
Discussion 5

Starvation

03/01/24

Staff

Announcements

Sunday Monday Tuesday Wednesday Thursday Friday Saturday

Project 2 Release

Homework 3 Due Homework 4 Release Project 2 Design Doc Due

Starvation

Important to prevent starvation, a situation where a thread fails to make

progress for an indefinite period of time.

● Scheduling policy never runs a particular thread on the CPU.

● Threads wait for each other or are spinning in a way that will never

be resolved.

Starvation

Schedules task with highest priority.

● Tasks with same priority can be scheduled in some other fashion (e.g.

RR, FCFS)

Ensures important tasks get to run first.

Can suffer from starvation for lower priority threads.

Priority inversion can occur where a higher priority task is blocked waiting

on a lower priority task.

● Medium priority task (in between higher and lower) will run (i.e.

medium priority starves higher priority).

● Fix with priority donation where lower priority task is temporarily

granted same priority as higher task.

○ Gives lower priority task the same effective priority as the

higher priority task.

○ Once lower priority task is no longer blocking the higher

priority task, the lower priority task returns to its base

priority.

Strict Priority

Task Priority

A 30

B 20

C 10
Owns lock

Tries to acquire
lock

Gives each task some number of lottery tickets

● At each time slice a random ticket is drawn. The task holding that

ticket is granted the resource.

● On expectation, each task uses the resource for a time proportional

to the number of tickets it holds.

Assign ticket numbers in a variety of schemes.

● Approximate SRTF by giving more tickets to shorter jobs and fewer

tickets to longer jobs (i.e. use tickets as a measure of priority).

● Make sure every job gets at least one ticket to avoid starvation.

Lottery

Deterministic version of a lottery scheduler.

● Each task given some number of tickets n
i
.

● Stride is a number inversely proportional to the number of tickets,

typically calculated as W/n
i
 where W is a large number.

On every time slice, task with the lowest pass is chosen.

● Pass is initialized to min(existing tasks’ pass values) when the task

starts.

● When a task is chosen, pass += stride.

● Smaller stride → task runs more often.

Stride

Task Tickets Stride (W = 10000)

A 100 100

B 50 200

C 250 40

Pass

A B C

0 0 0

100 0 0

100 200 0

100 200 40

100 200 80

100 200 120

200 200 120

200 200 160

Aims to give each task an equal share of the CPU.

● Gives illusion that each task executes simultaneously on 1/n of the

CPU.

● Hardware limitations of giving out CPU in full time slices →

scheduler tracks CPU time per task and schedules task to match

average rate of execution.

● When choosing a task to run, choose the one with minimum CPU

time.

○ Efficiently do this using a heap like structure (logarithmic

with respect to number of tasks).

Linux Completely Fair Scheduler (CFS)

Deadlock is a situation where there is a cycle of waiting among a

set of threads, where each thread waits for some other thread in

the cycle to take some action.

● Special form of starvation (stronger condition).

Necessary but not sufficient conditions for deadlock.

● Mutual exclusion and bounded resources: finite number of

threads (usually one) can simultaneously use a resource.

● Hold and wait: thread holds one resource while waiting to

acquire additional resources held by other threads.

● No preemption: once a thread acquires a resource, its

ownership cannot be revoked until the thread acts to

release it.

● Circular waiting: there exists a set of waiting threads such

that each thread is waiting for a resource held by another.

Deadlock

Detection algorithm.

Require:

 available, array of how much of each resource is available

 alloc, 2D array where the i-th element is how many of each resource thread i currently holds.

 request, 2D array where the i-th element is the how many of each of resource thread i is requesting.

 unfinished ← all threads

 done ← false

 while done is false do

 done ← true

 for thread in unfinished do

 if request[thread] ≤ available then

 remove thread from unfinished

 available ← available + alloc[thread]

 done ← false

 end if

 end for

 end while

Deadlock

Four main ways to handle deadlock.

● Denial: pretend deadlock is not a problem (i.e. ostrich algorithm).

● Prevention: write systems that don’t result in deadlock.

○ Prevent one of the necessary conditions for deadlock.

● Recovery: let deadlock happen and recover from it afterwards.

○ Terminate a thread, forcing it to give up resources.

○ Roll back actions (danger of deadlocking in the same way)

● Avoidance: dynamically delay resource requests, so deadlock

doesn’t happen.

○ Check if a resource would result in a deadlock when a

thread requests a resource?

■ Too late since thread might end up in a unsafe state

where there isn’t a deadlock yet but there is

potential for a pattern of resource requests that

unavoidably leads to deadlock.

○ System must always remain in a safe state where the

system can delay resource requests to prevent deadlock.

○ Check for unsafe state (not deadlock) on a request.

Deadlock

Banker’s algorithm.

Require:

 available, array of how much of each resource is available

 alloc, 2D array where the i-th element is how many of each resource thread i currently holds.

 max, 2D array where the i-th element is the max number of resources resource thread i is requesting.

 unfinished ← all threads

 done ← false

 while done is false do

 done ← true

 for thread in unfinished do

 if max[thread] - alloc[thread] ≤ available then

 remove thread from unfinished

 available ← available + alloc[thread]

 done ← false

 end if

 end for

 end while

Deadlock

Deadlock

Total

R1 R2

4 5

Allocated

R1 R2

T1 3 2

T2 0 2

Request

R1 R2

T1 3 5

T2 1 2

Available = Total - Allocated

R1 R2

1 1

Needed = Request - Allocated

R1 R2

T1 0 3

T2 1 0

Is this a safe state?

1. Schedule threads where needed[thread] ≤ available.

2. Release resources when thread is finished.

available += allocated[thread]

3. Repeat.

Deadlock

Total

R1 R2

4 5

Allocated

R1 R2

T1 3 2

T2 0 2

Request

R1 R2

T1 3 5

T2 1 2

Available = Total - Allocated

R1 R2

1 1

Needed = Request - Allocated

R1 R2

T1 0 3

T2 1 0

Is this a safe state?

1. Schedule threads where needed[thread] ≤ available.

2. Release resources when thread is finished.

available += allocated[thread]

3. Repeat.

Schedule T2

Deadlock

Total

R1 R2

4 5

Allocated

R1 R2

T1 3 2

T2 1 2

Request

R1 R2

T1 3 5

T2 1 2

Available = Total - Allocated

R1 R2

0 1

Needed = Request - Allocated

R1 R2

T1 0 3

T2 0 0

Is this a safe state?

1. Schedule threads where needed[thread] ≤ available.

2. Release resources when thread is finished.

available += allocated[thread]

3. Repeat.

T2 is allocated all the resources it needs to run

Deadlock

Total

R1 R2

4 5

Allocated

R1 R2

T1 3 2

T2 0 0

Request

R1 R2

T1 3 5

T2 1 2

Available = Total - Allocated

R1 R2

1 3

Needed = Request - Allocated

R1 R2

T1 0 3

T2 0 0

Is this a safe state?

1. Schedule threads where needed[thread] ≤ available.

2. Release resources when thread is finished.

available += allocated[thread]

3. Repeat.

Release T2’s resources when it finishes

Deadlock

Total

R1 R2

4 5

Allocated

R1 R2

T1 3 2

T2 0 0

Request

R1 R2

T1 3 5

T2 1 2

Available = Total - Allocated

R1 R2

1 3

Needed = Request - Allocated

R1 R2

T1 0 3

T2 0 0

Is this a safe state?

1. Schedule threads where needed[thread] ≤ available.

2. Release resources when thread is finished.

available += allocated[thread]

3. Repeat.

Schedule T1

Deadlock

Total

R1 R2

4 5

Allocated

R1 R2

T1 3 5

T2 0 0

Request

R1 R2

T1 3 5

T2 1 2

Available = Total - Allocated

R1 R2

1 0

Needed = Request - Allocated

R1 R2

T1 0 0

T2 0 0

Is this a safe state?

1. Schedule threads where needed[thread] ≤ available.

2. Release resources when thread is finished.

available += allocated[thread]

3. Repeat.

T1 is allocated all the resources it needs to run

Deadlock

Total

R1 R2

4 5

Allocated

R1 R2

T1 0 0

T2 0 0

Request

R1 R2

T1 3 5

T2 1 2

Available = Total - Allocated

R1 R2

4 5

Needed = Request - Allocated

R1 R2

T1 0 0

T2 0 0

Is this a safe state?

1. Schedule threads where needed[thread] ≤ available.

2. Release resources when thread is finished.

available += allocated[thread]

3. Repeat.

Release T1’s resources when it finishes

Deadlock

Total

R1 R2

4 5

Allocated

R1 R2

T1 3 2

T2 0 2

Request

R1 R2

T1 3 5

T2 2 2

Available = Total - Allocated

R1 R2

1 1

Needed = Request - Allocated

R1 R2

T1 0 3

T2 2 0

Is this a safe state?

1. Schedule threads where needed[thread] ≤ available.

2. Release resources when thread is finished.

available += allocated[thread]

3. Repeat.

What if T2 needed 2 amounts of R1 instead of just 1?

Deadlock

Total

R1 R2

4 5

Allocated

R1 R2

T1 3 2

T2 0 2

Request

R1 R2

T1 3 5

T2 2 2

Available = Total - Allocated

R1 R2

1 1

Needed = Request - Allocated

R1 R2

T1 0 3

T2 2 0

Is this a safe state?

1. Schedule threads where needed[thread] ≤ available.

2. Release resources when thread is finished.

available += allocated[thread]

3. Repeat.

What if T2 needed 2 amounts of R1 instead of just 1?

System is in an unsafe state!

1. In what sense is Linux CFS completely fair?

2. How can you easily implement lottery scheduling?

3. Is stride scheduling prone to starvation?

4. When using stride scheduling, if a task is more urgent, should it be assigned a larger stride or a smaller stride?

Concept Check

1. In what sense is Linux CFS completely fair?

Give all tasks equal access to the CPU.

2. How can you easily implement lottery scheduling?

3. Is stride scheduling prone to starvation?

4. When using stride scheduling, if a task is more urgent, should it be assigned a larger stride or a smaller stride?

Concept Check

1. In what sense is Linux CFS completely fair?

Give all tasks equal access to the CPU.

2. How can you easily implement lottery scheduling?

Select a random number from 1 to N, where N is the total number of tickets.

3. Is stride scheduling prone to starvation?

4. When using stride scheduling, if a task is more urgent, should it be assigned a larger stride or a smaller stride?

Concept Check

1. In what sense is Linux CFS completely fair?

Give all tasks equal access to the CPU.

2. How can you easily implement lottery scheduling?

Select a random number from 1 to N, where N is the total number of tickets.

3. Is stride scheduling prone to starvation?

No. All threads will deterministically run.

4. When using stride scheduling, if a task is more urgent, should it be assigned a larger stride or a smaller stride?

Concept Check

1. In what sense is Linux CFS completely fair?

Give all tasks equal access to the CPU.

2. How can you easily implement lottery scheduling?

Select a random number from 1 to N, where N is the total number of tickets.

3. Is stride scheduling prone to starvation?

No. All threads will deterministically run.

4. When using stride scheduling, if a task is more urgent, should it be assigned a larger stride or a smaller stride?

Smaller stride.

Concept Check

Let’s implement a new scheduler in Pintos called the simple priority

scheduler (SPS). We will just split threads into two priorities: high (1) and low

(0). High priority threads should always be scheduled before low priority

threads. Turns out we can do this without expensive list operations.

struct thread {
 ...
 int priority;
 struct list_elem elem;
 ...
}

struct list ready_list;

void thread_unblock (struct thread *t) {
 ASSERT(is_thread(t));
 enum intr_level old_level;
 old_level = intr_disable();
 ASSERT(t->status == THREAD_BLOCKED);

 if (__________) {
 ____________________;
 } else {
 ____________________;
 }
 t->status = THREAD_READY;
 intr_set_level(old_level);
}

1. Complete the blanks of thread_unblock to implement SPS.

Simple Priority Scheduler

Let’s implement a new scheduler in Pintos called the simple priority

scheduler (SPS). We will just split threads into two priorities: high (1) and low

(0). High priority threads should always be scheduled before low priority

threads. Turns out we can do this without expensive list operations.

struct thread {
 ...
 int priority;
 struct list_elem elem;
 ...
}

struct list ready_list;

void thread_unblock (struct thread *t) {
 ASSERT(is_thread(t));
 enum intr_level old_level;
 old_level = intr_disable();
 ASSERT(t->status == THREAD_BLOCKED);

 if (t->priority == 1) {
 list_push_front(&ready_list, &t->elem);
 } else {
 list_push_back(&ready_list, &t->elem);
 }
 t->status = THREAD_READY;
 intr_set_level(old_level);
}

1. Complete the blanks of thread_unblock to implement SPS.

Simple Priority Scheduler

Let’s implement a new scheduler in Pintos called the simple priority

scheduler (SPS). We will just split threads into two priorities: high (1) and low

(0). High priority threads should always be scheduled before low priority

threads. Turns out we can do this without expensive list operations.

struct thread {
 ...
 int priority;
 struct list_elem elem;
 ...
}

struct list ready_list;

void thread_unblock (struct thread *t) {
 ASSERT(is_thread(t));
 enum intr_level old_level;
 old_level = intr_disable();
 ASSERT(t->status == THREAD_BLOCKED);

 if (t->priority == 1) {
 list_push_front(&ready_list, &t->elem);
 } else {
 list_push_back(&ready_list, &t->elem);
 }
 t->status = THREAD_READY;
 intr_set_level(old_level);
}

2. In order for this scheduler to be “fair”, briefly describe when you

would make a thread high priority and when you would make a

thread low priority.

3. If we let the user set priorities of this scheduler with set_priority,

why might this scheduler be preferable to the normal Pintos priority

scheduler?

4. How can we trade off between the coarse granularity of SPS and the

super fine granularity of normal priority scheduling? Assume we still

want a fast insert.

Simple Priority Scheduler

Let’s implement a new scheduler in Pintos called the simple priority

scheduler (SPS). We will just split threads into two priorities: high (1) and low

(0). High priority threads should always be scheduled before low priority

threads. Turns out we can do this without expensive list operations.

struct thread {
 ...
 int priority;
 struct list_elem elem;
 ...
}

struct list ready_list;

void thread_unblock (struct thread *t) {
 ASSERT(is_thread(t));
 enum intr_level old_level;
 old_level = intr_disable();
 ASSERT(t->status == THREAD_BLOCKED);

 if (t->priority == 1) {
 list_push_front(&ready_list, &t->elem);
 } else {
 list_push_back(&ready_list, &t->elem);
 }
 t->status = THREAD_READY;
 intr_set_level(old_level);
}

2. In order for this scheduler to be “fair”, briefly describe when you

would make a thread high priority and when you would make a

thread low priority.

Downgrade priority when thread uses up its quanta, upgrade

priority when it voluntarily yields/gets blocked.

3. If we let the user set priorities of this scheduler with set_priority,

why might this scheduler be preferable to the normal Pintos priority

scheduler?

4. How can we trade off between the coarse granularity of SPS and the

super fine granularity of normal priority scheduling? Assume we still

want a fast insert.

Simple Priority Scheduler

Let’s implement a new scheduler in Pintos called the simple priority

scheduler (SPS). We will just split threads into two priorities: high (1) and low

(0). High priority threads should always be scheduled before low priority

threads. Turns out we can do this without expensive list operations.

struct thread {
 ...
 int priority;
 struct list_elem elem;
 ...
}

struct list ready_list;

void thread_unblock (struct thread *t) {
 ASSERT(is_thread(t));
 enum intr_level old_level;
 old_level = intr_disable();
 ASSERT(t->status == THREAD_BLOCKED);

 if (t->priority == 1) {
 list_push_front(&ready_list, &t->elem);
 } else {
 list_push_back(&ready_list, &t->elem);
 }
 t->status = THREAD_READY;
 intr_set_level(old_level);
}

2. In order for this scheduler to be “fair”, briefly describe when you

would make a thread high priority and when you would make a

thread low priority.

Downgrade priority when thread uses up its quanta, upgrade

priority when it voluntarily yields/gets blocked.

3. If we let the user set priorities of this scheduler with set_priority,

why might this scheduler be preferable to the normal Pintos priority

scheduler?

Insert operations are cheaper, good approximation to priority

scheduling.

4. How can we trade off between the coarse granularity of SPS and the

super fine granularity of normal priority scheduling? Assume we still

want a fast insert.

Simple Priority Scheduler

Let’s implement a new scheduler in Pintos called the simple priority

scheduler (SPS). We will just split threads into two priorities: high (1) and low

(0). High priority threads should always be scheduled before low priority

threads. Turns out we can do this without expensive list operations.

struct thread {
 ...
 int priority;
 struct list_elem elem;
 ...
}

struct list ready_list;

void thread_unblock (struct thread *t) {
 ASSERT(is_thread(t));
 enum intr_level old_level;
 old_level = intr_disable();
 ASSERT(t->status == THREAD_BLOCKED);

 if (t->priority == 1) {
 list_push_front(&ready_list, &t->elem);
 } else {
 list_push_back(&ready_list, &t->elem);
 }
 t->status = THREAD_READY;
 intr_set_level(old_level);
}

2. In order for this scheduler to be “fair”, briefly describe when you

would make a thread high priority and when you would make a

thread low priority.

Downgrade priority when thread uses up its quanta, upgrade

priority when it voluntarily yields/gets blocked.

3. If we let the user set priorities of this scheduler with set_priority,

why might this scheduler be preferable to the normal Pintos priority

scheduler?

Insert operations are cheaper, good approximation.

4. How can we trade off between the coarse granularity of SPS and the

super fine granularity of normal priority scheduling? Assume we still

want a fast insert.

Have a fixed number of priorities and a queue for each priority.

Simple Priority Scheduler

Suppose we have the following resources: A, B, C and threads T1, T2, T3 and

T4. The total number of each resource as well as the current/max allocations

for each thread are as follows.

1. Is the system in a safe state? If so, show a non-blocking sequence of

thread executions.

Banker’s Algorithm

Current Max Needed

A B C A B C A B C

T1 0 2 2 4 3 3

T2 2 2 1 3 6 9

T3 3 0 4 3 1 5

T4 1 3 1 3 3 4

A B C

Total 7 8 9

Available

Suppose we have the following resources: A, B, C and threads T1, T2, T3 and

T4. The total number of each resource as well as the current/max allocations

for each thread are as follows.

1. Is the system in a safe state? If so, show a non-blocking sequence of

thread executions.

Fill out available and needed tables.

Banker’s Algorithm

Current Max Needed

A B C A B C A B C

T1 0 2 2 4 3 3 4 1 1

T2 2 2 1 3 6 9 1 4 8

T3 3 0 4 3 1 5 0 1 1

T4 1 3 1 3 3 4 2 0 3

A B C

Total 7 8 9

Available 1 1 1

Suppose we have the following resources: A, B, C and threads T1, T2, T3 and

T4. The total number of each resource as well as the current/max allocations

for each thread are as follows.

1. Is the system in a safe state? If so, show a non-blocking sequence of

thread executions.

Banker’s Algorithm

Current Max Needed

A B C A B C A B C

T1 0 2 2 4 3 3 4 1 1

T2 2 2 1 3 6 9 1 4 8

T3 3 0 4 3 1 5 0 1 1

T4 1 3 1 3 3 4 2 0 3

A B C

Total 7 8 9

Available 1 1 1

1. Schedule threads where needed[thread] ≤ available.

2. Release resources when thread is finished.

available += allocated[thread]

3. Repeat.

Execution Order:

Suppose we have the following resources: A, B, C and threads T1, T2, T3 and

T4. The total number of each resource as well as the current/max allocations

for each thread are as follows.

1. Is the system in a safe state? If so, show a non-blocking sequence of

thread executions.

Banker’s Algorithm

Current Max Needed

A B C A B C A B C

T1 0 2 2 4 3 3 4 1 1

T2 2 2 1 3 6 9 1 4 8

T3 3 0 4 3 1 5 0 1 1

T4 1 3 1 3 3 4 2 0 3

A B C

Total 7 8 9

Available 1 1 1

1. Schedule threads where needed[thread] ≤ available.

2. Release resources when thread is finished.

available += allocated[thread]

3. Repeat.

Execution Order:

Suppose we have the following resources: A, B, C and threads T1, T2, T3 and

T4. The total number of each resource as well as the current/max allocations

for each thread are as follows.

1. Is the system in a safe state? If so, show a non-blocking sequence of

thread executions.

Banker’s Algorithm

Current Max Needed

A B C A B C A B C

T1 0 2 2 4 3 3 4 1 1

T2 2 2 1 3 6 9 1 4 8

T3 0 0 0 3 1 5 0 0 0

T4 1 3 1 3 3 4 2 0 3

A B C

Total 7 8 9

Available 4 1 5

1. Schedule threads where needed[thread] ≤ available.

2. Release resources when thread is finished.

available += allocated[thread]

3. Repeat.

Execution Order: T3

Suppose we have the following resources: A, B, C and threads T1, T2, T3 and

T4. The total number of each resource as well as the current/max allocations

for each thread are as follows.

1. Is the system in a safe state? If so, show a non-blocking sequence of

thread executions.

Banker’s Algorithm

Current Max Needed

A B C A B C A B C

T1 0 2 2 4 3 3 4 1 1

T2 2 2 1 3 6 9 1 4 8

T3 0 0 0 3 1 5 0 0 0

T4 1 3 1 3 3 4 2 0 3

A B C

Total 7 8 9

Available 4 1 5

1. Schedule threads where needed[thread] ≤ available.

2. Release resources when thread is finished.

available += allocated[thread]

3. Repeat.

Execution Order: T3

Suppose we have the following resources: A, B, C and threads T1, T2, T3 and

T4. The total number of each resource as well as the current/max allocations

for each thread are as follows.

1. Is the system in a safe state? If so, show a non-blocking sequence of

thread executions.

Banker’s Algorithm

Current Max Needed

A B C A B C A B C

T1 0 0 0 4 3 3 0 0 0

T2 2 2 1 3 6 9 1 4 8

T3 0 0 0 3 1 5 0 0 0

T4 1 3 1 3 3 4 2 0 3

A B C

Total 7 8 9

Available 4 3 7

1. Schedule threads where needed[thread] ≤ available.

2. Release resources when thread is finished.

available += allocated[thread]

3. Repeat.

Execution Order: T3, T1

Suppose we have the following resources: A, B, C and threads T1, T2, T3 and

T4. The total number of each resource as well as the current/max allocations

for each thread are as follows.

1. Is the system in a safe state? If so, show a non-blocking sequence of

thread executions.

Banker’s Algorithm

Current Max Needed

A B C A B C A B C

T1 0 0 0 4 3 3 0 0 0

T2 2 2 1 3 6 9 1 4 8

T3 0 0 0 3 1 5 0 0 0

T4 1 3 1 3 3 4 2 0 3

A B C

Total 7 8 9

Available 4 3 7

1. Schedule threads where needed[thread] ≤ available.

2. Release resources when thread is finished.

available += allocated[thread]

3. Repeat.

Execution Order: T3, T1

Suppose we have the following resources: A, B, C and threads T1, T2, T3 and

T4. The total number of each resource as well as the current/max allocations

for each thread are as follows.

1. Is the system in a safe state? If so, show a non-blocking sequence of

thread executions.

Banker’s Algorithm

Current Max Needed

A B C A B C A B C

T1 0 0 0 4 3 3 0 0 0

T2 2 2 1 3 6 9 1 4 8

T3 0 0 0 3 1 5 0 0 0

T4 0 0 0 3 3 4 0 0 0

A B C

Total 7 8 9

Available 5 6 8

1. Schedule threads where needed[thread] ≤ available.

2. Release resources when thread is finished.

available += allocated[thread]

3. Repeat.

Execution Order: T3, T1, T4

Suppose we have the following resources: A, B, C and threads T1, T2, T3 and

T4. The total number of each resource as well as the current/max allocations

for each thread are as follows.

1. Is the system in a safe state? If so, show a non-blocking sequence of

thread executions.

Banker’s Algorithm

Current Max Needed

A B C A B C A B C

T1 0 0 0 4 3 3 0 0 0

T2 2 2 1 3 6 9 1 4 8

T3 0 0 0 3 1 5 0 0 0

T4 0 0 0 3 3 4 0 0 0

A B C

Total 7 8 9

Available 5 6 8

1. Schedule threads where needed[thread] ≤ available.

2. Release resources when thread is finished.

available += allocated[thread]

3. Repeat.

Execution Order: T3, T1, T4

Suppose we have the following resources: A, B, C and threads T1, T2, T3 and

T4. The total number of each resource as well as the current/max allocations

for each thread are as follows.

1. Is the system in a safe state? If so, show a non-blocking sequence of

thread executions.

Banker’s Algorithm

Current Max Needed

A B C A B C A B C

T1 0 0 0 4 3 3 0 0 0

T2 0 0 0 3 6 9 0 0 0

T3 0 0 0 3 1 5 0 0 0

T4 0 0 0 3 3 4 0 0 0

A B C

Total 7 8 9

Available 7 8 9

1. Schedule threads where needed[thread] ≤ available.

2. Release resources when thread is finished.

available += allocated[thread]

3. Repeat.

Execution Order: T3, T1, T4, T2

Suppose we have the following resources: A, B, C and threads T1, T2, T3 and

T4. The total number of each resource as well as the current/max allocations

for each thread are as follows.

2. If the total number of C instances is 8 instead of 9, is the system still

in a safe state?

Banker’s Algorithm

Current Max Needed

A B C A B C A B C

T1 0 2 2 4 3 3 4 1 1

T2 2 2 1 3 6 9 1 4 8

T3 3 0 4 3 1 5 0 1 1

T4 1 3 1 3 3 4 2 0 3

A B C

Total 7 8 8

Available

Suppose we have the following resources: A, B, C and threads T1, T2, T3 and

T4. The total number of each resource as well as the current/max allocations

for each thread are as follows.

2. If the total number of C instances is 8 instead of 9, is the system still

in a safe state?

Banker’s Algorithm

Current Max Needed

A B C A B C A B C

T1 0 2 2 4 3 3 4 1 1

T2 2 2 1 3 6 9 1 4 8

T3 3 0 4 3 1 5 0 1 1

T4 1 3 1 3 3 4 2 0 3

A B C

Total 7 8 8

Available 1 1 0

Suppose we have the following resources: A, B, C and threads T1, T2, T3 and

T4. The total number of each resource as well as the current/max allocations

for each thread are as follows.

2. If the total number of C instances is 8 instead of 9, is the system still

in a safe state?

Unsafe state since no thread is able to run.

Banker’s Algorithm

Current Max Needed

A B C A B C A B C

T1 0 2 2 4 3 3 4 1 1

T2 2 2 1 3 6 9 1 4 8

T3 3 0 4 3 1 5 0 1 1

T4 1 3 1 3 3 4 2 0 3

A B C

Total 7 8 8

Available 1 1 0

