Discussion b: Starvation

March 1, 2024

Contents

1 Starvation
1.1 Concept Check e
1.2 Simple Priority Scheduler
1.3 Banker’s Algorithm

CS 162 Spring 2024 Discussion 5 Starvation

1 Starvation

When designing scheduling policies, it’s important to prevent starvation, a situation where a thread fails
to make progress for an indefinite period of time. If a scheduling policy never runs a particular thread on
the CPU, the thread will starve. Threads can also starve if they wait for each other or are spinning in a way
that will never be resolved.

Strict Priority

A strict priority scheduler schedules the task with the highest priority. If multiple tasks have the same
priority, they can be scheduled in some RR fashion. This ensures that important tasks get to run first but
doesn’t maintain fairness. Evidently, a strict priority scheduler suffers from starvation for lower priority
threads.

Priority Inversion

With a priority scheduler (e.g. strict priority), priority inversion can become a problem where a higher
priority task is blocked waiting on a lower priority task. As a result, a medium priority task (in between the
higher and lower priority) will be run by the scheduler, resulting in the medium priority task starving the
higher priority task. A common example of this is when a higher priority task tries to acquire a mutex that
the lower priority task already holds.

To address priority inversion, the scheduler can use priority donation where the lower priority task is
temporarily granted the same priority as the higher priority task, so it can run. In this scenario, the lower
priority thread is said to have an effective priority of the higher priority task. Once the higher priority
task is no longer blocked on the lower priority task, the scheduler would demote it back to its base priority.

Lottery

A lottery scheduler gives each task some number of lottery tickets. At each time slice, a random ticket
is drawn, and the task holding that ticket is granted the resource. On expectation, the time each task is
allocated the resource for will be proportional to the number of tickets it holds.

Ticket numbers can be assigned in a variety of schemes. For instance, the scheduler could approximate SRTF
by giving more tickets to shorter jobs and less tickets to longer jobs. Essentially, the number of tickets serve
as a measure of priority in some sense. To avoid starvation, it’s important to make sure that every job gets
at least one ticket.

Stride

A stride scheduler is a deterministic version of a lottery scheduler. Like a lottery scheduler, the stride
scheduler gives each task some number of tickets. Then, each task is defined a stride which is inversely
proportional to the number of tickets. Typically, this is calculated as W/n; where W is a really big number
and n; is the number of tickets given to task 1.

On every time slice, the task with the lowest pass is chosen. All tasks start with pass equal to 0. When
a task is chosen, its pass is incremented by its stride. Hence, a smaller stride will allow a task to run more
often.

Linux Completely Fair Scheduler (CFS)

The Linux Completely Fair Scheduler (CFS) aims to give each task an equal share of the CPU by
giving an illusion that each task executes simultaneously on 1/n of the CPU. Since hardware needs to give
out CPU in full time slices, the scheduler will track CPU time per task and schedule tasks to match up the
average rate of execution. When choosing a task to run, the thread with minimum CPU time will be chosen.
To accomplish this efficiently, a heap like scheduling queue is used for efficient (logarithmic with respect to
number of tasks) popping and pushing operations.

CS 162 Spring 2024 Discussion 5 Starvation

Deadlock

Deadlock is a situation where there is a cycle of waiting among a set of threads, where each thread waits
for some other thread in the cycle to take some action. Deadlock is a special form of starvation but has a
stronger condition since starvation can end but deadlock cannot.

There are four necessary but not sufficient conditions for a deadlock to occur. Eliminating any one of these
will eliminate the possibility of a deadlock.

Mutual Exclusion and Bounded Resources
Finite number of threads (usually one) can simultaneously use a resource.

Hold and Wait
Thread holds one resource while waiting to acquire additional resources held by other threads.

No Preemption
Once a thread acquires a resource, its ownership cannot be revoked until the thread acts to release it.

Circular Waiting
There exists a set of waiting threads such that each thread is waiting for a resource held by another.

Detection

The following is a deadlock detection algorithm.

Require:
available, array of how much of each resource is available
alloc, 2D array where the i-th element is how many of each resource thread i currently holds.
request, 2D array where the i-th element is the how many of each of resource thread i is requesting.

unfinished <« all threads
done <« false
while done is false do
done + true
for thread in unfinished do
if request[thread] < available then
remove thread from unfinished
available «+ available 4 alloc[thread]
done « false
end if
end for
end while

When the algorithm finishes, the system is said to be deadlocked if there are threads left in unfinished.

Handling
There are four main ways a system can handle a deadlock.

Denial
Pretend deadlock is not a problem (i.e. ostrich algorithm). This is usually effective when deadlocks
are uncommon. In the rare times when deadlocks do occur, the system is usually restarted.

Prevention
Write systems that don’t result in deadlock. This typically involves eliminating one of the four necessary
conditions. Infinite resources could eliminate the bounded resources problem. While not possible for all
types of resources, an illusion of infinite resources typically suffices (e.g. virtual memory). No sharing
of resources can eliminate mutual exclusion, but totally independent threads are not very realistic and
defeats the purpose of using threads. Forcing all threads to request resources in a particular order
can also be useful and typically done in many scenarios, but it does require careful coding practices.

CS 162 Spring 2024 Discussion 5 Starvation

Threads could also be forced to not wait and instead keep trying until a successful acquisition of a
resource, which is quite inefficient.

Recovery
Let deadlock happen, and recover from it afterwards. A simple and intuitive approach may be to
terminate a thread, forcing it to give up its resources. However, this isn’t always possible since killing
a thread holding a mutex leaves the system in an inconsistent state. The system could also try to
take away resources from the thread temporarily, but that may be difficult to fit the semantics of
computation. A more general technique is to roll back actions of deadlocked threads. However, this is
also prone to deadlock in the same way again if threads are executed in the same order.

Avoidance

Dynamically delay resource requests, so deadlock doesn’t happen. The first idea that comes to mind is
to check if a resource request would result in a deadlock when a thread requests a resource. However,
this may be too late as the system may already be in a unsafe state where there isn’t a deadlock
yet but there is potential for a pattern of resource requests that unavoidably leads to deadlock. The
system must always be kept in a safe state where the system can delay resource acquisition requests
to prevent deadlock. As a result, the system needs to check if a resource request would result in an
unsafe state not a deadlocked state.

Banker’s algorithm is a deadlock avoidance technique. A thread states the max amount of each resource
it needs in advance. The conservative approach would be to allow a particular thread to proceed if the
available resources - number requested is at least the max number needed by any other thread. Banker’s
algorithm takes a less conservative route and pretends each request is granted. Then, it runs the deadlock
detection algorithm with an updated condition as seen below.
Require:

available, array of how much of each resource is available

alloc, 2D array where the i-th element is how many of each resource thread i currently holds.

max, 2D array where the i-th element is the max number of resources thread 7 will request.

unfinished < all threads
done « false
while done is false do
done < true
for thread in unfinished do
if max[thread] - alloc[thread] < available then
remove thread from unfinished
available «+ available + alloc[thread]
done <« false
end if
end for
end while

The key idea is that banker’s algorithm determines if threads are able to be scheduled in a way to avoid
deadlock. However, not every execution order has to avoid deadlock.

1.1 Concept Check

1. In what sense is Linux CFS completely fair?

CFS attempt to give all tasks equal access to the CPU.

2. How can you easily implement lottery scheduling?

1

2

4

6

8

9

0

CS 162 Spring 2024 Discussion 5 Starvation

Given that each task is allocated their own set number of tickets totaling N tickets across all
threads, we can select at random a number between 1 through N. This number would fall into
a bin defined by the number of tickets per thread and that thread would then get to run.

3. Is stride scheduling prone to starvation?

No. Stride scheduling tries to achieve proportional shares to the CPU so a thread will eventually
get a chance at running. Concretely, if all other threads’ pass value are strictly increasing, then
even the lowest priority thread will get a chance at running.

4. When using stride scheduling, if a task is more urgent, should it be assigned a larger stride or a smaller
stride?

Smaller stride. Lower stride tasks run more often as their pass value increases at a slower rate.

1.2 Simple Priority Scheduler

Let’s implement a new scheduler in Pintos called the simple priority scheduler (SPS). We will just split
threads into two priorities: high (1) and low (0). High priority threads should always be scheduled before
low priority threads. Turns out we can do this without expensive list operations.

struct thread {

int priority;
struct list_elem elem;

}

struct list ready_list;

void thread_unblock (struct thread *t) {
ASSERT (is_thread(t));

enum intr_level old_level;
old_level = intr_disable();
ASSERT (t->status == THREAD_BLOCKED) ;

if (o ______) A
} else { o
y T

t->status = THREAD_READY;
intr_set_level(old_level);

pintos_sps.c

1. Complete the blanks of thread_unblock to complete implement SPS. Assume that SPS will treat the
ready queue as FIFO. You may ignore any possibilities of preemptions.

If the current thread has a high priority, we place it at the front of the ready queue. Otherwise,
we place it at the back.

CS 162 Spring 2024 Discussion 5 Starvation

| void thread_unblock (struct thread *t) {
> ASSERT(is_thread(t));
3
4 enum intr_level old_level;
5 old_level = intr_disable();
ASSERT (t->status == THREAD_BLOCKED) ;

¢ if (t->priority == 1) {

9 list_push_front(&ready_list, &t->elem);
10 } else {

11 list_push_back(&ready_list, &t->elem);
12 }

14 t->status = THREAD_READY;
15 intr_set_level(old_level);

pintos_sps_sol.c

2. In order for this scheduler to be ”fair” briefly describe when you would make a thread high priority
and when you would make a thread low priority.

Downgrade priority when thread uses up its quanta, upgrade priority when it voluntarily yields,
or gets blocked.

3. If we let the user set the priorities of this scheduler with set_priority, why might this scheduler be
preferable to the normal pintos priority scheduler?

The insert operations are cheaper, and it provides a good approximation to priority scheduling.

4. How can we trade off between the coarse granularity of SPS and the super fine granularity of normal
priority scheduling? Assume we still want a fast insert.

We can have more than 2 priorities but still a small number of fixed priorities, and have a queue
for each priority, and then pop off threads from each queue as necessary.

1.3 Banker’s Algorithm

Suppose we have the following resources: A, B, C and threads T1, T2, T3 and T4. The total number of
each resource as well as the current/max allocations for each thread are as follows:

Total
A|B|C
71819
Current Max

T/R|A|B|C|A|B|C
T1 02|21 4|3]3
T2 2121 31619
T3 31041 3]1]65
T4 11311 313 1|4

1. Is the system in a safe state? If so, show a non-blocking sequence of thread executions.

CS 162 Spring 2024

Discussion 5

Starvation

Yes. To find a safe sequence of executions, we need to first calculate the available resources and
the needed resources for each thread. To find the available resources, we sum up the currently
held resources from each thread and subtract that from the total resources.

Available
Al B|C
1 (1|1

from the maximum they need.

To find the needed resources for each thread, we subtract the resources they currently have

T1

T2

T3

T4

w0

From these, we see that we must run T3 first, as that is the only thread for which all needed
resources are currently available. After T3 runs, it returns its held resources to the resource
pool, so the available resource pool is now as follows.

Available
Al B|C
4 1115

We can now run either T1 or T4, and following the same process, we can arrive at a possible
execution sequence of either 73 - T1 - T4 -T2 or T3 - T4 - T1 — T2.

2. If the total number of C instances is 8 instead of 9, is the system still in a safe state?

Following the same procedure from the previous question, we see that there are 0 instances of
C available at the start of this execution. However, every thread needs at least 1 instance of C
to run, so we are unable to run any threads and thus the system is not in a safe state.

	Starvation
	Concept Check
	Simple Priority Scheduler
	Banker's Algorithm

