CS 162 HW 4

sbrk / Syscall implementation

Syscall implementation

TABLE OF CONTENTS
T Process memory

2 Requesting memory from the operating system

a Determining the start of the heap

b Manipulating the segment break

You are advised to begin by reading over the functions start_process and 1oad in process.c. Consider
what new initialization you must perform in these locations in order to support the heap
functionality outlined in previous sections.

Process memory

Each process has its own virtual address space. Parts of this address space are mapped to physical
memory through address translation. In order to build a memory allocator, we need to understand
how the heap in particular is structured. Here we describe the memory layout of a process, focusing
on the structure of the heap, within a Linux process. You'll have to implement a simplified version of
the heap in Pintos with the sbrk system call.



Stack

Unusable Region
T <«<— rlimit
Heap - Unmapped Region
“— brk
Initialized Data
Mapped Region
-

BSS <— Start of heap
Code

The heap is a space of memory, continuous in the virtual address space of a process, with three

bounds:
« The bottom of the heap.

« The top of the heap, known as the break. The break can be changed using brk and sbrk. The
break marks the end of the mapped memory space. Above the break lies virtual addresses which
have not been mapped to physical addresses by the operating system. For simplicity, you only
need to implement sbrk in Pintos for this assignment. You do not need to bother with brk.

You should implement sork as a new system call in Pintos.

« The hard limit of the heap, which the break cannot surpass. See Resource limits for more

information. For simplicity, you should not implement a hard limit on the heap size for this
assignment.

In this assignment, you'll be allocating blocks of memory in the mapped region and moving the
break appropriately whenever you need to expand the mapped region.

Requesting memory from the operating system

Initially the mapped region of the heap will have a size of 0. To expand the mapped region, we have
to manipulate the position of the break. The way to do this is via sbrk, defined in 1ib/user/syscall.c:



void* sbrk(intptr_t increment);

Your task is to implement the sbrk syscall by implementing a syscall_sbrk function inside
src/userprog/syscall.c that will increment the position of the break by increment bytes and returns
the address of the previous break (i.e. the beginning of newly mapped memory if increment is
positive). You will need to add appropriate changes to src/1ib/syscall-nr.h, src/lib/user/syscall.c,
and the syscall handler in src/userprog/syscall.c. To get the current position of the break, pass in an

increment Of 0. Run man 2 sbrk on Linux for additional useful information.

To implement the syscall_sbrk function, you'll need to keep track of two variables for each process:
the start of the heap, and the segment break (end of the heap). These should be maintained in the
struct thread . We describe how to how to use these variables below.

Determining the start of the heap

You should make sure that a process’ heap is located above (i.e. at a higher virtual address than) the
process’ code and other data loaded from the executable. You should determine at what address the
heap should start when the program is loaded, after which it should remain fixed for the duration of
the process. Look closely at the 1load function in process.c. For each loadable segment in the
executable (remember segments from Homework 07?), 10ad allocates pages in the virtual address
space of the process, according to the read/write permissions and virtual address specified in the
executable, and reads data from the executable file into those pages. Based on where the segments
are loaded into memory, you should determine at what address the heap should start.

The ELF executable format guarantees that loadable segments will be listed in the executable in
ascending order by virtual address space. Thus, you should start the heap at a virtual address
after the last loadable segment processed by the 1cad function. We recommend choosing a
page-aligned address to start the heap.

To learn more about ELF, read man 5 elf.

Manipulating the segment break

The segment break should be the first address past the end of the heap, so you can initialize the
data segment break to the start of the heap after loading the process. You should move it only in
response to sbrk system calls. The user program should be able to write data starting at the
start of the heap, up to and not including the segment break. If the user program moves the
segment break to increase the size of the heap, you should allocate pages and map them into the
user's virtual address space as necessary. If the user program moves the segment break to decrease
the size of the heap, you should deallocate pages that no longer contain part of the heap as



necessary. You should only have to allocate or deallocate pages if the segment break crosses a page

boundary.

Memory can only be mapped into a virtual address space in quanta of pages. Therefore, if the
segment break is not page-aligned, it is acceptable for memory after the system break, but before
the next page boundary, to be accessible by a process. See Unmapped region and no man’s land for

more information.

Allocating additional pages for a process’ heap will fail if, for example, the user memory pool is
exhausted and palloc_get page fails. If sbrk fails, the net effect should be that sbrk returns (void+*) -1
and that the segment break and the process heap are unaffected. You might have to undo any
operations you have done so far in this case.

Finally, real operating systems may allocate pages for sbrk lazily, similar to stack growth. While sbrk
moves the segment break, pages are not allocated until the user program actually tries to access
data in its heap. For simplicity, you are not required to implement this optimization.

Copyright © 2022 CS 162 staff.



