
CS162
Operating Systems and
Systems Programming

Lecture 13

Scheduling 3: Proportional Share Scheduling, Deadlock

February 29th, 2024
Prof. John Kubiatowicz

http://cs162.eecs.Berkeley.edu

Lec 13.22/29/2024 Kubiatowicz CS162 © UCB Spring 2024

Recall: Real-Time Scheduling
• Goal: Predictability of Performance!

– We need to predict with confidence worst case response times for systems!
– In RTS, performance guarantees are:

» Task- and/or class centric and often ensured a priori
– In conventional systems, performance is:

» System/throughput oriented with post-processing (… wait and see …)
– Real-time is about enforcing predictability, and does not equal fast computing!!!

• Hard real-time: for time-critical safety-oriented systems
– Meet all deadlines (if at all possible)
– Ideally: determine in advance if this is possible
– Earliest Deadline First (EDF), Least Laxity First (LLF),

Rate-Monitonic Scheduling (RMS), Deadline Monotonic Scheduling (DM)
• Soft real-time: for multimedia

– Attempt to meet deadlines with high probability
– Constant Bandwidth Server (CBS)

Lec 13.32/29/2024 Kubiatowicz CS162 © UCB Spring 2024

Recall: Changing Landscape…

years

Computers
Per Person

103:1

1:106

Laptop
PDA

Mainframe

Mini
Workstation

PC

Cell

1:1

1:103

Mote
!

Bell’s Law: New
computer class
every 10 years

The Internet
of Things!

Number
crunching,
Data Storage,
Massive Inet
Services,
ML, …

Productivity,
Interactive

Streaming
from/to the
physical
world

Lec 13.42/29/2024 Kubiatowicz CS162 © UCB Spring 2024

Changing Landscape of Scheduling
• Priority-based scheduling rooted in “time-sharing”

– Allocating precious, limited resources across a diverse workload
» CPU bound, vs interactive, vs I/O bound

• 80’s brought about personal computers, workstations, and servers on
networks

– Different machines of different types for different purposes
– Shift to fairness and avoiding extremes (starvation)

• 90’s emergence of the web, rise of internet-based services, the data-
center-is-the-computer

– Server consolidation, massive clustered services, huge flashcrowds
– It’s about predictability, 95th percentile performance guarantees

Lec 13.52/29/2024 Kubiatowicz CS162 © UCB Spring 2024

Key Idea: Proportional-Share Scheduling
• The policies we’ve studied so far:

– Always prefer to give the CPU to a prioritized job
– Non-prioritized jobs may never get to run

• But priorities were a means, not an end:
– Give priority to interactive tasks or I/O tasks for responsiveness
– Lower priority given to long running tasks

• Instead, we can share the CPU proportionally
– Give each job a share of the CPU according to its priority
– Low-priority jobs get smaller share of CPU
– But all jobs can at least make progress (no starvation)

• This idea is closely related to fair queueing

Lec 13.62/29/2024 Kubiatowicz CS162 © UCB Spring 2024

Lottery Scheduling
• Simple Idea:

– Give each job some number of lottery tickets
– On each time slice, randomly pick a winning ticket
– On average, CPU time is proportional to number of tickets

given to each job
• How to assign tickets?

– To approximate SRTF, short running jobs get more, long running jobs get fewer
– To avoid starvation, every job gets at least one ticket (everyone makes

progress)
• Advantage over strict priority scheduling: behaves gracefully as load changes

– Adding or deleting a job affects all jobs proportionally, independent of how
many tickets each job possesses

Lec 13.72/29/2024 Kubiatowicz CS162 © UCB Spring 2024

Lottery Scheduling Example (Cont.)
• Lottery Scheduling Example

– Assume short jobs get 10 tickets, long jobs get 1 ticket

– What if too many short jobs to give reasonable response time?
» If load average is 100, hard to make progress
» One approach: log some user out

short jobs/
long jobs

% of CPU each
short jobs gets

% of CPU each
long jobs gets

1/1 91% 9%
0/2 N/A 50%
2/0 50% N/A

10/1 9.9% 0.99%
1/10 50% 5%

Lec 13.82/29/2024 Kubiatowicz CS162 © UCB Spring 2024

Lottery Scheduling: Simple Mechanism• 𝑁𝑡𝑖𝑐𝑘𝑒𝑡 ൌ ∑Ni
• Pick a number 𝑑 in 1 . . 𝑁𝑡𝑖𝑐𝑘𝑒𝑡 as the

random “dart”
• Jobs record their Ni of allocated tickets
• Order them by Ni
• Select the first j such that ∑Ni up to j

exceeds d.

1

10

Lec 13.92/29/2024 Kubiatowicz CS162 © UCB Spring 2024

Unfairness

• E.g., Given two jobs A and B of same run time
(# Qs) that are each supposed to receive 50%,

U = finish time of first / finish time of last
• As a function of run time

Lec 13.102/29/2024 Kubiatowicz CS162 © UCB Spring 2024

Stride Scheduling
• Achieve proportional share scheduling without resorting to randomness,

and overcome the “law of small numbers” problem.

• “Stride” of each job is #ௐே
– The larger your share of tickets, the smaller your stride
– Ex: W = 10,000, A=100 tickets, B=50, C=250
– A stride: 100, B: 200, C: 40

• Each job has a “pass” counter
• Scheduler: pick job with lowest pass, runs it, add its stride to its pass
• Low-stride jobs (lots of tickets) run more often

– Job with twice the tickets gets to run twice as often
• Some messiness of counter wrap-around, new jobs, …

Lec 13.112/29/2024 Kubiatowicz CS162 © UCB Spring 2024

Linux Completely Fair Scheduler (CFS)
• Goal: Each process gets an equal share of CPU

– N threads “simultaneously” execute on ଵே of CPU
– The model is somewhat like simultaneous

multithreading – each thread gets ଵே of the cycles

• In general, can’t do this with real hardware
– OS needs to give out full CPU in time slices
– Thus, we must use something to keep the threads

roughly in sync with one another

Model: “Perfectly”
subdivided CPU:

C
PU

 Tim
e T1 T2 T3

1𝑁

Lec 13.122/29/2024 Kubiatowicz CS162 © UCB Spring 2024

Linux Completely Fair Scheduler (CFS)
• Basic Idea: track CPU time per thread and schedule

threads to match up average rate of execution
• Scheduling Decision:

– “Repair” illusion of complete fairness
– Choose thread with minimum CPU time
– Closely related to Fair Queueing

• Use a heap-like scheduling queue for this…
– O(log N) to add/remove threads, where N is

number of threads
• Sleeping threads don’t advance their CPU time, so

they get a boost when they wake up again…
– Get interactivity automatically!

C
PU

 Tim
e

T1
T2

T3

1𝑁
CFS: Average rate of
execution = ଵே:

Lec 13.132/29/2024 Kubiatowicz CS162 © UCB Spring 2024

• In addition to fairness, we want low response time and starvation freedom
– Make sure that everyone gets to run at least a bit!

• Constraint 1: Target Latency
– Period of time over which every process gets service
– Quanta = Target_Latency / n

• Target Latency: 20 ms, 4 Processes
– Each process gets 5ms time slice

• Target Latency: 20 ms, 200 Processes
– Each process gets 0.1ms time slice (!!!)
– Recall Round-Robin: large context switching overhead if slice gets to small

Linux CFS: Responsiveness/Starvation Freedom

Lec 13.142/29/2024 Kubiatowicz CS162 © UCB Spring 2024

Linux CFS: Throughput
• Goal: Throughput

– Avoid excessive overhead
• Constraint 2: Minimum Granularity

– Minimum length of any time slice

• Target Latency 20 ms, Minimum Granularity 1 ms, 200 processes
– Each process gets 1 ms time slice

Lec 13.152/29/2024 Kubiatowicz CS162 © UCB Spring 2024

Aside: Priority in Unix – Being Nice
• The industrial operating systems of the 60s and 70’s provided priority to

enforced desired usage policies.
– When it was being developed at Berkeley, instead it provided ways to “be nice”.

• nice values range from -20 to 19
– Negative values are “not nice”
– If you wanted to let your friends get more time, you would nice up your job

• Scheduler puts higher nice-value tasks (lower priority) to sleep more …
– In O(1) scheduler, this translated fairly directly to priority (and time slice)

• How does this idea translate to CFS?
– Change the rate of CPU cycles given to threads to change relative priority

Lec 13.162/29/2024 Kubiatowicz CS162 © UCB Spring 2024

Linux CFS: Proportional Shares
• What if we want to give more CPU to some and less to others in CFS (proportional

share) ?
– Allow different threads to have different rates of execution (cycles/time)

• Use weights! Key Idea: Assign a weight wi to each process I to compute the
switching quanta Qi

– Basic equal share: 𝑄𝑖 ൌ Target Latency ⋅ ଵே
– Weighted Share: 𝑄 ൌ ௪ ∑ ௪ൗ ⋅ Target Latency

• Reuse nice value to reflect share, rather than priority,
– Remember that lower nice value higher priority
– CFS uses nice values to scale weights exponentially: Weight=1024/(1.25)nice

» Two CPU tasks separated by nice value of 5
Task with lower nice value has 3 times the weight, since (1.25)5 3

• So, we use “Virtual Runtime” instead of CPU time
– Virtual Runtime = Real CPU Time / Weight

Lec 13.172/29/2024 Kubiatowicz CS162 © UCB Spring 2024

Example: Linux CFS: Proportional Shares
• Target Latency = 20ms
• Minimum Granularity = 1ms
• Example: Two CPU-Bound Threads

– Thread A has weight 1
– Thread B has weight 4

• Time slice for A? 4 ms
• Time slice for B? 16 ms

Lec 13.182/29/2024 Kubiatowicz CS162 © UCB Spring 2024

Linux CFS: Proportional Shares

• Track a thread's virtual runtime rather than its true physical runtime
– Higher weight: Virtual runtime increases more slowly
– Lower weight: Virtual runtime increases more quickly

• Scheduler’s Decisions are based on Virtual CPU Time
• Use of Red-Black tree to hold all runnable processes as

sorted on vruntime variable
– O(log N) time to perform insertions/deletions

» Cache the item at far left (item with earliest vruntime)
– When ready to schedule, grab version with smallest vruntime (which will be item at the far left).

Virtual
CPU Time

B A

Physical
CPU Time B

A

16 (wB=4)

4 (wA=1)

Lec 13.192/29/2024 Kubiatowicz CS162 © UCB Spring 2024

How to Evaluate a Scheduling algorithm?
• Deterministic modeling

– takes a predetermined workload and compute the performance of each algorithm
for that workload

• Queueing models
– Mathematical approach for handling stochastic workloads

• Implementation/Simulation:
– Build system which allows actual algorithms

to be run against actual data
– Most flexible/general

Lec 13.202/29/2024 Kubiatowicz CS162 © UCB Spring 2024

Choosing the Right Scheduler

I Care About: Then Choose:

CPU Throughput FCFS

Avg. Response Time SRTF Approximation

I/O Throughput SRTF Approximation

Fairness (CPU Time) Linux CFS

Fairness – Wait Time to
Get CPU

Round Robin

Meeting Deadlines EDF

Favoring Important Tasks Priority

Lec 13.212/29/2024 Kubiatowicz CS162 © UCB Spring 2024

A Final Word On Scheduling
• When do the details of the scheduling policy and fairness really matter?

– When there aren’t enough resources to go around
• When should you simply buy a faster computer?

– (Or network link, or expanded highway, or …)
– One approach: Buy it when it will pay for itself in improved response time

» Perhaps you’re paying for worse response time in reduced
productivity, customer angst, etc…

» Might think that you should buy a faster X when X is utilized 100%,
but usually, response time goes to infinity as utilization100%

• An interesting implication of this curve:
– Most scheduling algorithms work fine in the “linear” portion of

the load curve, fail otherwise
– Argues for buying a faster X when hit “knee” of curve

Utilization

R
esponse

tim
e 100%

Lec 13.222/29/2024 Kubiatowicz CS162 © UCB Spring 2024

Administrivia
• Welcome to Project 2

– Please get started earlier than last time!
• Midterm 2

– Coming up in 2 weeks! (3/14)
– Everything up to the midterm is fair game (perhaps deemphasizing the lecture

on the day before….)

Lec 13.232/29/2024 Kubiatowicz CS162 © UCB Spring 2024

Deadlock: A Deadly type of Starvation
• Starvation: thread waits indefinitely

– Example, low-priority thread waiting for resources
constantly in use by high-priority threads

• Deadlock: circular waiting for resources
– Thread A owns Res 1 and is waiting for Res 2

Thread B owns Res 2 and is waiting for Res 1

• Deadlock Starvation but not vice versa
– Starvation can end (but doesn’t have to)
– Deadlock can’t end without external intervention

Res 2Res 1

Thread
B

Thread
A Wait

For

Wait
For

Owned
By

Owned
By

Lec 13.242/29/2024 Kubiatowicz CS162 © UCB Spring 2024

Example: Single-Lane Bridge Crossing

CA 140 to Yosemite National Park

Lec 13.252/29/2024 Kubiatowicz CS162 © UCB Spring 2024

Bridge Crossing Example
• Each segment of road can be viewed as a resource

– Car must own the segment under them
– Must acquire segment that they are moving into

• For bridge: must acquire both halves
– Traffic only in one direction at a time

• Deadlock: Shown above when two cars in opposite directions meet in middle
– Each acquires one segment and needs next
– Deadlock resolved if one car backs up (preempt resources and rollback)

» Several cars may have to be backed up
• Starvation (not Deadlock):

– East-going traffic really fast no one gets to go west

East
Half

Wait
For

Wait
For

Owned
By

Owned
By

West
Half

Lec 13.262/29/2024 Kubiatowicz CS162 © UCB Spring 2024

Thread A:
x.Acquire();
y.Acquire();
…
y.Release();
x.Release();

Thread B:
y.Acquire();
x.Acquire();
…
x.Release();
y.Release();

Lock yLock x

Thread
B

Thread
A Wait

For

Wait
For

Owned
By

Owned
By

Deadlock with Locks

• This lock pattern exhibits non-deterministic deadlock
– Sometimes it happens, sometimes it doesn’t!

• This is really hard to debug!

Lec 13.272/29/2024 Kubiatowicz CS162 © UCB Spring 2024

Deadlock with Locks: “Unlucky” Case
Thread A:
x.Acquire();

y.Acquire(); <stalled>
<unreachable>
…
y.Release();
x.Release();

Thread B:

y.Acquire();

x.Acquire(); <stalled>
<unreachable>
…
x.Release();
y.Release(); Lock yLock x

Thread
B

Thread
A Wait

For

Wait
For

Owned
By

Owned
By

Neither thread will get to run Deadlock

Lec 13.282/29/2024 Kubiatowicz CS162 © UCB Spring 2024

Deadlock with Locks: “Lucky” Case

Thread A:
x.Acquire();
y.Acquire();
…
y.Release();
x.Release();

Thread B:

y.Acquire();

x.Acquire();
…
x.Release();
y.Release();

Sometimes, schedule won’t trigger deadlock!

Lec 13.292/29/2024 Kubiatowicz CS162 © UCB Spring 2024

Other Types of Deadlock
• Threads often block waiting for resources

– Locks
– Terminals
– Printers
– CD drives
– Memory

• Threads often block waiting for other threads
– Pipes
– Sockets

• You can deadlock on any of these!

Lec 13.302/29/2024 Kubiatowicz CS162 © UCB Spring 2024

Deadlock with Space

Thread A:
AllocateOrWait(1 MB)
AllocateOrWait(1 MB)
Free(1 MB)
Free(1 MB)

If only 2 MB of space, we get same deadlock situation

Thread B
AllocateOrWait(1 MB)
AllocateOrWait(1 MB)
Free(1 MB)
Free(1 MB)

Lec 13.312/29/2024 Kubiatowicz CS162 © UCB Spring 2024

Dining Lawyers Problem
• Five chopsticks/Five lawyers (really cheap restaurant)

– Free-for all: Lawyer will grab any one they can
– Need two chopsticks to eat

• What if all grab at same time?
– Deadlock!

• How to fix deadlock?
– Make one of them give up a chopstick (Hah!)
– Eventually everyone will get chance to eat

• How to prevent deadlock?
– Never let lawyer take last chopstick if no hungry lawyer has two chopsticks afterwards
– Can we formalize this requirement somehow?

Lec 13.322/29/2024 Kubiatowicz CS162 © UCB Spring 2024

Four requirements for occurrence of Deadlock
• Mutual exclusion

– Only one thread at a time can use a resource.
• Hold and wait

– Thread holding at least one resource is waiting to acquire additional
resources held by other threads

• No preemption
– Resources are released only voluntarily by the thread holding the

resource, after thread is finished with it
• Circular wait

– There exists a set {T1, …, Tn} of waiting threads
» T1 is waiting for a resource that is held by T2
» T2 is waiting for a resource that is held by T3
» …
» Tn is waiting for a resource that is held by T1

Lec 13.332/29/2024 Kubiatowicz CS162 © UCB Spring 2024

Symbols

Detecting Deadlock: Resource-Allocation Graph
• System Model

– A set of Threads T1, T2, . . ., Tn

– Resource types R1, R2, . . ., Rm

CPU cycles, memory space, I/O devices
– Each resource type Ri has Wi instances
– Each thread utilizes a resource as follows:

»Request() / Use() / Release()
• Resource-Allocation Graph:

– V is partitioned into two types:
» T = {T1, T2, …, Tn}, the set threads in the system.
» R = {R1, R2, …, Rm}, the set of resource types in system

– request edge – directed edge T1 Rj

– assignment edge – directed edge Rj Ti

R1
R2

T1 T2

Lec 13.342/29/2024 Kubiatowicz CS162 © UCB Spring 2024

Resource-Allocation Graph Examples

T1 T2 T3

R1 R2

R3
R4

Simple Resource
Allocation Graph

T1 T2 T3

R1 R2

R3
R4

Allocation Graph
With Deadlock

T1

T2

T3

R2

R1

T4

Allocation Graph
With Cycle, but
No Deadlock

• Model:
– request edge – directed edge T1 Rj
– assignment edge – directed edge Rj Ti

Lec 13.352/29/2024 Kubiatowicz CS162 © UCB Spring 2024

T1

T2

T3

R2

R1

T4

Deadlock Detection Algorithm
• Let [X] represent an m-ary vector of non-negative integers

(quantities of resources of each type):
[FreeResources]: Current free resources each type
[RequestX]: Current requests from thread X
[AllocX]: Current resources held by thread X

• See if tasks can eventually terminate on their own
[Avail] = [FreeResources]
Add all nodes to UNFINISHED
do {

done = true
Foreach node in UNFINISHED {

if ([Requestnode] <= [Avail]) {
remove node from UNFINISHED
[Avail] = [Avail] + [Allocnode]
done = false

}
}

} until(done)

• Nodes left in UNFINISHED deadlocked
Lec 13.362/29/2024 Kubiatowicz CS162 © UCB Spring 2024

How should a system deal with deadlock?
• Four different approaches:
1. Deadlock prevention: write your code in a way that it isn’t prone to

deadlock
2. Deadlock recovery: let deadlock happen, and then figure out how to

recover from it
3. Deadlock avoidance: dynamically delay resource requests so deadlock

doesn’t happen
4. Deadlock denial: ignore the possibility of deadlock

• Modern operating systems:
– Make sure the system isn’t involved in any deadlock
– Ignore deadlock in applications

» “Ostrich Algorithm”

Lec 13.372/29/2024 Kubiatowicz CS162 © UCB Spring 2024

Techniques for Preventing Deadlock
• Infinite resources

– Include enough resources so that no one ever runs out of resources.
Doesn’t actually have to be infinite, just large…

– Give illusion of infinite resources (e.g. virtual memory)
– Examples:

» Bay bridge with 12,000 lanes. Never wait!
» Infinite disk space (not realistic yet?)

• No Sharing of resources (totally independent threads)
– Not very realistic

• Don’t allow waiting
– How the phone company avoids deadlock

» Call Mom in Toledo, works way through phone network, but if blocked get busy signal.
– Technique used in Ethernet/some multiprocessor nets

» Everyone speaks at once. On collision, back off and retry
– Inefficient, since have to keep retrying

» Consider: driving to San Francisco; when hit traffic jam, suddenly you’re transported
back home and told to retry!

Lec 13.382/29/2024 Kubiatowicz CS162 © UCB Spring 2024

(Virtually) Infinite Resources

• With virtual memory we have “infinite” space so everything will just
succeed, thus above example won’t deadlock

– Of course, it isn’t actually infinite, but certainly larger than 2MB!

Thread A
AllocateOrWait(1 MB)
AllocateOrWait(1 MB)
Free(1 MB)
Free(1 MB)

Thread B
AllocateOrWait(1 MB)
AllocateOrWait(1 MB)
Free(1 MB)
Free(1 MB)

Lec 13.392/29/2024 Kubiatowicz CS162 © UCB Spring 2024

Techniques for Preventing Deadlock
• Make all threads request everything they’ll need at the beginning.

– Problem: Predicting future is hard, tend to over-estimate resources
– Example:

» If need 2 chopsticks, request both at same time
» Don’t leave home until we know no one is using any intersection between here and where

you want to go; only one car on the Bay Bridge at a time
• Force all threads to request resources in a particular order preventing any cyclic

use of resources
– Thus, preventing deadlock
– Example (x.Acquire(), y.Acquire(), z.Acquire(),…)

» Make tasks request disk, then memory, then…
» Keep from deadlock on freeways around SF by requiring everyone to go clockwise

Lec 13.402/29/2024 Kubiatowicz CS162 © UCB Spring 2024

Request Resources Atomically (1)

Thread A:
x.Acquire();
y.Acquire();
…
y.Release();
x.Release();

Thread B:
y.Acquire();
x.Acquire();
…
x.Release();
y.Release();

Consider instead:
Thread A:
Acquire_both(x, y);
…
y.Release();
x.Release();

Thread B:
Acquire_both(y, x);
…
x.Release();
y.Release();

Rather than:

Lec 13.412/29/2024 Kubiatowicz CS162 © UCB Spring 2024

Request Resources Atomically (2)

Thread A
z.Acquire();
x.Acquire();
y.Acquire();
z.Release();
…
y.Release();
x.Release();

Thread B
z.Acquire();
y.Acquire();
x.Acquire();
z.Release();
…
x.Release();
y.Release();

Or consider this:

Lec 13.422/29/2024 Kubiatowicz CS162 © UCB Spring 2024

Acquire Resources in Consistent Order

Thread A:
x.Acquire();
y.Acquire();
…
y.Release();
x.Release();

Thread B:
y.Acquire();
x.Acquire();
…
x.Release();
y.Release();

Consider instead:
Thread A:
x.Acquire();
y.Acquire();
…
y.Release();
x.Release();

Thread B:
x.Acquire();
y.Acquire();
…
x.Release();
y.Release();

Does it matter in
which order the
locks are released?

Rather than:

Lec 13.432/29/2024 Kubiatowicz CS162 © UCB Spring 2024

Train Example (Wormhole-Routed Network)
• Circular dependency (Deadlock!)

– Each train wants to turn right, but is blocked by other trains
• Similar problem to multiprocessor networks

– Wormhole-Routed Network: Messages trail through network like a “worm”
• Fix? Imagine grid extends in all four directions

– Force ordering of channels (tracks)
» Protocol: Always go east-west first, then north-south

– Called “dimension ordering” (X then Y)

Lec 13.442/29/2024 Kubiatowicz CS162 © UCB Spring 2024

Techniques for Recovering from Deadlock
• Terminate thread, force it to give up resources

– In Bridge example, Godzilla picks up a car, hurls it into the river. Deadlock solved!
– Hold dining lawyer in contempt and take away in handcuffs
– But, not always possible – killing a thread holding a mutex leaves world inconsistent

• Preempt resources without killing off thread
– Take away resources from thread temporarily
– Doesn’t always fit with semantics of computation

• Roll back actions of deadlocked threads
– Hit the rewind button on TiVo, pretend last few minutes never happened
– For bridge example, make one car roll backwards (may require others behind him)
– Common technique in databases (transactions)
– Of course, if you restart in exactly the same way, may reenter deadlock once again

• Many operating systems use other options

Lec 13.452/29/2024 Kubiatowicz CS162 © UCB Spring 2024

Another view of virtual memory: Pre-empting Resources

• Before: With virtual memory we have “infinite” space so everything will just
succeed, thus above example won’t deadlock

– Of course, it isn’t actually infinite, but certainly larger than 2MB!

• Alternative view: we are “pre-empting” memory when paging out to disk,
and giving it back when paging back in

– This works because thread can’t use memory when paged out

Thread A:
AllocateOrWait(1 MB)
AllocateOrWait(1 MB)
Free(1 MB)
Free(1 MB)

Thread B:
AllocateOrWait(1 MB)
AllocateOrWait(1 MB)
Free(1 MB)
Free(1 MB)

Lec 13.462/29/2024 Kubiatowicz CS162 © UCB Spring 2024

Thread A:
x.Acquire();
y.Acquire();
…
y.Release();
x.Release();

Thread B:
y.Acquire();
x.Acquire();
…
x.Release();
y.Release();

Techniques for Deadlock Avoidance
• Idea: When a thread requests a resource, OS checks if it

would result in deadlock
– If not, it grants the resource right away
– If so, it waits for other threads to release resources

• Example:

Wait?
But it’s already too late…

Blocks…

Lec 13.472/29/2024 Kubiatowicz CS162 © UCB Spring 2024

Deadlock Avoidance: Three States

• Safe state
– System can delay resource acquisition to prevent deadlock

• Unsafe state
– No deadlock yet…
– But threads can request resources in a pattern that unavoidably leads

to deadlock

• Deadlocked state
– There exists a deadlock in the system
– Also considered “unsafe”

Deadlock avoidance: prevent system
from reaching an unsafe state

Lec 13.482/29/2024 Kubiatowicz CS162 © UCB Spring 2024

Deadlock Avoidance
• Idea: When a thread requests a resource, OS checks if

it would result in deadlock an unsafe state
– If not, it grants the resource right away
– If so, it waits for other threads to release resources

• Example:

Wait until
Thread A
releases
mutex X

Thread A:
x.Acquire();
y.Acquire();
…
y.Release();
x.Release();

Thread B:
y.Acquire();
x.Acquire();
…
x.Release();
y.Release();

Lec 13.492/29/2024 Kubiatowicz CS162 © UCB Spring 2024

Banker’s Algorithm for Avoiding Deadlock
• Toward right idea:

– State maximum (max) resource needs in advance
– Allow particular thread to proceed if:

(available resources - #requested) max
remaining that might be needed by any thread

• Banker’s algorithm (less conservative):
– Allocate resources dynamically

» Evaluate each request and grant if some
ordering of threads is still deadlock free afterward

» Technique: pretend each request is granted, then run deadlock detection
algorithm, substituting:

([Maxnode]-[Allocnode] <= [Avail]) for ([Requestnode] <= [Avail])
Grant request if result is deadlock free (conservative!)

Lec 13.502/29/2024 Kubiatowicz CS162 © UCB Spring 2024

Banker’s Algorithm for Avoiding Deadlock
• Toward right idea:

– State maximum (max) resource needs in advance
– Allow particular thread to proceed if:

(available resources - #requested) max
remaining that might be needed by any thread

• Banker’s algorithm (less conservative):
– Allocate resources dynamically

» Evaluate each request and grant if some
ordering of threads is still deadlock free afterward

» Technique: pretend each request is granted, then run deadlock detection
algorithm, substituting:

([Maxnode]-[Allocnode] <= [Avail]) for ([Requestnode] <= [Avail])
Grant request if result is deadlock free (conservative!)

[Avail] = [FreeResources]
Add all nodes to UNFINISHED
do {

done = true
Foreach node in UNFINISHED {

if ([Requestnode] <= [Avail]) {
remove node from UNFINISHED
[Avail] = [Avail] + [Allocnode]
done = false

}
}

} until(done)

Lec 13.512/29/2024 Kubiatowicz CS162 © UCB Spring 2024

Banker’s Algorithm for Avoiding Deadlock
• Toward right idea:

– State maximum (max) resource needs in advance
– Allow particular thread to proceed if:

(available resources - #requested) max
remaining that might be needed by any thread

• Banker’s algorithm (less conservative):
– Allocate resources dynamically

» Evaluate each request and grant if some
ordering of threads is still deadlock free afterward

» Technique: pretend each request is granted, then run deadlock detection
algorithm, substituting:

([Maxnode]-[Allocnode] <= [Avail]) for ([Requestnode] <= [Avail])
Grant request if result is deadlock free (conservative!)

[Avail] = [FreeResources]
Add all nodes to UNFINISHED
do {

done = true
Foreach node in UNFINISHED {

if ([Maxnode]‐[Allocnode] <= [Avail]) {
remove node from UNFINISHED
[Avail] = [Avail] + [Allocnode]
done = false

}
}

} until(done)

Lec 13.522/29/2024 Kubiatowicz CS162 © UCB Spring 2024

Banker’s Algorithm for Avoiding Deadlock
• Toward right idea:

– State maximum (max) resource needs in advance
– Allow particular thread to proceed if:

(available resources - #requested) max
remaining that might be needed by any thread

• Banker’s algorithm (less conservative):
– Allocate resources dynamically

» Evaluate each request and grant if some
ordering of threads is still deadlock free afterward

» Technique: pretend each request is granted, then run deadlock detection
algorithm, substituting:

([Maxnode]-[Allocnode] <= [Avail]) for ([Requestnode] <= [Avail])
Grant request if result is deadlock free (conservative!)

– Keeps system in a “SAFE” state: there exists a sequence {T1, T2, … Tn} with T1
requesting all remaining resources, finishing, then T2 requesting all remaining
resources, etc..

Lec 13.532/29/2024 Kubiatowicz CS162 © UCB Spring 2024

Banker’s Algorithm Example
• Banker’s algorithm with dining lawyers

– “Safe” (won’t cause deadlock) if when try to
grab chopstick either:

» Not last chopstick
» Is last chopstick but someone will have

two afterwards

– What if k-handed lawyers? Don’t allow if:
» It’s the last one, no one would have k
» It’s 2nd to last, and no one would have k-1
» It’s 3rd to last, and no one would have k-2
» …

Lec 13.542/29/2024 Kubiatowicz CS162 © UCB Spring 2024

Conclusion
• Proportional Share Scheduling (Lottery Scheduling, Stride Scheduling CFS)

– Give each job a share of the CPU according to its priority
– Low-priority jobs get to run less often
– But all jobs can at least make progress (no starvation)

• Four conditions for deadlocks
– Mutual exclusion
– Hold and wait
– No preemption
– Circular wait

• Techniques for addressing Deadlock
– Deadlock prevention:

» write your code in a way that it isn’t prone to deadlock
– Deadlock recovery:

» let deadlock happen, and then figure out how to recover from it
– Deadlock avoidance:

» dynamically delay resource requests so deadlock doesn’t happen
» Banker’s Algorithm provides on algorithmic way to do this

– Deadlock denial:
» ignore the possibility of deadlock

