
CS162
Operating Systems and
Systems Programming

Lecture 14

Memory 1: Virtual Memory,
Segments and Page Tables

March 5th, 2024
Prof. John Kubiatowicz

http://cs162.eecs.Berkeley.edu

Lec 14.23/5/2024 Kubiatowicz CS162 © UCB Spring 2024

Recall: Four requirements for occurrence of Deadlock
• Mutual exclusion

– Only one thread at a time can use a resource.
• Hold and wait

– Thread holding at least one resource is waiting to acquire additional
resources held by other threads

• No preemption
– Resources are released only voluntarily by the thread holding the

resource, after thread is finished with it
• Circular wait

– There exists a set {T1, …, Tn} of waiting threads
» T1 is waiting for a resource that is held by T2
» T2 is waiting for a resource that is held by T3
» …
» Tn is waiting for a resource that is held by T1

Lec 14.33/5/2024 Kubiatowicz CS162 © UCB Spring 2024

Recall: Banker’s Algorithm for Avoiding Deadlock
• Toward right idea:

– State maximum (max) resource needs in advance
– Allow particular thread to proceed if:

(available resources - #requested)  max remaining that might be needed by any thread

• Banker’s algorithm (less conservative):
– Allocate resources dynamically

» Evaluate each request and grant if some
ordering of threads is still deadlock free afterward

» Technique: pretend each request is granted, then run deadlock
detection algorithm, substituting:

([Maxnode]-[Allocnode] <= [Avail]) for ([Requestnode] <= [Avail])

– Grant request if won’t prevent some thread from allocating its maximum and finshing

• Keeps system in a “SAFE” state:
– There exists a sequence {T1, T2, … Tn} with T1 requesting all remaining resources,

finishing, then T2 requesting all remaining resources, etc..

Lec 14.43/5/2024 Kubiatowicz CS162 © UCB Spring 2024

Recall: Banker’s Algorithm Example
• Banker’s algorithm with dining lawyers

– “Safe” (won’t cause deadlock) if when try to
grab chopstick either:

» Not last chopstick
» Is last chopstick but someone will have

two afterwards

– What if k-handed lawyers? Don’t allow if:
» It’s the last one, no one would have k
» It’s 2nd to last, and no one would have k-1
» It’s 3rd to last, and no one would have k-2
» …

Lec 14.53/5/2024 Kubiatowicz CS162 © UCB Spring 2024

Virtualizing Resources

• Physical Reality:
Different Processes/Threads share the same hardware

– Need to multiplex CPU (Just finished: scheduling)
– Need to multiplex use of Memory (starting today)
– Need to multiplex disk and devices (later in term)

• Why worry about memory sharing?
– The complete working state of a process and/or kernel is defined by its data in

memory (and registers)
– Consequently, cannot just let different threads of control use the same memory

» Physics: two different pieces of data cannot occupy the same locations in memory
– Probably don’t want different threads to even have access to each other’s memory if

in different processes (protection)

Lec 14.63/5/2024 Kubiatowicz CS162 © UCB Spring 2024

Important Aspects of Memory Multiplexing
• Protection:

– Prevent access to private memory of other processes
» Different pages of memory can be given special behavior (Read Only, Invisible to

user programs, etc).
» Kernel data protected from User programs
» Programs protected from themselves

• Translation:
– Ability to translate accesses from one address space (virtual) to a different one

(physical)
– When translation exists, processor uses virtual addresses, physical memory

uses physical addresses
– Side effects:

» Can be used to avoid overlap
» Can be used to give uniform view of memory to programs

• Controlled overlap:
– Separate state of threads should not collide in physical memory. Obviously,

unexpected overlap causes chaos!
– Conversely, would like the ability to overlap when desired (for communication)

Lec 14.73/5/2024 Kubiatowicz CS162 © UCB Spring 2024

Alternative View: Interposing on Process Behavior
• OS interposes on process’ I/O operations

– How? All I/O happens via syscalls.

• OS interposes on process’ CPU usage
– How? Interrupt lets OS preempt current thread

• Question: How can the OS interpose on process’ memory accesses?
– Too slow for the OS to interpose every memory access
– Translation: hardware support to accelerate the common case
– Page fault: uncommon cases trap to the OS to handle

Lec 14.83/5/2024 Kubiatowicz CS162 © UCB Spring 2024

Recall: Four Fundamental OS Concepts
• Thread: Execution Context

– Fully describes program state
– Program Counter, Registers, Execution Flags, Stack

• Address space (with or w/o translation)
– Set of memory addresses accessible to program (for read or write)
– May be distinct from memory space of the physical machine

(in which case programs operate in a virtual address space)
• Process: an instance of a running program

– Protected Address Space + One or more Threads
• Dual mode operation / Protection

– Only the “system” has the ability to access certain resources
– Combined with translation, isolates programs from each other and

the OS from programs

Lec 14.93/5/2024 Kubiatowicz CS162 © UCB Spring 2024

THE BASICS: Address/Address Space

• What is 210 bytes (where a byte is appreviated as “B”)?
– 210 B = 1024B = 1 KB (for memory, 1K = 1024, not 1000)

• How many bits to address each byte of 4KB page?
– 4KB = 4×1KB = 4× 210= 212 12 bits

• How much memory can be addressed with 20 bits? 32 bits? 64 bits?
– Use 2k

k bits

Address:

Address Space:

2k “things”
“Things” here usually
means “bytes” (8 bits)

Lec 14.103/5/2024 Kubiatowicz CS162 © UCB Spring 2024

Address Space, Process Virtual Address Space

0x000…

0xFFF…

• Definition: Set of accessible addresses and the state
associated with them

– 232 = ~4 billion bytes on a 32-bit machine
• How many 32-bit numbers fit in this address space?

– 32-bits = 4 bytes, so 232/4 = 230=~1billion
• What happens when processor reads or writes to an

address?
– Perhaps acts like regular memory
– Perhaps causes I/O operation

» (Memory-mapped I/O)
– Causes program to abort (segfault)?
– Communicate with another program
– …

code

Static Data

heap

stack

Lec 14.113/5/2024 Kubiatowicz CS162 © UCB Spring 2024

Recall: Process Address Space: typical structure

Processor
registers

PC:
SP:

0x000…

0xFFF…

Code Segment

Static Data

heap

Stack Segment

sbrk syscall

Lec 14.123/5/2024 Kubiatowicz CS162 © UCB Spring 2024

Recall: Uniprogramming
• Uniprogramming (no Translation or Protection)

– Application always runs at same place in physical
memory since only one application at a time

– Application can access any physical address

– Application given illusion of dedicated machine by giving
it reality of a dedicated machine

0x00000000

0xFFFFFFFF

Application

Operating
System

Va
lid

 3
2-

bi
t

Ad
dr

es
se

s

Lec 14.133/5/2024 Kubiatowicz CS162 © UCB Spring 2024

Primitive Multiprogramming
• Multiprogramming without Translation or Protection

– Must somehow prevent address overlap between threads

– Use Loader/Linker: Adjust addresses while program loaded into
memory (loads, stores, jumps)

» Everything adjusted to memory location of program
» Translation done by a linker-loader (relocation)
» Common in early days (… till Windows 3.x, 95?)

• With this solution, no protection: bugs in any program can
cause other programs to crash or even the OS

0x00000000

0xFFFFFFFF

Application1

Operating
System

Application2 0x00020000

Lec 14.143/5/2024 Kubiatowicz CS162 © UCB Spring 2024

Binding of Instructions and Data to Memory

data1: dw 32
…

start: lw r1,0(data1)
jal checkit

loop: addi r1, r1, ‐1
bnz r1, loop
…

checkit: …

Process view of memory

0x0300 00000020
… …

0x0900 8C2000C0
0x0904 0C000280
0x0908 2021FFFF
0x090C 14200242
…
0x0A00

Physical addresses

Assume 4byte words
0x300 = 4 * 0x0C0
0x0C0 = 0000 1100 0000
0x300 = 0011 0000 0000

Lec 14.153/5/2024 Kubiatowicz CS162 © UCB Spring 2024

0x0300 00000020
… …

0x0900 8C2000C0
0x0904 0C000280
0x0908 2021FFFF
0x090C 14200242
…
0x0A00

data1: dw 32
…

start: lw r1,0(data1)
jal checkit

loop: addi r1, r1, ‐1
bnz r1, loop
…

checkit: …

Process view of memory Physical addresses

8C2000C0
0C000340
2021FFFF
14200242

0x0900

0xFFFF

0x0300

0x0000

00000020

Physical
Memory

Binding of Instructions and Data to Memory

Lec 14.163/5/2024 Kubiatowicz CS162 © UCB Spring 2024

Second copy of program from previous example

0x0300 00000020
… …

0x0900 8C2000C0
0x0904 0C000280
0x0908 2021FFFF
0x090C 14200242
…
0x0A00

data1: dw 32
…

start: lw r1,0(data1)
jal checkit

loop: addi r1, r1, ‐1
bnz r1, loop
…

checkit: …

Process view of memory Physical addresses
0x0900

0xFFFF

0x0300

0x0000

Physical
Memory

?
App X

Need address translation!

Lec 14.173/5/2024 Kubiatowicz CS162 © UCB Spring 2024

0x1300 00000020
… …

0x1900 8C2004C0
0x1904 0C000680
0x1908 2021FFFF
0x190C 14200642
…
0x1A00

data1: dw 32
…

start: lw r1,0(data1)
jal checkit

loop: addi r1, r1, ‐1
bnz r1, loop
…

checkit: …

Process view of memory Physical addresses
0x0900

0xFFFF

0x0300

0x0000

Physical
Memory

App X

8C2004C0
0C000680
2021FFFF
14200642

000000200x1300

0x1900

• One of many possible translations!
• Where does translation take place?

Compile time, Link/Load time, or Execution time?

Second copy of program from previous example

Lec 14.183/5/2024 Kubiatowicz CS162 © UCB Spring 2024

From Program to Process
• Preparation of a program for execution involves

components at:
– Compile time (i.e., “gcc”)
– Link/Load time (UNIX “ld” does link)
– Execution time (e.g., dynamic libs)

• Addresses can be bound to final values anywhere in
this path

– Depends on hardware support
– Also depends on operating system

• Dynamic Libraries
– Linking postponed until execution
– Small piece of code (i.e. the stub), locates

appropriate memory-resident library routine
– Stub replaces itself with the address of the routine,

and executes routine

Lec 14.193/5/2024 Kubiatowicz CS162 © UCB Spring 2024

Administrivia
• Midterm 2: Thursday 3/14 from 8-10PM

– A week from tomorrow!!!
– All material up to Lecture 16 technically in bounds
– Closed book: with two double-sided handwritten sheets of notes

• Homework 4 coming out
– Released tomorrow, Wednesday 3/6

• Project 2 design document due this Friday!
• Starting next week – will have an opportunity to get extra credit

participation points by attending lecture
– Details to follow

Lec 14.203/5/2024 Kubiatowicz CS162 © UCB Spring 2024

Administrivia (Con’t)
• You need to know your units as CS/Engineering students!
• Units of Time: “s”: Second, “min”: 60s, “h”: 3600s, (of course)

– Millisecond: 1ms  10-3 s
– Microsecond: 1s  10-6 s
– Nanosecond: 1ns:  10-9 s
– Picosecond: 1ps  10-12 s

• Integer Sizes: “b”  ”bit”, “B”  “byte” == 8 bits, “W””word”==? (depends. Could be 16b, 32b, 64b)
• Units of Space (memory), sometimes called the “binary system”

– Kilo: 1KB  1KiB  1024 bytes == 210 bytes == 1024  1.0×103

– Mega: 1MB  1MiB  (1024)2 bytes == 220 bytes == 1,048,576  1.0×106

– Giga: 1GB  1GiB  (1024)3 bytes == 230 bytes == 1,073,741,824  1.1×109

– Tera: 1TB  1TiB  (1024)4 bytes == 240 bytes == 1,099,511,627,776  1.1×1012

– Peta: 1PB  1PiB  (1024)5 bytes == 250 bytes == 1,125,899,906,842,624  1.1 × 1015

– Exa: 1EB  1EiB  (1024)6 bytes == 260 bytes == 1,152,921,504,606,846,976  1.2 × 1018

• Units of Bandwidth, Space on disk/etc, Everything else…, sometimes called the “decimal system”
– Kilo: 1KB/s  103 bytes/s, 1KB  103 bytes
– Mega: 1MB/s 106 bytes/s, 1MB  106 bytes
– Giga: 1GB/s  109 bytes/s, 1GB  109 bytes
– Tera: 1TB/s  1012 bytes/s, 1TB  1012 bytes
– Peta: 1PB/s  1015 bytes/s, 1PB  1015 bytes
– Exa: 1EB/s  1018 bytes/s, 1EB  1018 bytes

Lec 14.213/5/2024 Kubiatowicz CS162 © UCB Spring 2024

Multiprogramming with Protection

• Can we protect programs from each other
without translation?

– Yes: Base and Bound!
– Used by, e.g., Cray-1 supercomputer

0x00000000

0xFFFFFFFF

Application1

Operating
System

Application2 0x00020000Base = 0x20000

Bound= 0x30000

Lec 14.223/5/2024 Kubiatowicz CS162 © UCB Spring 2024

Recall: Base and Bound (No Translation)

code

Static Data

heap

stack

code

Static Data

heap

stack

0000…

FFFF…

1000…

1100…
Bound

1100…

1000…
Base

>=

<

Program
address

1010…

• Still protects OS and isolates program
• Requires relocating loader
• No addition on address path

code

Static Data

heap

stack

0000…

0100…

Original Program

Lec 14.233/5/2024 Kubiatowicz CS162 © UCB Spring 2024

Recall: General Address translation

• Consequently, two views of memory:
– View from the CPU (what program sees, virtual memory)
– View from memory (physical memory)
– Translation box (Memory Management Unit or MMU) converts between two views

• Translation  much easier to implement protection!
– If task A cannot even gain access to task B’s data, no way for A to adversely affect B

• With translation, every program can be linked/loaded into same region of user
address space

Physical
Addresses

CPU MMU

Virtual
Addresses

Untranslated read or write

Lec 14.243/5/2024 Kubiatowicz CS162 © UCB Spring 2024

Recall: Base and Bound (with Translation)
code

Static Data

heap

stack

code

Static Data

heap

stack

0000…

FFFF…

1000…

Program
address

Base Address

Bound <

1000…

1100…0100…

• Hardware relocation
• Can the program touch OS?
• Can it touch other programs?

0010…

Addresses translated
on-the-fly

1010…
code

Static Data

heap

stack

0000…

0100…

Original Program

Lec 14.253/5/2024 Kubiatowicz CS162 © UCB Spring 2024

Issues with Simple B&B Method

• Fragmentation problem over time
– Not every process is same size  memory becomes fragmented over time
– Fragmentation: wasted space both external (between blocks) and internal (inside blocks)

• Missing support for sparse address space
– Would like to have multiple chunks/program (Code, Data, Stack, Heap, etc)

• Hard to do inter-process sharing
– Want to share code segments when possible
– Want to share memory between processes
– Helped by providing multiple segments per process

process 6

process 5

process 2

OS

process 6

process 5

OS

process 6

process 5

OS

process 9

process 6

process 9

OS

process 10
process 11

Lec 14.263/5/2024 Kubiatowicz CS162 © UCB Spring 2024

More Flexible Segmentation

• Logical View: multiple separate segments
– Typical: Code, Data, Stack
– Others: memory sharing, etc

• Each segment is given region of contiguous memory
– Has a base and limit
– Can reside anywhere in physical memory

1

3

2

4

user view of
memory space

1
4

2

3

physical
memory space

1

2

Lec 14.273/5/2024 Kubiatowicz CS162 © UCB Spring 2024

Implementation of Multi-Segment Model

• Segment map resides in processor
– Segment number mapped into base/limit pair
– Base added to offset to generate physical address
– Error check catches offset out of range

• As many chunks of physical memory as entries
– Segment addressed by portion of virtual address
– However, could be included in instruction instead:

» x86 Example: mov [es:bx],ax.
• What is “V/N” (valid / not valid)?

– Can mark segments as invalid; requires check as well

Base0 Limit0 V
Base1 Limit1 V
Base2 Limit2 V
Base3 Limit3 N
Base4 Limit4 V
Base5 Limit5 N
Base6 Limit6 N
Base7 Limit7 V

OffsetSeg #Virtual
Address

Base2 Limit2 V

+ Physical
Address

> Erroroffset

Check Valid

Access
Error

Lec 14.283/5/2024 Kubiatowicz CS162 © UCB Spring 2024

Intel x86 Special Registers

• Typical Segment Register
– Current Priority is RPL of Code Segment (CS)

• Segmentation can’t be just “turned off”
– What if we just want to use paging?
– Set base and bound to all of memory, in all

segments

80386 Special Registers

Lec 14.293/5/2024 Kubiatowicz CS162 © UCB Spring 2024

Example: Four Segments (16 bit addresses)
Seg ID # Base Limit

0 (code) 0x4000 0x0800
1 (data) 0x4800 0x1400
2 (shared) 0xF000 0x1000
3 (stack) 0x0000 0x3000

OffsetSeg
014 1315

0x4000

0x0000

0x8000

0xC000

Virtual
Address Space

Virtual Address Format

0x0000

Physical
Address Space

Lec 14.303/5/2024 Kubiatowicz CS162 © UCB Spring 2024

Example: Four Segments (16 bit addresses)
Seg ID # Base Limit

0 (code) 0x4000 0x0800
1 (data) 0x4800 0x1400
2 (shared) 0xF000 0x1000
3 (stack) 0x0000 0x3000

OffsetSeg
014 1315

0x4000

0x0000

0x8000

0xC000

Virtual
Address Space

Virtual Address Format

0x0000

0x4800
0x4000

Physical
Address Space

SegID = 0

Lec 14.313/5/2024 Kubiatowicz CS162 © UCB Spring 2024

Example: Four Segments (16 bit addresses)
Seg ID # Base Limit

0 (code) 0x4000 0x0800
1 (data) 0x4800 0x1400
2 (shared) 0xF000 0x1000
3 (stack) 0x0000 0x3000

OffsetSeg
014 1315

0x4000

0x0000

0x8000

0xC000

Virtual
Address Space

Virtual Address Format

0x0000

0x4800
0x5C00

0x4000

Physical
Address Space

SegID = 0

SegID = 1

Lec 14.323/5/2024 Kubiatowicz CS162 © UCB Spring 2024

Example: Four Segments (16 bit addresses)
Seg ID # Base Limit

0 (code) 0x4000 0x0800
1 (data) 0x4800 0x1400
2 (shared) 0xF000 0x1000
3 (stack) 0x0000 0x3000

OffsetSeg
014 1315

0x4000

0x0000

0x8000

0xC000

Virtual
Address Space

Virtual Address Format

0x0000

0x4800
0x5C00

0x4000

0xF000

Physical
Address Space

Space for
Other Apps

Shared with
Other Apps

Might
be shared

SegID = 0

SegID = 1

Lec 14.333/5/2024 Kubiatowicz CS162 © UCB Spring 2024

Let’s simulate a bit of this code to see what happens (PC=0x240):
1. Fetch 0x0240 (0000 0010 0100 0000). Virtual segment #? 0; Offset? 0x240

Physical address? Base=0x4000, so physical addr=0x4240
Fetch instruction at 0x4240. Get “la $a0, varx”
Move 0x4050  $a0, Move PC+4PC

0x0240 main: la $a0, varx
0x0244 jal strlen
… …

0x0360 strlen: li $v0, 0 ;count
0x0364 loop: lb $t0, ($a0)
0x0368 beq $r0,$t0, done
… …

0x4050 varx dw 0x314159

Seg ID # Base Limit
0 (code) 0x4000 0x0800
1 (data) 0x4800 0x1400
2 (shared) 0xF000 0x1000
3 (stack) 0x0000 0x3000

Example of Segment Translation (16bit address)

Lec 14.343/5/2024 Kubiatowicz CS162 © UCB Spring 2024

Let’s simulate a bit of this code to see what happens (PC=0x240):
1. Fetch 0x0240 (0000 0010 0100 0000). Virtual segment #? 0; Offset? 0x240

Physical address? Base=0x4000, so physical addr=0x4240
Fetch instruction at 0x4240. Get “la $a0, varx”
Move 0x4050  $a0, Move PC+4PC

2. Fetch 0x0244. Translated to Physical=0x4244. Get “jal strlen”
Move 0x0248  $ra (return address!), Move 0x0360  PC

0x0240 main: la $a0, varx
0x0244 jal strlen
… …

0x0360 strlen: li $v0, 0 ;count
0x0364 loop: lb $t0, ($a0)
0x0368 beq $r0,$t0, done
… …

0x4050 varx dw 0x314159

Seg ID # Base Limit
0 (code) 0x4000 0x0800
1 (data) 0x4800 0x1400
2 (shared) 0xF000 0x1000
3 (stack) 0x0000 0x3000

Example of Segment Translation (16bit address)

Lec 14.353/5/2024 Kubiatowicz CS162 © UCB Spring 2024

Let’s simulate a bit of this code to see what happens (PC=0x240):
1. Fetch 0x0240 (0000 0010 0100 0000). Virtual segment #? 0; Offset? 0x240

Physical address? Base=0x4000, so physical addr=0x4240
Fetch instruction at 0x4240. Get “la $a0, varx”
Move 0x4050  $a0, Move PC+4PC

2. Fetch 0x0244. Translated to Physical=0x4244. Get “jal strlen”
Move 0x0248  $ra (return address!), Move 0x0360  PC

3. Fetch 0x0360. Translated to Physical=0x4360. Get “li $v0, 0”
Move 0x0000  $v0, Move PC+4PC

0x0240 main: la $a0, varx
0x0244 jal strlen
… …

0x0360 strlen: li $v0, 0 ;count
0x0364 loop: lb $t0, ($a0)
0x0368 beq $r0,$t0, done
… …

0x4050 varx dw 0x314159

Seg ID # Base Limit
0 (code) 0x4000 0x0800
1 (data) 0x4800 0x1400
2 (shared) 0xF000 0x1000
3 (stack) 0x0000 0x3000

Example of Segment Translation (16bit address)

Lec 14.363/5/2024 Kubiatowicz CS162 © UCB Spring 2024

Let’s simulate a bit of this code to see what happens (PC=0x0240):
1. Fetch 0x0240 (0000 0010 0100 0000). Virtual segment #? 0; Offset? 0x240

Physical address? Base=0x4000, so physical addr=0x4240
Fetch instruction at 0x4240. Get “la $a0, varx”
Move 0x4050  $a0, Move PC+4PC

2. Fetch 0x0244. Translated to Physical=0x4244. Get “jal strlen”
Move 0x0248  $ra (return address!), Move 0x0360  PC

3. Fetch 0x0360. Translated to Physical=0x4360. Get “li $v0, 0”
Move 0x0000  $v0, Move PC+4PC

4. Fetch 0x0364. Translated to Physical=0x4364. Get “lb $t0, ($a0)”
Since $a0 is 0x4050, try to load byte from 0x4050
Translate 0x4050 (0100 0000 0101 0000). Virtual segment #? 1; Offset? 0x50
Physical address? Base=0x4800, Physical addr = 0x4850,
Load Byte from 0x4850$t0, Move PC+4PC

0x0240 main: la $a0, varx
0x0244 jal strlen
… …

0x0360 strlen: li $v0, 0 ;count
0x0364 loop: lb $t0, ($a0)
0x0368 beq $r0,$t0, done
… …

0x4050 varx dw 0x314159

Seg ID # Base Limit
0 (code) 0x4000 0x0800
1 (data) 0x4800 0x1400
2 (shared) 0xF000 0x1000
3 (stack) 0x0000 0x3000

Example of Segment Translation (16bit address)

Lec 14.373/5/2024 Kubiatowicz CS162 © UCB Spring 2024

Observations about Segmentation
• Translation on every instruction fetch, load or store
• Virtual address space has holes

– Segmentation efficient for sparse address spaces
• When it is OK to address outside valid range?

– This is how the stack (and heap?) allowed to grow
– For instance, stack takes fault, system automatically increases size of stack

• Need protection mode in segment table
– For example, code segment would be read-only
– Data and stack would be read-write (stores allowed)

• What must be saved/restored on context switch?
– Segment table stored in CPU, not in memory (small)
– Might store all of processes memory onto disk when switched (called “swapping”)

Lec 14.383/5/2024 Kubiatowicz CS162 © UCB Spring 2024

What if not all segments fit in memory?

• Extreme form of Context Switch: Swapping
– To make room for next process, some or all of the previous process is moved to disk

» Likely need to send out complete segments
– This greatly increases the cost of context-switching

• What might be a desirable alternative?
– Some way to keep only active portions of a process in memory at any one time
– Need finer granularity control over physical memory

Lec 14.393/5/2024 Kubiatowicz CS162 © UCB Spring 2024

Problems with Segmentation
• Must fit variable-sized chunks into physical memory

• May move processes multiple times to fit everything

• Limited options for swapping to disk

• Fragmentation: wasted space
– External: free gaps between allocated chunks
– Internal: don’t need all memory within allocated chunks

Lec 14.403/5/2024 Kubiatowicz CS162 © UCB Spring 2024

Recall: General Address Translation

Prog 1
Virtual

Address
Space 1

Prog 2
Virtual

Address
Space 2

Code
Data
Heap
Stack

Code
Data
Heap
Stack

Data 2

Stack 1

Heap 1

OS heap &
Stacks

Code 1

Stack 2

Data 1

Heap 2

Code 2

OS code

OS dataTranslation Map 1 Translation Map 2

Physical Address Space

Lec 14.413/5/2024 Kubiatowicz CS162 © UCB Spring 2024

Paging: Physical Memory in Fixed Size Chunks

• Solution to fragmentation from segments?
– Allocate physical memory in fixed size chunks (“pages”)
– Every chunk of physical memory is equivalent

» Can use simple vector of bits to handle allocation:
00110001110001101 … 110010

» Each bit represents page of physical memory
1  allocated, 0  free

• Should pages be as big as our previous segments?
– No: Can lead to lots of internal fragmentation

» Typically have small pages (1K-16K)
– Consequently: need multiple pages/segment

Lec 14.423/5/2024 Kubiatowicz CS162 © UCB Spring 2024

Physical Address
Offset

How to Implement Simple Paging?

• Page Table (One per process)
– Resides in physical memory
– Contains physical page and permission for each virtual page (e.g. Valid bits, Read, Write, etc)

• Virtual address mapping
– Offset from Virtual address copied to Physical Address

» Example: 10 bit offset  1024-byte pages
– Virtual page # is all remaining bits

» Example for 32-bits: 32-10 = 22 bits, i.e. 4 million entries
» Physical page # copied from table into physical address

– Check Page Table bounds and permissions

OffsetVirtual
Page #Virtual Address:

Access
Error

>PageTableSize

PageTablePtr page #0

page #2
page #3
page #4
page #5

V,R
page #1 V,R

V,R,W
V,R,W
N
V,R,W

page #1 V,R

Check Perm

Access
Error

Physical
Page #

Lec 14.433/5/2024 Kubiatowicz CS162 © UCB Spring 2024

Simple Page Table Example

a
b
c
d
e
f
g
h
i
j
k
l

0x00

0x04

0x08

Virtual
Memory

0x00

i
j
k
l

0x04

0x08

e
f
g
h

0x0C

a
b
c
d

0x10

Physical
Memory

Example (4 byte pages)

4
3
1

Page
Table

0

1

2

0000 0000

0001 0000

0000 0100 0000 1100

0000 1000

0000 0100
0x06?

0000 0110 0000 1110

0x0E!
0x09?

0000 1001 0000 0101

0x05!

Lec 14.443/5/2024 Kubiatowicz CS162 © UCB Spring 2024

PageTablePtrB page #0
page #1
page #2
page #3

page #5

V,R
N
V,R,W
N

page #4 V,R
V,R,W

page #4 V,R

What about Sharing?
OffsetVirtual

Page #
Virtual Address

(Process A):

PageTablePtrA page #0
page #1

page #3
page #4
page #5

V,R
V,R

page #2 V,R,W
V,R,W
N
V,R,W

OffsetVirtual
Page #

Virtual Address
(Process B):

Shared
Page

This physical page
appears in address

space of both processes

page #2 V,R,W

Lec 14.453/5/2024 Kubiatowicz CS162 © UCB Spring 2024

Where is page sharing used ?
• The “kernel region” of every process has the same page table entries

– The process cannot access it at user level
– But on U->K switch, kernel code can access it AS WELL AS the region for

THIS user
» What does the kernel need to do to access other user processes?

• Different processes running same binary!
– Execute-only, but do not need to duplicate code segments

• User-level system libraries (execute only)
• Shared-memory segments between different processes

– Can actually share objects directly between processes
» Must map page into same place in address space!

– This is a limited form of the sharing that threads have within a single
process

Lec 14.463/5/2024 Kubiatowicz CS162 © UCB Spring 2024

http://static.duartes.org/img/blogPosts/linuxFlexibleAddressSpaceLayout.png

Memory Layout for Linux 32-bit (Pre-Meltdown patch!)

Lec 14.473/5/2024 Kubiatowicz CS162 © UCB Spring 2024

Some simple security measures
• Address Space Randomization

– Position-Independent Code  can place user code anywhere in address space
» Random start address makes much harder for attacker to cause jump to code that it

seeks to take over
– Stack & Heap can start anywhere, so randomize placement

• Kernel address space isolation
– Don’t map whole kernel space into each process, switch to kernel page table
– Meltdownmap none of

kernel into user mode!

Lec 14.483/5/2024 Kubiatowicz CS162 © UCB Spring 2024

1111 1111 stack

heap

code

data

Virtual memory view

0000 0000

0100 0000

1000 0000

1100 0000

1111 0000

page # offset

Physical memory view

data

code

heap

stack

0000 0000
0001 0000

0101 000

0111 000

1110 0000

11111 11101
11110 11100
11101 null
11100 null
11011 null
11010 null
11001 null
11000 null
10111 null
10110 null
10101 null
10100 null
10011 null
10010 10000
10001 01111
10000 01110
01111 null
01110 null
01101 null
01100 null
01011 01101
01010 01100
01001 01011
01000 01010
00111 null
00110 null
00101 null
00100 null
00011 00101
00010 00100
00001 00011
00000 00010

Page Table
Summary: Paging

Lec 14.493/5/2024 Kubiatowicz CS162 © UCB Spring 2024

1111 1111
stack

heap

code

data

Virtual memory view

0000 0000

0100 0000

1000 0000

1100 0000

page # offset

Physical memory view

data

code

heap

stack

0000 0000
0001 0000

0101 000

0111 000

1110 0000

11111 11101
11110 11100
11101 null
11100 null
11011 null
11010 null
11001 null
11000 null
10111 null
10110 null
10101 null
10100 null
10011 null
10010 10000
10001 01111
10000 01110
01111 null
01110 null
01101 null
01100 null
01011 01101
01010 01100
01001 01011
01000 01010
00111 null
00110 null
00101 null
00100 null
00011 00101
00010 00100
00001 00011
00000 00010

Page Table

1110 0000

What happens if
stack grows to
1110 0000?

Summary: Paging

Lec 14.503/5/2024 Kubiatowicz CS162 © UCB Spring 2024

Summary: Paging

1111 1111
stack

heap

code

data

Virtual memory view

0000 0000

0100 0000

1000 0000

1100 0000

page # offset

11111 11101
11110 11100
11101 10111
11100 10110
11011 null
11010 null
11001 null
11000 null
10111 null
10110 null
10101 null
10100 null
10011 null
10010 10000
10001 01111
10000 01110
01111 null
01110 null
01101 null
01100 null
01011 01101
01010 01100
01001 01011
01000 01010
00111 null
00110 null
00101 null
00100 null
00011 00101
00010 00100
00001 00011
00000 00010

Page Table

0000 0000
0001 0000

0101 000

0111 000

1110 00001110 0000

Physical memory view

data

code

heap

stack

stack

Allocate new
pages where
room!

Lec 14.513/5/2024 Kubiatowicz CS162 © UCB Spring 2024

Conclusion
• Segment Mapping

– Segment registers within processor
– Segment ID associated with each access

» Often comes from portion of virtual address
» Can come from bits in instruction instead (x86)

– Each segment contains base and limit information
» Offset (rest of address) adjusted by adding base

• Page Tables
– Memory divided into fixed-sized chunks of memory
– Virtual page number from virtual address mapped through page table to

physical page number
– Offset of virtual address same as physical address
– Large page tables can be placed into virtual memory

• Next Time: Multi-Level Tables
– Virtual address mapped to series of tables
– Permit sparse population of address space

