CS 162 Project 2

Tasks / User threads / Pthread library

Pthread library

TABLE OF CONTENTS
T Threading

2 User-level synchronization

Threading

A subset of the pthread (Pintos thread) library is provided for you in 1ib/user/pthread.h. These
functions serve as the glue between the high-level API of pthread_create, pthread_exit, and
pthread_join and the low-level system call implementation of these functions. We'll walk you through
how the pthread library works by starting at the high-level usage in one of our tests, and walk down
the stack until we get to the kernel syscall interface.

The test we will walk through is tests/userprog/multithreading/create-simple.c.

In the create-simple test, we see how the high-level API of the threading library is supposed to work.
The main thread of the process first runs test_main. It then creates a new thread to run
thread_function with the pthread_check_create call, and waits for that thread to finish with the
pthread_check_join. The expected output of this test is shown in tests/userprog/multithreading/create-

simple.ck.

The functions pthread_check_create and pthread_check_join are simple wrappers (defined in
tests/1ib.c) around the “real” functions, pthread_create and pthread_join, that take in roughly the
same values and return the same values as pthread_create and pthread_join, and ensure that

pthread_create and pthread_join did not fail. The APIs for pthread_create and pthread_join are:
®* tid_t pthread_create(pthread_fun fun, void* arg)

A pthread_fun is simply a pointer to a function that takes in an arbitrary void* argument, and
returns nothing. This is defined in user/1ib/pthread.h. So, the arguments to pthread_create are a
function to run, as well as an argument to give that function. This function creates a new child
thread to run the pthread_fun with argument arg. This function returns to the parent thread the

TID of the child thread, or TIp_ERROR if the thread could not be created successfully.

® bool pthread_join(tid_t tid)



The caller of this function waits until the thread with TID tid finishes executing. This function

returns true if tid was valid.

The implementation of pthread_create and pthread_join are in the file 1ib/user/pthread.c. They each

are simple wrappers around the functions sys_pthread_create and sys_pthread_join, which are syscalls

for the OS that you will be required to implement. Their APIs are similar to pthread_create and

pthread_join, and are as follows:

tid_t sys_pthread_create(stub_fun sfun, pthread_fun tfun, const void* arg)

The sys_pthread_create function creates a new thread to run stub_fun sfun, and gives it as
arguments a pthread_fun and a void* pointer, which is intended to be the argument of the
pthread_fun . It returns to the parent the TID of the created thread, or T1p_eRRoR if the thread could
not be created.

What is a stub function? There is only one stub function that we are concerned with here, called
_pthread_start_stub defined in 1ib/user/pthread.c, and its implementation is copied below. This
function returns nothing but takes two arguments: a function to run, and an argument for that
function. The stub function runs the function on the argument, then calls pthread_exit() .

pthread_exit() is a system call that simply kills the current user thread.

/* 0S jumps to this function when a new thread is created.

0S is required to setup the stack for this function and

set %eip to point to the start of this function */

void _pthread_start_stub(pthread_fun fun, void* arg) {
(*fun)(arg); // Invoke the thread function

pthread_exit(); // Call pthread_exit

Why this extra layer of indirection? You might have noticed in tests/userprog/multithreading/create-
simple.c that pthread_exit() was never called; instead, as soon as the created thread returns from
thread_function, it is presumed to have been killed. The stub function is how this is implemented:
the OS actually jumps to _pthread_start_stub instead of directly jumping to thread_function when
the new thread is created. The stub function then calls thread_function. Then, when

thread_function returns, it returns back into _pthread_start_stub. Then, the implementation of

_pthread_start_stub kills the thread by calling pthread_exit() .

tid_t sys_pthread_join(tid_t tid)



The caller of this function waits until the thread with TID tid finishes executing. This function

returns the TID of the child it waited on, or TIp_ERROR if it was invalid to wait on that child.
®* void sys_pthread_exit(void) NO_RETURN
This function terminates the calling thread. The function pthread_exit simply calls this function.

The functions sys_pthread_create, sys_pthread_join, and sys_pthread_exit are system calls that you are
required to implement for this project. They have slightly different APIs than the high level
pthread_create, pthread_join, and pthread_exit functions defined in lib/user/pthread.h, but are
fundamentally very similar. We have set up the user-side of the syscall interface for you in
lib/syscall-nr.h, lib/user/syscall.c, and lib/user/syscall.h, and it is your job to implement these

system calls in userprog/ in the kernel.

User-level synchronization

Our pthread library also provides an interface to user-level synchronization primitives. See
lib/user/syscall.h. We define the primitives lock_t and sema_t to represent locks and semaphores in
user programs. A lock_t (Or sema_t)is a char because we only require processes to support up to
28 locks and 2”8 semaphores, and a char is 1 byte or 8 bits. A lock_t (or sema_t) is thus an
identifier for the underlying struct lock (Or struct semaphore) kernel-level synchronization primitive
that the user-level is tied to. You can change these definitions if you'd like, but we found the current

definitions sufficient for our implementation. We provide the following syscall stubs:

® bool lock_init(lock_t* lock)

Initializes 1lock by registering it with the kernel, and returns true if the initialization was
successful. In tests/1ib.c, you will see we define 1ock_check_init, which is analogous to

pthread_check_create and pthread_check_join; it simply verifies that the initialization was successful.

You do not have to handle the case where 1ock_init is called on the same pointer multiple times;
you can assume that the result of doing so is undefined behavior. However, 1ock_init should still
create a new lock even if the pointer points to the same value that an earlier argument to the

syscall pointed to (as the value is usually unitialized garbage).
* void lock_acquire(lock_t* lock)

Acquires 1ock and exits the process if acquisition failed. The syscall implementation of
lock_acquire should return a boolean as to whether acquisition failed; the user level

implementation of lock_acquire in lib/user/syscall.c handles termination of the process. You



should not update the 1ock_acquire (or for that matter, any of the below functions) code in

lib/user/syscall.c to remove the exit call; it will simply make debugging more difficult.
® void lock_release(lock_t* lock)

Releases lock, and exits the process if the release failed. The syscall implementation of
lock_release should return a boolean as to whether release failed.

® bool sema_init(sema_t* sema, int val)

Initializes sema to val by registering it with the kernel, and returns true if the initialization was
successful. In tests/1ib.c, you will see we define sema_check_init, which is analogous to

pthread_check_create and pthread_check_join; it simply verifies that the initialization was successful.

You do not have to handle the case where sema_init is called on the same argument multiple
times; you can assume that the result of doing so is undefined behavior. However, sema_init
should still create a new semaphore even if the pointer points to the same value that an earlier
argument to the syscall pointed to (as the value is usually unitialized garbage).

* void sema_down(sema_t* sema)

Downs sema and exits the process if the down operation failed. The syscall implementation of

sema_down Should return a boolean as to whether the down operation failed.
°* void sema_up(sema_t* sema)

Ups sema, and exits the process if the up operation failed. The syscall implementation of sema_up

should return a boolean as to whether the up operation failed.

Copyright © 2022 CS 162 staff.



