloads

» Implementation/Simulation:

— Build system which allows actual algorithms
to be run against actual data

— Most flexible/general

actual

execution

simulation

FCES

—» statistics

CRU 16
‘0 213
G2

process —l/O 112

CRUS2
110 147
CPU 173

e

simulation

SJF

> statistics

trace tape

™~

simulation

RR (g = 14)

> statistics

performance

for FCFS

performance

for SJF

performance

for RR (g = 14)

2/29/2024 Kubiatowicz CS162 © UCB Spring 2024

Lec 13.19

Choosing the Right Scheduler

| Care About: Then Choose:

CPU Throughput FCFS
Avg. Response Time SRTF Approximation
|/O Throughput SRTF Approximation

Fairness (CPU Time) Linux CFS
Fairness — Wait Time to Round Robin
Get CPU
Meeting Deadlines EDF
Favoring Important Tasks Priority

2/29/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 13.20

A Final Word On Scheduling

* When do the details of the scheduling policy and fairness really matter?
— When there aren’t enough resources to go around

* When should you simply buy a faster computer?
— (Or network link, or expanded highway, or ...)

— One approach: Buy it when it will pay for itself in improved response time

» Perhaps you're paying for worse response time in reduced
productivity, customer angst, etc...

» Might think that you should buy a faster X when X is utilized 100%,
but usually, response time goes to infinity as utilization=100%

« An interesting implication of this curve:

— Most scheduling algorithms work fine in the “linear” portion of
the load curve, fail otherwise

— Argues for buying a faster X when hit “knee” of curve

|swi
asuodso

%001

Utilization

2/29/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 13.21

Administrivia

* Welcome to Project 2

— Please get started earlier than last time!
« Midterm 2

— Coming up in 2 weeks! (3/14)

— Everything up to the midterm is fair game (perhaps deemphasizing the lecture
on the day before....)

2/29/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 13.22

Deadlock: A Deadly type of Starvation

« Starvation: thread waits indefinitely

— Example, low-priority thread waiting for resources
constantly in use by high-priority threads Thread Wait
Owned A j For

« Deadlock: circular waiting for resources By
— Thread A owns Res 1 and is waiting for Res 2 Res 1 Res 2
Thread B owns Res 2 and is waiting for Res 1
Wait Owned
al Thread By
For B

 Deadlock = Starvation but not vice versa
— Starvation can end (but doesn’t have to)
— Deadlock can’t end without external intervention

2/29/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 13.23

Example: Single-Lane Bridge Crossing

[

FYAN

CA 140 to Yosemite National Park

2/29/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 13.24

Bridge Crossing Example

Each segment of road can be viewed as a resource
— Car must own the segment under them
— Must acquire segment that they are moving into owned
For bridge: must acquire both halves By
— Traffic only in one direction at a time

Deadlock: Shown above when two cars in opposite directions meet in middle
— Each acquires one segment and needs next

— Deadlock resolved if one car backs up (preempt resources and rollback)
» Several cars may have to be backed up

Starvation (not Deadlock):
— East-going traffic really fast = no one gets to go west

2/29/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 13.25

Deadlock with Locks

Thread A: Thread B: Fon
x.Acquire(); y.Acquire(); oWnedf@Wg;t
y.Acquire(); x.Acquire(); By 11

Lock x

y.Release(); X.Release(); Wa?@l OV\E/aned
x.Release(); y.Release(); For Y

« This lock pattern exhibits non-deterministic deadlock
— Sometimes it happens, sometimes it doesn’t!
* This is really hard to debug!

2/29/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 13.26

Deadlock with Locks: “Unlucky” Case

Thread A: Thread B:
x.Acquire();
y.Acquire();
y.Acquire(); <stalled>
<unreachable> x.Acquire(); <stalled>
- <unreachable>
y.Release(); -
X.Release(); X.Release();
y.Release();

Neither thread will get to run = Deadlock

2/29/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 13.27

Deadlock with Locks: “Lucky” Case

Thread A: Thread B:

x.Acquire();

y.Acquire();

- y.Acquire();

y.Release();

X.Release();
x.Acquire();
X.Release();
y.Release();

Sometimes, schedule won't trigger deadlock!

2/29/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 13.28

Other Types of Deadlock

« Threads often block waiting for resources
— Locks
— Terminals
— Printers
— CD drives
— Memory

« Threads often block waiting for other threads
— Pipes

— Sockets

* You can deadlock on any of these!

2/29/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 13.29

Deadlock with Space

Thread A: Thread B
AllocateOrWait(1 MB) AllocateOrWait(1l MB)
AllocateOrWait(1 MB) AllocateOrWait(1l MB)
Free(1 MB) Free(1l MB)

Free(1 MB) Free(1l MB)

If only 2 MB of space, we get same deadlock situation

2/29/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 13.30

Dining Lawyers Problem

Five chopsticks/Five lawyers (really cheap restaurant)
— Free-for all: Lawyer will grab any one they can
— Need two chopsticks to eat

What if all grab at same time?
— Deadlock!

How to fix deadlock?
— Make one of them give up a chopstick (Hah!)
— Eventually everyone will get chance to eat

How to prevent deadlock?
— Never let lawyer take last chopstick if no hungry lawyer has two chopsticks afterwards
— Can we formalize this requirement somehow?

2/29/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 13.31

Four requirements for occurrence of Deadlock

Mutual exclusion
— Only one thread at a time can use a resource.

Hold and wait
— Thread holding at least one resource is waiting to acquire additional
resources held by other threads
No preemption
— Resources are released only voluntarily by the thread holding the
resource, after thread is finished with it
Circular wait
— There exists a set {T,, ..., T,} of waiting threads
» T, is waiting for a resource that is held by T,
» T, is waiting for a resource that is held by T,
» ..

» T, is waiting for a resource that is held by T,
2/29/2024 Kubiatowicz CS162 © UCB Spring 2024

Lec 13.32

Detecting Deadlock: Resource-Allocation Graph

« System Model Symbols
—Asetof Threads 7, T, ..., T, @ @
—Resource types R, R,, . . ., R,

CPU cycles, memory space, I/O devices o :

— Each resource type R, has W, instances R, '

— Each thread utilizes a resource as follows: R,
» Request () / Use() / Release()

« Resource-Allocation Graph:
—V is partitioned into two types:
» T={T,, T,, ..., T,}, the set threads in the system.
» R={R,, R,, ..., R}, the set of resource types in system
—request edge — directed edge T, —> R,

—assignment edge — directed edge R; — T;
2/29/2024 Kubiatowicz CS162 © UCB Spring 2024

Lec 13.33

Resource-Allocation Graph Examples

 Model:

— request edge — directed edge T, > R,
— assignment edge — directed edge R; — T,

R, R,

A\

AN B BN
ofof¢ @;@ :
1 [

R, R, R,

7 |-

<
R, Ry R,

Rs

R,
Simple Resource Allocation Graph Allocation Graph
Allocation Graph With Deadlock With Cycle, but
No Deadlock

2/29/2024 Kubiatowicz CS162 © UCB Spring 2024

Lec 13.34

Deadlock Detection Algorithm

» Let [X] represent an m-ary vector of non-negative integers

(quantities of resources of each type):

[FreeResources]: Current free resources each type
[Request,]: Current requests from thread X
[Alloc,]: Current resources held by thread X

» See if tasks can eventually terminate on their own

[Avail] = [FreeResources]
Add all nodes to UNFINISHED
do {

done = true
Foreach node in UNFINISHED {
if ([Request, 4] <= [Avail]) {
remove node from UNFINISHED
[Avail] = [Avail] + [Alloc,.4]
done = false
}
}
} until(done)
* Nodes left in UNFINISHED = deadlocked

2/29/2024 Kubiatowicz CS162 © UCB Spring 2024

e

Lec 13.35

How should a system deal with deadlock?

* Four different approaches:

1. Deadlock prevention: write your code in a way that it isn’t prone to
deadlock

2. Deadlock recovery: let deadlock happen, and then figure out how to
recover from it

3. Deadlock avoidance: dynamically delay resource requests so deadlock
doesn’t happen

4. Deadlock denial: ignore the possibility of deadlock

 Modern operating systems:
— Make sure the system isn’t involved in any deadlock

— Ignore deadlock in applications
» “Ostrich Algorithm”

2/29/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 13.36

Techniques for Preventing Deadlock

* Infinite resources

— Include enough resources so that no one ever runs out of resources.
Doesn’t actually have to be infinite, just large...

— Give illusion of infinite resources (e.g. virtual memory)
— Examples:
» Bay bridge with 12,000 lanes. Never wait!
» Infinite disk space (not realistic yet?)
« No Sharing of resources (totally independent threads)
— Not very realistic
« Don’t allow waiting
— How the phone company avoids deadlock
» Call Mom in Toledo, works way through phone network, but if blocked get busy signal.
— Technique used in Ethernet/some multiprocessor nets
» Everyone speaks at once. On collision, back off and retry
— Inefficient, since have to keep retrying

» Consider: driving to San Francisco; when hit traffic jam, suddenly you’re transported
back home and told to retry!

2/29/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 13.37

(Virtually) Infinite Resources

Thread A Thread B

AllocateOrWait(1 MB) AllocateOrWait(1l MB)
AllocateOrWait(1 MB) AllocateOrWait(1l MB)
Free(1 MB) Free(1l MB)
Free(1 MB) Free(1l MB)

« With virtual memory we have “infinite” space so everything will just
succeed, thus above example won’t deadlock

— Of course, it isn’t actually infinite, but certainly larger than 2MB!

2/29/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 13.38

Techniques for Preventing Deadlock

« Make all threads request everything they’ll need at the beginning.
— Problem: Predicting future is hard, tend to over-estimate resources
— Example:

» If need 2 chopsticks, request both at same time

» Don’t leave home until we know no one is using any intersection between here and where
you want to go; only one car on the Bay Bridge at a time

* Force all threads to request resources in a particular order preventing any cyclic
use of resources

— Thus, preventing deadlock
— Example (x.Acquire(), y.Acquire(), z.Acquire(),...)
» Make tasks request disk, then memory, then...
» Keep from deadlock on freeways around SF by requiring everyone to go clockwise

2/29/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 13.39

Request Resources Atomically (1)

Rather than:
Thread A: Thread B:
x.Acquire(); y.Acquire();
y.Acquire(); x.Acquire();
y.Release(); x.Release();
X.Release(); y.Release();

Consider instead:

Thread A: Thread B:
Acquire_both(x, y); Acquire_both(y, x);
y.Release(); X.Release();
X.Release(); y.Release();

2/29/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 13.40

Request Resources Atomically (2)

Or consider this:

Thread A Thread B

z.Acquire(); z.Acquire();
X.Acquire(); y.Acquire();
y.Acquire(); x.Acquire();
z.Release(); z.Release();
y.Release(); X.Release();
X.Release(); y.Release();

2/29/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 13.41

2/29/2024

Acquire Resources in Consistent Order

Rather than:

Thread A:
X.Acquire();
y.Acquire();

y.Release();
X.Release();

Consider instead:

Thread A:
x.Acquire();
y.Acquire();

y.Release();
X.Release();

Thread B:
y.Acquire();
X.Acquire();

X.Release();
y.Release();

Thread B:
x.Acquire();
y.Acquire();

X.Release();
y.Release();

Kubiatowicz CS162 © UCB Spring 2024

Does it matter in
which order the
locks are released?

Lec 13.42

Train Example (Wormhole-Routed Network)

 Circular dependency (Deadlock!)

— Each train wants to turn right, but is blocked by other trains
« Similar problem to multiprocessor networks

— Wormhole-Routed Network: Messages trail through network like a “worm”
* Fix? Imagine grid extends in all four directions

— Force ordering of channels (tracks)
» Protocol: Always go east-west first, then north-south
— Called “dimension ordering” (X then Y)

2/29/20p4

) Y\

Lec 1

43

Techniques for Recovering from Deadlock

Terminate thread, force it to give up resources
— In Bridge example, Godzilla picks up a car, hurls it into the river. Deadlock solved!
— Hold dining lawyer in contempt and take away in handcuffs
— But, not always possible — killing a thread holding a mutex leaves world inconsistent
Preempt resources without killing off thread
— Take away resources from thread temporarily
— Doesn’t always fit with semantics of computation
Roll back actions of deadlocked threads
— Hit the rewind button on TiVo, pretend last few minutes never happened
— For bridge example, make one car roll backwards (may require others behind him)
— Common technique in databases (transactions)
— Of course, if you restart in exactly the same way, may reenter deadlock once again
Many operating systems use other options

2/29/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 13.44

Another view of virtual memory: Pre-empting Resources

Thread A: Thread B:
AllocateOrWait(1 MB) AllocateOrWait(1l MB)
AllocateOrWait(1 MB) AllocateOrWait(1l MB)
Free(1 MB) Free(1l MB)

Free(1 MB) Free(1l MB)

« Before: With virtual memory we have “infinite” space so everything will just
succeed, thus above example won’t deadlock

— Of course, it isn’t actually infinite, but certainly larger than 2MB!

 Alternative view: we are “pre-empting” memory when paging out to disk,
and giving it back when paging back in

— This works because thread can’'t use memory when paged out

2/29/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 13.45

Techniques for Deadlock Avoidance

» Idea: When a thread requests a resource, OS checks if it
would result in deadlock

— If not, it grants the resource right away
— If so, it waits for other threads to release resources

THIS DOES NOT WORKI!!I

« Example:
Thread A: Thread B:
~ X.Acquire(); ~y-Acquire();
Blocks... y.Acquire(); X.Acquire(); Wait?
But it’s already too late...
y.Release(); X.Release();
X.Release(); y.Release();

2/29/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 13.46

Deadlock Avoidance: Three States

« Safe state
— System can delay resource acquisition to prevent deadlock

e Unsafe state Deadlock avoidance: prevent system
_ No deadlock yet. . from reaching an unsafe state
— But threads can request resources in a pattern that unavoidably leads
to deadlock

 Deadlocked state
— There exists a deadlock in the system
— Also considered “unsafe’

2/29/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 13.47

2/29/2024

Deadlock Avoidance

» Idea: When a thread requests a resource, OS checks if

it would result in deadloeck an unsafe state
— If not, it grants the resource right away

— If so, it waits for other threads to release resources

 Example:
Thread A: Thread B:
x.AcquireZS; y.AcquireZS;
y.Acquire(); X.Acquire();
y.Release(); X.Release();
Xx.Release(); y.Release();

Kubiatowicz CS162 © UCB Spring 2024

Wait until
Thread A
releases
mutex X

Lec 13.48

Banker's Algorithm for Avoiding Deadlock

« Toward right idea:
— State maximum (max) resource needs in advance

— Allow particular thread to proceed if:

(available resources - #requested) > max
remaining that might be needed by any thread

« Banker’s algorithm (less conservative):

— Allocate resources dynamically

» Evaluate each request and grant if some
ordering of threads is still deadlock free afterward

» Technique: pretend each request is granted, then run deadlock detection
algorithm, substituting:

([Maxnode]'[A”OCnode] <= [AV8I|]) for ([RequeStnode

Grant request if result is deadlock free (conservative!)

] <= [Avail])

2/29/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 13.49

Banker's Algorithm for Avoiding Deadlock

[Avail] = [FreeResources]
Add all nodes to UNFINISHED
do {

done = true
Foreach node in UNFINISHED {
if ([Request ,.] <= [Avail]) {
remove node from UNFINISHED
[Avail] = [Avail] + [Alloc, 4]
done = false

}
} Jﬁtil(done)

2/29/2024

» Evaluate each request and grant if some
ordering of threads is still deadlock free afterward

» Technique: pretend each request is granted, then run deadlock detection
algorithm, substituting:
(IM@X o] -TANIOC, o50] <= [Avail]) for ([Request,q,] <= [Avail])
Grant request if result is deadlock free (conservative!)

Kubiatowicz CS162 © UCB Spring 2024 Lec 13.50

Banker's Algorithm for Avoiding Deadlock

[Avail] = [FreeResources]
Add all nodes to UNFINISHED
do {

done = true
Foreach node in UNFINISHED {
if ([Maxnode]'[Allocnode] <= [Avall]) {
remove node from UNFINISHED
[Avail] = [Avail] + [Alloc, 4]
done = false

}
} Jﬁtil(done)

2/29/2024

» Evaluate each request and grant if some
ordering of threads is still deadlock free afterward

» Technique: pretend each request is granted, then run deadlock detection
algorithm, substituting:
(IM@X o] -TANIOC, o50] <= [Avail]) for ([Request,q,] <= [Avail])
Grant request if result is deadlock free (conservative!)

Kubiatowicz CS162 © UCB Spring 2024 Lec 13.51

Banker's Algorithm for Avoiding Deadlock

« Toward right idea:
— State maximum (max) resource needs in advance

— Allow particular thread to proceed if:

(available resources - #requested) > max
remaining that might be needed by any thread

« Banker’s algorithm (less conservative):

— Allocate resources dynamically

» Evaluate each request and grant if some
ordering of threads is still deadlock free afterward

» Technique: pretend each request is granted, then run deadlock detection
algorithm, substituting:

([Maxnode]'[A”OCnode] <= [AV8I|]) for ([RequeStnode

Grant request if result is deadlock free (conservative!)

— Keeps system in a “SAFE” state: there exists a sequence {T, T,, ... T} with T,
requesting all remaining resources, finishing, then T, requesting all remaining
resources, etc..

] <= [Avail])

2/29/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 13.52

Banker's Algorithm Example

» Banker’s algorithm with dining lawyers

—“Safe” (won’t cause deadlock) if when try to
grab chopstick either:

» Not last chopstick

» Is last chopstick but someone will have
two afterwards

— What if k-handed lawyers? Don’t allow if:
» It's the last one, no one would have k
» It's 29 to last, and no one would have k-1
» It's 3 to last, and no one would have k-2
» ...

2/29/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 13.53

Conclusion

* Proportional Share Scheduling (Lottery Scheduling, Stride Scheduling CFS)
— Give each job a share of the CPU according to its priority
— Low-priority jobs get to run less often

— But all jobs can at least make progress (no starvation)

* Four conditions for deadlocks
— Mutual exclusion
— Hold and wait
— No preemption
— Circular wait
« Techniques for addressing Deadlock
— Deadlock prevention:
» write your code in a way that it isn’t prone to deadlock
— Deadlock recovery:
» let deadlock happen, and then figure out how to recover from it
— Deadlock avoidance:
» dynamically delay resource requests so deadlock doesn’t happen
» Banker's Algorithm provides on algorithmic way to do this
— Deadlock denial:
» ignore the possibility of deadlock

2/29/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 13.54

