CS 162 HW 4

sbrk / Additional information

Additional information

TABLE OF CONTENTS

T Unmapped region and no man'’s land

2 Resource limits

Unmapped region and no man’s land

We saw earlier that the break marks the end of the mapped virtual address space. By this
assumption, accessing addresses above the break should trigger an error (“bus error” or
“segmentation fault”).

The virtual address space is mapped in quanta of pages (usually some multiple of 4096 bytes). When
sbrk is called, the operating system will have to map more memory to the heap. To do that, it maps
an entire page from physical memory to the mapped region of the heap. Now, it is possible that the
break doesn’t end up exactly on a page boundary. In this situation, what is the status of the memory
between the break and the page boundary? It turns out that this memory is accessible, even though
it is above the break and thus should be unmapped in theory. Bugs related to this issue are
particularly insidious, because no error will occur if you read from or write to this "no man’s land.”

Unmapped region

page boundary —

No Man's Land

brk —

Chunk of allocated
memaory

Metadata

Chunk of free memory

size

Metadata

free: true

Chunk of allocated
memory

*next

*prev

Metadata

Chunk of allocated
memory

size

Metadata

free: false

Start of heap —>

Resource limits

In Homework 0, you briefly explored the getrlimit syscall. In modern operating systems like Linux,
processes have limits on their resource usage. For example, the maximum size of the stack and heap
are governed by limits on the resources RLIMIT_STAck and RLIMIT_DATA (Ssee man 2 getrlimit). Each of
these resources has a hard limit and a soft limit. A process can raise its own soft limits; the soft limit
exists to catch bugs (e.g. resource leaks) early by causing an error if a process uses more resources
than expected. The hard limit can only be raised by the superuser (root), and exists to prevent

resource abuse. For this assignment, do not place an upper bound on the stack size or heap size.

You do not need to implement resource limits.

Copyright © 2022 CS 162 staff.

*next

*prev

