
CS162
Operating Systems and
Systems Programming

Lecture 15

Memory 2: Paging (Con’t), Caching and TLBs

March 7th, 2024
Prof. John Kubiatowicz

http://cs162.eecs.Berkeley.edu

Lec 15.23/7/2024 Kubiatowicz CS162 © UCB Spring 2024

Recall: General Address translation

• Consequently, two views of memory:
– View from the CPU (what program sees, virtual memory)
– View from memory (physical memory)
– Translation box (Memory Management Unit or MMU) converts between the two

views
• Translation  much easier to implement protection!

– If task A cannot even gain access to task B’s data, no way for A to adversely affect B
– Extra benefit: every program can be linked/loaded into same region of user address

space

Physical
Addresses

CPU MMU

Virtual
Addresses

Untranslated read or write

Lec 15.33/7/2024 Kubiatowicz CS162 © UCB Spring 2024

Recall: Multi-Segment Model

• Segment map resides in processor
– Segment number mapped into base/limit pair
– Base added to offset to generate physical address
– Error check catches offset out of range

• As many chunks of physical memory as entries
– Segment addressed by portion of virtual address
– However, could be included in instruction instead:

» x86 Example: mov [es:bx],ax.
• What is “V/N” (valid / not valid)?

– Can mark segments as invalid; requires check as well

Base0 Limit0 V
Base1 Limit1 V
Base2 Limit2 V
Base3 Limit3 N
Base4 Limit4 V
Base5 Limit5 N
Base6 Limit6 N
Base7 Limit7 V

OffsetSeg #Virtual
Address

Base2 Limit2 V

+ Physical
Address

> Erroroffset

Check Valid

Access
Error

Lec 15.43/7/2024 Kubiatowicz CS162 © UCB Spring 2024

Recall: Problems with Segmentation

• Must fit variable-sized chunks into physical memory
– Complicated allocation algorithms in kernel

• May move processes multiple times to fit everything
– Lots of wasted time copying

• Limited options for swapping to disk
– All or nothing: Can’t have part of a segment

• Fragmentation: wasted space
– External: free gaps between allocated chunks
– Internal: don’t need all memory within allocated chunks

process 6

process 5

process 2

OS

process 6

process 5

OS

process 6

process 5

OS

process 9

process 6

process 9

OS

process 10
process 11

Lec 15.53/7/2024 Kubiatowicz CS162 © UCB Spring 2024

Paging: Physical Memory in Fixed Size Chunks

• Solution to fragmentation from segments?
– Allocate physical memory in fixed size chunks (“pages”)
– Every chunk of physical memory is equivalent

» Can use simple vector of bits to handle allocation:
00110001110001101 … 110010

» Each bit represents page of physical memory
1  allocated, 0  free

• Should pages be as big as our previous segments?
– No: Can lead to lots of internal fragmentation

» Typically have small pages (1K-16K)
– Consequently: need multiple pages/segment

Lec 15.63/7/2024 Kubiatowicz CS162 © UCB Spring 2024

Physical Address
Offset

How to Implement Simple Paging?

• Page Table (One per process)
– Resides in physical memory
– Contains physical page and permission for each virtual page (e.g. Valid bits, Read, Write, etc)

• Virtual address mapping
– Offset from Virtual address copied to Physical Address

» Example: 10 bit offset  1024-byte pages
– Virtual page # is all remaining bits

» Example for 32-bits: 32-10 = 22 bits, i.e. 4 million entries
» Physical page # copied from table into physical address

– Check Page Table bounds and permissions

OffsetVirtual
Page #Virtual Address:

Access
Error

>PageTableSize

PageTablePtr page #0

page #2
page #3
page #4
page #5

V,R
page #1 V,R

V,R,W
V,R,W
N
V,R,W

page #1 V,R

Check Perm

Access
Error

Physical
Page #

Lec 15.73/7/2024 Kubiatowicz CS162 © UCB Spring 2024

Simple Page Table Example

a
b
c
d
e
f
g
h
i
j
k
l

0x00

0x04

0x08

Virtual
Memory

0x00

i
j
k
l

0x04

0x08

e
f
g
h

0x0C

a
b
c
d

0x10

Physical
Memory

Example (4 byte pages)

4
3
1

Page
Table

0

1

2

0000 0000

0001 0000

0000 0100 0000 1100

0000 1000

0000 0100
0x06?

0000 0110 0000 1110

0x0E!
0x09?

0000 1001 0000 0101

0x05!

Lec 15.83/7/2024 Kubiatowicz CS162 © UCB Spring 2024

PageTablePtrB page #0
page #1
page #2
page #3

page #5

V,R
N
V,R,W
N

page #4 V,R
V,R,W

page #4 V,R

What about Sharing?
OffsetVirtual

Page #
Virtual Address

(Process A):

PageTablePtrA page #0
page #1

page #3
page #4
page #5

V,R
V,R

page #2 V,R,W
V,R,W
N
V,R,W

OffsetVirtual
Page #

Virtual Address
(Process B):

Shared
Page

This physical page
appears in address

space of both processes

page #2 V,R,W

Lec 15.93/7/2024 Kubiatowicz CS162 © UCB Spring 2024

Where is page sharing used ?
• The “kernel region” of every process has the same page table entries

– The process cannot access it at user level
– But on U->K switch, kernel code can access it AS WELL AS the region for

THIS user
» What does the kernel need to do to access other user processes?

• Different processes running same binary!
– Execute-only, but do not need to duplicate code segments

• User-level system libraries (execute only)
• Shared-memory segments between different processes

– Can actually share objects directly between processes
» Must map page into same place in address space!

– This is a limited form of the sharing that threads have within a single
process

Lec 15.103/7/2024 Kubiatowicz CS162 © UCB Spring 2024

http://static.duartes.org/img/blogPosts/linuxFlexibleAddressSpaceLayout.png

Recall: Memory Layout for Linux 32-bit (Pre-Meltdown patch!)

Lec 15.113/7/2024 Kubiatowicz CS162 © UCB Spring 2024

Some simple security measures
• Address Space Randomization

– Position-Independent Code  can place user code anywhere in address space
» Random start address makes much harder for attacker to cause jump to code that it

seeks to take over
– Stack & Heap can start anywhere, so randomize placement

• Kernel address space isolation
– Don’t map whole kernel space into each process, switch to kernel page table
– Meltdownmap none of

kernel into user mode!

Lec 15.123/7/2024 Kubiatowicz CS162 © UCB Spring 2024

1111 1111 stack

heap

code

data

Virtual memory view

0000 0000

0100 0000

1000 0000

1100 0000

1111 0000

page # offset

Physical memory view

data

code

heap

stack

0000 0000
0001 0000

0101 000

0111 000

1110 0000

11111 11101
11110 11100
11101 null
11100 null
11011 null
11010 null
11001 null
11000 null
10111 null
10110 null
10101 null
10100 null
10011 null
10010 10000
10001 01111
10000 01110
01111 null
01110 null
01101 null
01100 null
01011 01101
01010 01100
01001 01011
01000 01010
00111 null
00110 null
00101 null
00100 null
00011 00101
00010 00100
00001 00011
00000 00010

Page Table
Summary: Paging

Lec 15.133/7/2024 Kubiatowicz CS162 © UCB Spring 2024

1111 1111
stack

heap

code

data

Virtual memory view

0000 0000

0100 0000

1000 0000

1100 0000

page # offset

Physical memory view

data

code

heap

stack

0000 0000
0001 0000

0101 000

0111 000

1110 0000

11111 11101
11110 11100
11101 null
11100 null
11011 null
11010 null
11001 null
11000 null
10111 null
10110 null
10101 null
10100 null
10011 null
10010 10000
10001 01111
10000 01110
01111 null
01110 null
01101 null
01100 null
01011 01101
01010 01100
01001 01011
01000 01010
00111 null
00110 null
00101 null
00100 null
00011 00101
00010 00100
00001 00011
00000 00010

Page Table

1110 0000

What happens if
stack grows to
1110 0000?

Summary: Paging

Lec 15.143/7/2024 Kubiatowicz CS162 © UCB Spring 2024

Summary: Paging

1111 1111
stack

heap

code

data

Virtual memory view

0000 0000

0100 0000

1000 0000

1100 0000

page # offset

11111 11101
11110 11100
11101 10111
11100 10110
11011 null
11010 null
11001 null
11000 null
10111 null
10110 null
10101 null
10100 null
10011 null
10010 10000
10001 01111
10000 01110
01111 null
01110 null
01101 null
01100 null
01011 01101
01010 01100
01001 01011
01000 01010
00111 null
00110 null
00101 null
00100 null
00011 00101
00010 00100
00001 00011
00000 00010

Page Table

0000 0000
0001 0000

0101 000

0111 000

1110 00001110 0000

Physical memory view

data

code

heap

stack

stack

Allocate new
pages where
room!

Lec 15.153/7/2024 Kubiatowicz CS162 © UCB Spring 2024

Administrivia
• Midterm 2: Thursday 3/14 from 8-10PM

– A week from today!!!
– All material up to Lecture 16 technically in bounds
– Closed book: with two double-sided handwritten sheets of notes

• Homework 4 is out
– Released yesterday, Wednesday 3/6

• Project 2 design document due this Friday!
• Starting next week – will have an opportunity to get extra credit

participation points by attending lecture
– Details to follow

• Reminder: Kubi Office Hours
– Monday 1:00PM—2:00PM
– Thursday 3:00PM—4:00PM

Lec 15.163/7/2024 Kubiatowicz CS162 © UCB Spring 2024

How big do things get?
• 32-bit address space => 232 bytes (4 GB)

– Note: “b” = bit, and “B” = byte
– And for memory:

» “K”(kilo) = 210 = 1024  103 (But not quite!): Sometimes called “Ki” (Kibi)
» “M”(mega) = 220 = (1024)2 = 1,048,576  106 (But not quite!): Sometimes called “Mi” (Mibi)
» “G”(giga) = 230 = (1024)3 = 1,073,741,824  109 (But not quite!): Sometimes called “Gi” (Gibi)

• Typical page size: 4 KB
– how many bits of the address is that ? (remember 210 = 1024)
– Ans – 4KB = 4×210 = 212  12 bits of the address

• So how big is the simple page table for each process?
– 232/212 = 220 (that’s about a million entries) x 4 bytes each => 4 MB
– When 32-bit machines got started (vax 11/780, intel 80386), 16 MB was a LOT of memory

• How big is a simple page table on a 64-bit processor (x86_64)?
– 264/212 = 252(that’s 4.51015 or 4.5 exa-entries)8 bytes each =

361015 bytes or 36 exa-bytes!!!! This is a ridiculous amount of memory!
– This is really a lot of space – for only the page table!!!

• The address space is sparse, i.e. has holes that are not mapped to physical memory
– So, most of this space is taken up by page tables mapped to nothing

Lec 15.173/7/2024 Kubiatowicz CS162 © UCB Spring 2024

Page Table Discussion
• What needs to be switched on a context switch?

– Page table pointer and limit
• What provides protection here?

– Translation (per process) and dual-mode!
– Can’t let process alter its own page table!

• Analysis
– Pros

» Simple memory allocation
» Easy to share

– Con: What if address space is sparse?
» E.g., on UNIX, code starts at 0, stack starts at (231-1)
» With 1K pages, need 2 million page table entries!

– Con: What if table really big?
» Not all pages used all the time  would be nice to have working set of

page table in memory
• Simple Page table is way too big!

– Does it all need to be in memory?
– How about multi-level paging?
– or combining paging and segmentation

Lec 15.183/7/2024 Kubiatowicz CS162 © UCB Spring 2024

How to Structure a Page Table
• Page Table is a map (function) from VPN to PPN

• Simple page table corresponds to a very large lookup table
– VPN is index into table, each entry contains PPN

• What other map structures can you think of?
– Trees?
– Hash Tables?

Page
TableVirtual Address Physical Address

Lec 15.193/7/2024 Kubiatowicz CS162 © UCB Spring 2024

Physical
Address:

OffsetPhysical
Page #

4KB

10 bits 10 bits 12 bits
Virtual
Address:

OffsetVirtual
P2 index

Virtual
P1 index

4 bytes

PageTablePtr

• Tree of Page Tables
– “Magic” 10b-10b-12b pattern!

• Tables fixed size (1024 entries)
– On context-switch: save single PageTablePtr register

(i.e. CR3)
• Valid bits on Page Table Entries

– Don’t need every 2nd-level table
– Even when exist, 2nd-level tables can reside on disk if

not in use 4 bytes

Fix for sparse address space: The two-level page table

Lec 15.203/7/2024 Kubiatowicz CS162 © UCB Spring 2024

Example: x86 classic 32-bit address translation

• Intel terminology: Top-level page-table called a “Page Directory”
– With “Page Directory Entries”

• CR3 provides physical address of the page directory
– This is what we have called the “PageTablePtr” in previous slides
– Change in CR3 changes the whole translation table!

Lec 15.213/7/2024 Kubiatowicz CS162 © UCB Spring 2024

What is in a Page Table Entry (PTE)?
• What is in a Page Table Entry (or PTE)?

– Pointer to next-level page table or to actual page
– Permission bits: valid, read-only, read-write, write-only

• Example: Intel x86 architecture PTE:
– Address same format previous slide (10, 10, 12-bit offset)
– Intermediate page tables called “Directories”

P: Present (same as “valid” bit in other architectures)
W: Writeable
U: User accessible

PWT: Page write transparent: external cache write-through
PCD: Page cache disabled (page cannot be cached)

A: Accessed: page has been accessed recently
D: Dirty (PTE only): page has been modified recently

PS: Page Size: PS=14MB page (directory only).
Bottom 22 bits of virtual address serve as offset

Page Frame Number
(Physical Page Number)

Free
(OS) 0

PS D A

PC
D

PW
T U W P

01234567811-931-12

Lec 15.223/7/2024 Kubiatowicz CS162 © UCB Spring 2024

Examples of how to use a PTE
• How do we use the PTE?

– Invalid PTE can imply different things:
» Region of address space is actually invalid or
» Page/directory is just somewhere else than memory

– Validity checked first
» OS can use other (say) 31 bits for location info

• Usage Example: Demand Paging
– Keep only active pages in memory
– Place others on disk and mark their PTEs invalid

• Usage Example: Copy on Write
– UNIX fork gives copy of parent address space to child

» Address spaces disconnected after child created
– How to do this cheaply?

» Make copy of parent’s page tables (point at same memory)
» Mark entries in both sets of page tables as read-only
» Page fault on write creates two copies

• Usage Example: Zero Fill On Demand
– New data pages must carry no information (say be zeroed)
– Mark PTEs as invalid; page fault on use gets zeroed page
– Often, OS creates zeroed pages in background

Lec 15.233/7/2024 Kubiatowicz CS162 © UCB Spring 2024

Sharing with multilevel page tables

• Entire regions of the address
space can be efficiently shared

OffsetPhysical
Page #

4KB

10 bits 10 bits 12 bits
Virtual
Address:

OffsetVirtual
P2 index

Virtual
P1 index

PageTablePtr

PageTablePtr’

Lec 15.243/7/2024 Kubiatowicz CS162 © UCB Spring 2024

stack

Summary: Two-Level Paging
1111 1111

stack

heap

code

data

Virtual memory view

0000 0000

0100 0000

1000 0000

1100 0000

page1 # offset

Physical memory view

data

code

heap

stack

0000 0000
0001 0000

0101 000

0111 000

1110 0000

page2 #

111
110 null
101 null
100
011 null
010
001 null
000

11 11101
10 11100
01 10111
00 10110

11 01101
10 01100
01 01011
00 01010

11 00101
10 00100
01 00011
00 00010

11 null
10 10000
01 01111
00 01110

Page Tables
(level 2)

Page Table
(level 1)

1111 0000

Lec 15.253/7/2024 Kubiatowicz CS162 © UCB Spring 2024

stack

Summary: Two-Level Paging

stack

heap

code

data

Virtual memory view

1001 0000
(0x90)

Physical memory view

data

code

heap

stack

0000 0000
0001 0000

1000 0000
(0x80)

1110 0000

111
110 null
101 null
100
011 null
010
001 null
000

11 11101
10 11100
01 10111
00 10110

11 01101
10 01100
01 01011
00 01010

11 00101
10 00100
01 00011
00 00010

11 null
10 10000
01 01111
00 01110

Page Tables
(level 2)

Page Table
(level 1)

Lec 15.263/7/2024 Kubiatowicz CS162 © UCB Spring 2024

Offset

Physical Address

• What about a tree of tables?
– Lowest level page table  memory still allocated with bitmap
– Higher levels often segmented

• Could have any number of levels. Example (top segment):

• What must be saved/restored on context switch?
– Contents of top-level segment registers (for this example)
– Pointer to top-level table (page table)

Multi-level Translation: Segments + Pages

page #0
page #1

page #3
page #4
page #5

V,R
V,R

page #2 V,R,W
V,R,W
N
V,R,W

Virtual
Address:

OffsetVirtual
Page #

Virtual
Seg #

Base0 Limit0 V
Base1 Limit1 V
Base2 Limit2 V
Base3 Limit3 N
Base4 Limit4 V
Base5 Limit5 N
Base6 Limit6 N
Base7 Limit7 V

Base2 Limit2 V

Access
Error>

page #2 V,R,W

Physical
Page #

Check Permissions

Access
Error

Lec 15.273/7/2024 Kubiatowicz CS162 © UCB Spring 2024

What about Sharing (Complete Segment)?
Process A: OffsetVirtual

Page #
Virtual
Seg #

Base0 Limit0 V
Base1 Limit1 V
Base2 Limit2 V
Base3 Limit3 N
Base4 Limit4 V
Base5 Limit5 N
Base6 Limit6 N
Base7 Limit7 V

Base2 Limit2 V

page #0
page #1
page #2
page #3
page #4
page #5

V,R
V,R
V,R,W
V,R,W
N
V,R,W

Shared Segment
Base0 Limit0 V
Base1 Limit1 V
Base2 Limit2 V
Base3 Limit3 N
Base4 Limit4 V
Base5 Limit5 N
Base6 Limit6 N
Base7 Limit7 V

Base2 Limit2 V

Process B: OffsetVirtual
Page #

Virtual
Seg #

Lec 15.283/7/2024 Kubiatowicz CS162 © UCB Spring 2024

Multi-level Translation Analysis
• Pros:

– Only need to allocate as many page table entries as we need for
application

» In other wards, sparse address spaces are easy
– Easy memory allocation
– Easy Sharing

» Share at segment or page level (need additional reference counting)
• Cons:

– One pointer per page (typically 4K – 16K pages today)
– Page tables need to be contiguous

» However, the 10b-10b-12b configuration keeps tables to exactly one
page in size

– Two (or more, if >2 levels) lookups per reference
» Seems very expensive!

Lec 15.293/7/2024 Kubiatowicz CS162 © UCB Spring 2024

Recall: Dual-Mode Operation
• Can a process modify its own translation tables? NO!

– If it could, could get access to all of physical memory (no protection!)
• To Assist with Protection, Hardware provides at least two modes (Dual-Mode

Operation):
– “Kernel” mode (or “supervisor” or “protected”)
– “User” mode (Normal program mode)
– Mode set with bit(s) in control register only accessible in Kernel mode
– Kernel can easily switch to user mode; User program must invoke an exception of some

sort to get back to kernel mode (more in moment)
• Note that x86 model actually has more modes:

– Traditionally, four “rings” representing priority; most OSes use only two:
» Ring 0  Kernel mode, Ring 3  User mode
» Called “Current Privilege Level” or CPL

– Newer processors have additional mode for hypervisor (“Ring -1”)
• Certain operations restricted to Kernel mode:

– Modifying page table base (CR3 in x86), and segment descriptor tables
» Have to transition into Kernel mode before you can change them!

– Also, all page-table pages must be mapped only in kernel mode
Lec 15.303/7/2024 Kubiatowicz CS162 © UCB Spring 2024

2-level page table
in 10-10-12 bit address

Combined address
Is 32-bit “linear”
Virtual address

Segment Selector from
instruction: mov eax, gs(0x0)

First level
called “directory”

Second level
called “table”

Making it real: X86 Memory model with segmentation (16/32-bit)

Lec 15.313/7/2024 Kubiatowicz CS162 © UCB Spring 2024

X86 Segment Descriptors (32-bit Protected Mode)
• Segments are implicit in the instruction (e.g. code segments) or part of the instruction

– There are 6 registers: SS, CS, DS, ES, FS, GS
• What is in a segment register?

– A pointer to the actual segment description:
– G/L selects between GDT and LDT tables (global vs local descriptor tables)
– RPL: Requestor’s Privilege Level (RPL of CS  Current Privilege Level)

• Two registers: GDTR/LDTR hold pointers to global/local descriptor tables in memory
– Descriptor format (64 bits):

G: Granularity of segment [Limit Size] (0: bytes, 1: 4KiB unit)
DB: Default operand size (0: 16bit, 1: 32bit)

A: Programmer definable (no hardware meaning)
P: Segment present

DPL: Descriptor Privilege Level: Access requires Max(CPL,RPL)DPL
S: System Segment (0: System, 1: code or data)

Type: Code, Data, Segment

Segment selector [13 bits] G
/L RPL

Segment Register

Lec 15.323/7/2024 Kubiatowicz CS162 © UCB Spring 2024

How are segments used?
• One set of global segments (GDT) for everyone, different set of local

segments (LDT) for every process
• In legacy applications (16-bit mode):

– Segments provide protection for different components of user programs
– Separate segments for chunks of code, data, stacks

» RPL of Code Segment CPL (Current Privilege Level)
– Limited to 64K segments

• Modern use in 32-bit Mode:
– Even though there is full segment functionality, segments are set up as

“flattened”, i.e. every segment is 4GB in size
– One exception: Use of GS (or FS) as a pointer to “Thread Local Storage” (TLS)

» A thread can make accesses to TLS like this:
mov eax, gs(0x0)

• Modern use in 64-bit (“long”) mode
– Most segments (SS, CS, DS, ES) have zero base and no length limits
– Only FS and GS retain their functionality TLS

Lec 15.333/7/2024 Kubiatowicz CS162 © UCB Spring 2024

Physical
Address:
(40-50 bits)

12bit OffsetPhysical Page #

X86_64: Four-level page table!
9 bits 9 bits 12 bits

48-bit Virtual
Address: OffsetVirtual

P2 index
Virtual
P1 index

8 bytes

PageTablePtr

Virtual
P3 index

Virtual
P4 index

9 bits 9 bits

4096-byte pages (12 bit offset)
Page tables also 4k bytes (pageable)

Lec 15.343/7/2024 Kubiatowicz CS162 © UCB Spring 2024

From x86_64 architecture specification

• All current x86 processor support a 64 bit operation
• 64-bit words (so ints are 8 bytes) but 48-bit addresses

Lec 15.353/7/2024 Kubiatowicz CS162 © UCB Spring 2024

Larger page sizes supported as well

• Larger page sizes (2MB, 1GB) make sense since memory is now cheap
– Great for kernel, large libraries, etc
– Use limited primarily by internal fragmentation…

Lec 15.363/7/2024 Kubiatowicz CS162 © UCB Spring 2024

7 bits 9 bits 12 bits64bit Virtual
Address: OffsetVirtual

P2 index
Virtual
P1 index

Virtual
P3 index

Virtual
P4 index

9 bits 9 bits
Virtual
P5 index

Virtual
P6 index

9 bits 9 bits

No!

Too slow
Too many almost-empty tables

IA64: 64bit addresses: Six-level page table?!?

Lec 15.373/7/2024 Kubiatowicz CS162 © UCB Spring 2024

• With all previous examples (“Forward Page Tables”)
– Size of page table is at least as large as amount of virtual memory allocated

to processes
– Physical memory may be much less

» Much of process space may be out on disk or not in use

• Answer: use a hash table
– Called an “Inverted Page Table”
– Size is independent of virtual address space
– Directly related to amount of physical memory
– Very attractive option for 64-bit address spaces

» PowerPC, UltraSPARC, IA64
• Cons:

– Complexity of managing hash chains: Often in hardware!
– Poor cache locality of page table

Alternative: Inverted Page Table

OffsetVirtual
Page #

Hash
Table

OffsetPhysical
Page #

Lec 15.383/7/2024 Kubiatowicz CS162 © UCB Spring 2024

Address Translation Comparison

Advantages Disadvantages

Simple Segmentation
Fast context switching
(segment map maintained by
CPU)

External fragmentation

Paging (Single-Level) No external fragmentation
Fast and easy allocation

Large table size (~ virtual
memory)
Internal fragmentation

Paged Segmentation Table size ~ # of pages in
virtual memory
Fast and easy allocation

Multiple memory references
per page accessMulti-Level Paging

Inverted Page Table Table size ~ # of pages in
physical memory

Hash function more complex
No cache locality of page
table

Lec 15.393/7/2024 Kubiatowicz CS162 © UCB Spring 2024

How is the Translation Accomplished?

• The MMU must translate virtual address to physical address on:
– Every instruction fetch
– Every load
– Every store

• What does the MMU need to do to translate an address?
– 1-level Page Table

» Read PTE from memory, check valid, merge address
» Set “accessed” bit in PTE, Set “dirty bit” on write

– 2-level Page Table
» Read and check first level
» Read, check, and update PTE

– N-level Page Table …
• MMU does page table Tree Traversal to translate each address

CPU MMU
Virtual
Addresses

Physical
Addresses

Lec 15.403/7/2024 Kubiatowicz CS162 © UCB Spring 2024

Where and What is the MMU ?

• The processor requests READ Virtual-Address to memory system
– Through the MMU to the cache (to the memory)

• Some time later, the memory system responds with the data stored at the physical
address (resulting from virtual  physical) translation

– Fast on a cache hit, slow on a miss
• So what is the MMU doing?
• On every reference (I-fetch, Load, Store) read (multiple levels of) page table entries

to get physical frame or FAULT
– Through the caches to the memory
– Then read/write the physical location

Processor
(core) Cache(s)

Physical
Memory

MMU

< data @ mem[VtoP(m)] >

page
tablesPTBR

Lec 15.413/7/2024 Kubiatowicz CS162 © UCB Spring 2024

Recall: CS61c Caching Concept

• Cache: a repository for copies that can be accessed more quickly than the original
– Make frequent case fast and infrequent case less dominant

• Caching underlies many techniques used today to make computers fast
– Can cache: memory locations, address translations, pages, file blocks, file

names, network routes, etc…
• Only good if:

– Frequent case frequent enough and
– Infrequent case not too expensive

• Important measure: Average Access time =
(Hit Rate x Hit Time) + (Miss Rate x Miss Time)

Lec 15.423/7/2024 Kubiatowicz CS162 © UCB Spring 2024

Recall: In Machine Structures (eg. 61C) …
• Caching is the key to memory system performance

Average Memory Access Time (AMAT)
= (Hit Rate x HitTime) + (Miss Rate x MissTime)
Where HitRate + MissRate = 1

HitRate = 90% => AMAT = (0.9 x 1) + (0.1 x 101)=11 ns
HitRate = 99% => AMAT = (0.99 x 1) + (0.01 x 101)=2.01 ns
MissTimeL1 includes HitTimeL1+MissPenaltyL1 HitTimeL1 +AMATL2

Processor

Main
Memory
(DRAM)

100ns1 ns

Cache
(SRAM)

Processor

Main
Memory
(DRAM)

Access time = 100ns

Lec 15.433/7/2024 Kubiatowicz CS162 © UCB Spring 2024

• Cannot afford to translate on every access
– At least three DRAM accesses per actual DRAM access
– Or: perhaps I/O if page table partially on disk!

• Even worse: What if we are using caching to make memory
access faster than DRAM access?

• Solution? Cache translations!
– Translation Cache: TLB (“Translation Lookaside Buffer”)

Another Major Reason to Deal with Caching

page #0
page #1

page #3
page #4
page #5

V,R
V,R

page #2 V,R,W
V,R,W
N
V,R,W

Offset

Physical Address

Virtual
Address:

OffsetVirtual
Page #

Virtual
Seg #

Base0 Limit0 V
Base1 Limit1 V
Base2 Limit2 V
Base3 Limit3 N
Base4 Limit4 V
Base5 Limit5 N
Base6 Limit6 N
Base7 Limit7 V Access

Error>

Physical
Page #

Check Perm

Access
Error

Lec 15.443/7/2024 Kubiatowicz CS162 © UCB Spring 2024

Why Does Caching Help? Locality!

• Temporal Locality (Locality in Time):
– Keep recently accessed data items closer to processor

• Spatial Locality (Locality in Space):
– Move contiguous blocks to the upper levels

Address Space0 2n - 1

Probability
of reference

Lower Level
MemoryUpper Level

Memory
To Processor

From Processor
Blk X

Blk Y

Lec 15.453/7/2024 Kubiatowicz CS162 © UCB Spring 2024

Recall: Memory Hierarchy
• Caching: Take advantage of the principle of locality to:

– Present the illusion of having as much memory as in the cheapest technology
– Provide average speed similar to that offered by the fastest technology

Core

Core

Secondary
Storage
(Disk)

Processor

Main
Memory
(DRAM)

1 10,000,000
(10 ms)Speed (ns): 10-30 100

100BsSize (bytes): MBs GBs TBs

0.3 3

10kBs 100kBs

Secondary
Storage
(SSD)

100,000
(0.1 ms)
100GBs

Address Translation
needs to occur here

Page table lives here
(perhaps cached)

Lec 15.463/7/2024 Kubiatowicz CS162 © UCB Spring 2024

How do we make Address Translation Fast?
• Cache results of recent translations !

– Different from a traditional cache
– Cache Page Table Entries using Virtual Page # as the key

Processor
(core) Cache(s)

Physical
Memory

MMU
page
tablesPTBR

V_Pg M1 : <Phs_Frame #1, V, … >

V_Pg M2 : <Phs_Frame #2, V, … >

V_Pg Mk : <Phs_Frame #k, V, … >

Lec 15.473/7/2024 Kubiatowicz CS162 © UCB Spring 2024

Translation Look-Aside Buffer

• Record recent Virtual Page # to Physical Frame # translation
• If present, have the physical address without reading any of the page

tables !!!
– Even if the translation involved multiple levels
– Caches the end-to-end result

• Was invented by Sir Maurice Wilkes – prior to caches
– When you come up with a new concept, you get to name it!
– People realized “if it’s good for page tables, why not the rest of the data in

memory?”
• On a TLB miss, the page tables may be cached, so only go to memory

when both miss

Lec 15.483/7/2024 Kubiatowicz CS162 © UCB Spring 2024

Caching Applied to Address Translation

• Question is one of page locality: does it exist?
– Instruction accesses spend a lot of time on the same page

(since accesses sequential)
– Stack accesses have definite locality of reference
– Data accesses have less page locality, but still some…

• Can we have a TLB hierarchy?
– Sure: multiple levels at different sizes/speeds

Data Read or Write
(untranslated)

CPU Physical
Memory

TLB

Translate
(MMU)

No

Virtual
Address

Physical
Address

Yes
Cached?

Lec 15.493/7/2024 Kubiatowicz CS162 © UCB Spring 2024

Conclusion
• Page Tables

– Memory divided into fixed-sized chunks of memory
– Virtual page number from virtual address mapped through page table to physical page

number
– Offset of virtual address same as physical address
– Large page tables can be placed into virtual memory

• Multi-Level Tables
– Virtual address mapped to series of tables
– Permit sparse population of address space

• Inverted Page Table
– Use of hash-table to hold translation entries
– Size of page table ~ size of physical memory rather than size of virtual memory

• The Principle of Locality:
– Program likely to access a relatively small portion of the address space at any instant of time.

» Temporal Locality: Locality in Time
» Spatial Locality: Locality in Space

