CS 162 HW 4

sbrk / Pages

Pages

TABLE OF CONTENTS
T Allocating pages
2 Mapping a page into a virtual address space

3 Summary and example

Allocating pages

Use the following functions in threads/palloc.h to allocate and deallocate pages in the Pintos kernel.

void* palloc_get page(enum palloc_flags);
void* palloc_get_multiple(enum palloc_flags, size_t page_cnt);
void palloc_free_page(void* page);

void palloc_free_multiple(void* pages, size_t page cnt);

The palloc functions use a bitmap to keep track of which pages are free and which pages are
allocated. The f1ags argument is a bitmask of the following choices.

enum palloc_flags {

PAL_ASSERT = @01, /* Panic on failure. */

PAL_ZERO = 002, /* Zero page contents. */

PAL_USER

%

004 /* User page. */

The set of pages is partitioned into two separate pools: a user pool and a kernel pool. Pages in the
kernel pool are meant for use inside the kernel (e.g. the stack for kernel threads) and pages in the
user pool are meant to be mapped into the virtual address spaces of user processes. The reason for
this separation is to prevent failures in the kernel if user programs run out of memory. The paL_user
flag tells the pa1l1oc function to allocate the requested pages from the user pool. Otherwise, it will
allocate the requested pages from the kernel pool. If you intend to map a page into the virtual
address space of a process, you should allocate it from the user pool using paL_user.



Mapping a page into a virtual address space

The pagedir member of struct thread is a pointer to the page table of the process. When switching
to a process, Pintos uses the pagedir_activate function to start using that process’ page table for
address translation, by setting the page directory base register (%cr3). Note that the entirety of
kernel memory is mapped into every process’ virtual address space at addresses pHys_sase and
above, so all process’ page tables are interchangeable as long as you are accessing kernel memory.

For this reason, we sometimes refer to addresses at puys_sase and above as kernel virtual addresses.

The physical address corresponding to a kernel virtual address can be computed by subtracting
pHys_sase from it. In principle this need not be true, but Pintos sets up its page tables such that it
holds. The functions vtop and ptov (in threads/vaddr.h) are helper functions that perform this
conversion for you, but we do not expect you to have to use these functions in this assignment.

Given a page allocated in kernel virtual memory, one can map it into the virtual address space of a
process by calling pagedir_set_page, which handles traversal of the two-level hierarchical page table
and allocation of leaves as needed. Two arguments to pagedir_set_page are the virtual address in the
user process at which the page should be mapped, and the kernel virtual address of the page to
map. pagedir_set_page looks up the physical page number to create the necessary page table entries
for you, so you should be passing in the kernel virtual address rather than the physical page
number. Once you've mapped the page into the process’ virtual address space, you don’t have to
worry about deallocating it; when the process exits, the process_exit function will call pagedir_destroy,
which will call palloc_free_page on all pages mapped into the process’ address space. If you would
like the page to continue to be allocated even after the process dies, you should first remove it from

the page table using pagedir_clear_page .

Note that pages that you allocate using palloc_get_page could have been previously allocated and
then freed, and therefore could contain data from the previous time it was allocated. If it was
mapped into a user process, it could contain data from the previous user program. To properly
enforce protection, you should initialize the contents of a page before mapping it into a user
process. This is typically done by setting all bytes in the page to zero, except in special
situations where the page should contain specific data (e.g. loading new code into a process or
bringing back a page from disk). Under no circumstances should memory used by the kernel, or by

other processes, become visible to a process because a physical page frame was reused.

Summary and example

In summary, here is how to map a fresh page into the virtual address space of a process.

T Allocate the page from the user pool using palloc_get_page and passing the paL_user flag.



2 Zero out the page's contents, either by using memset or passing the paL_zero flag when allocating

the page (e.g. palloc_get_page(PAL_ZERO | PAL_USER) ).
3 Use pagedir_set_page to map the page into the virtual address space of a process.

4 The page will be deallocated when the process exits and pagedir_destroy is called. Alternatively, if
you would like the page to be deallocated at some other time, you can remove it from the page

table with pagedir_clear_page and then deallocate it later using palloc_free_page.

A simple example of this is in the setup_stack and install_page functions in process.c. We strongly
recommend that you review these functions and understand this simple example before

attempting this homework.

Copyright © 2022 CS 162 staff.



