CS 162 HW 4

Library functions / Memory allocator

Memory allocator

TABLE OF CONTENTS
1 Allocation
2 Deallocation

3 Reallocation

There are many ways to structure a memory allocator. In this part of the homework, you will be
implementing a memory allocator using a linked list of memory blocks, as described in the previous
section. In this section, we'll describe how allocation, deallocation, and reallocation should work in
this scheme. To make your implementation succeed, you will need to modify mm_alloc.c.

Allocation

void* mm_malloc(size_t size);

The user will pass in the requested allocation size. Make sure the returned pointer is pointing to the
beginning of the allocated space, not your metadata header. One simple algorithm for finding
available memory is called first fit. When your memory allocator is called to allocate some memory,
it iterates through its blocks until it finds a sufficiently large free block of memory.

Here are some implementation details to be aware of.
« If no sufficiently large free block is found, use sbrk to create more space on the heap.

« If the first block of memory you find is so large that it can accommodate both the newly
allocated block and another block in addition, then the large block is split in two; one block to
hold the newly allocated block, the other to be a residual free block.

 If the first block of memory you find is only a bit larger than what you need, but not large
enough for a new block (i.e. it's not big enough to hold the metadata of a new block), be aware

that you will have some unused space at the end of the newly allocated block.

« Return nuLL if you cannot allocate the new requested size.
« Return nuLt if the requested size is 0.

« For grading purposes, please zero-fill your allocated memory before returning a pointer to it.

Deallocation

void mm_free(void* ptr);

When a user is done using their memory, they'll call upon your memory allocator to free their
memory, passing in the pointer ptr that they received from mm_ma1l1oc . Note that deallocating doesn't

mean you have to release the memory back to the OS; you just have be able to allocate that block
for future use now.

Here are some implementation details to be aware of.

« As a side-effect of splitting blocks in your allocation procedure, you might run into issues of
fragmentation: when your blocks become too small for large allocation requests, even though
you have a sufficiently large section of free memory. To solve this, you must coalesce
consecutive free blocks upon freeing a block that is adjacent to other free block(s).

+ Your deallocation function should do nothing if passed a nuLL pointer.

Reallocation

void* mm_realloc(void* ptr, size_t size);

Reallocation should resize the allocated block at ptr to size. A suggested implementation is to first
mm_malloc a block of the specified size, memcpy the old data to the new block, and then call
mm_free(ptr) at the very end. Make sure you handle the following edge cases.

¢ Return nuLL if you cannot allocate the new requested size. In this case, do not modify the original
block.

* mm_realloc(ptr, @) is equivalent to calling mm_free(ptr) and returning NuLL.
* mm_realloc(NULL, n) is equivalent to calling mm_malloc(n).
* mm_realloc(NULL, @) is equivalent to calling mm_malloc(e), which should just return nuLt.

« Make sure you handle the case where size is less than the original size.

Copyright © 2022 CS 162 staff.

