
CS162 Midterm 2 Review

Spring 2023



Midterm 2 Logistics

● Thursday 03/14 from 8-10 PM PST (𝝿 day!)
○ Remember to eat pie before the midterm for good luck 🍀

● Scope: 
○ Lectures 1-16, Sections 0-6, HW 0-3, Projects 0-1, and Project 2 Design

● Midterm 2 Logistics
● Midterm 2 Review Session

https://edstem.org/us/courses/50852/discussion/4523106
https://edstem.org/us/courses/50852/discussion/4543993


Disclaimer

This is not an exhaustive review of all topics that are in scope for the midterm.

“You are responsible for the sum total of human knowledge since the beginning of 
recorded history with particular emphasis on the contents of this course.”

~a certain wise guy at Berkeley



Outline

I. Resource Allocation
- Deadlock
- Resource Alloc. Graphs
- Banker’s Algorithm

II. Scheduling
- FIFO/RR/SRTF/Priority
- Realtime

III. Addressing
- Virtual Memory
- Paging

IV. Caching
- Associativity
- Eviction policies



Resource Allocation 
Deadlock & Banker’s Algorithm



Conditions for Deadlock

1. Hold and wait
Thread holding at least one 
resource is waiting to acquire 
additional resources held by other 
threads.

2. No preemption
Resources are released only 
voluntarily by the thread holding 
the resource, after thread is 
finished with it.

3. Mutual exclusion
Each resource can only be used by 
one thread at a time.

4. Circular Wait
There exists a set {T1, …, Tn} of waiting 
threads s.t.

- T1 is waiting for a resource that is held by T2
- T2 is waiting for a resource that is held by T3
- …
- Tn is waiting for a resource that is held by T1



Conditions for Deadlock

Question: 

A: Is it possible to have
            deadlock without one of
            these conditions?

B: Does having all four 
            conditions present
            guarantee deadlock?



Conditions for Deadlock

Question: 

A: Is it possible to have
            deadlock without one of
            these conditions?

B: Does having all four 
            conditions present
            guarantee deadlock?

Answer:

A: No; all four must be present in
                    order for deadlock to occur.

B: No; they are necessary, but not
                    sufficient.



Deadlock

What types of resources can a program deadlock on?

All of them (if shared between multiple programs)!
Examples:

- Files
- Memory
- Particular I/O Device
- Locks

We just focus on locks because they’re convenient and a common source of 
deadlock in practice.



Resource Allocation Graphs

- Model:
- Set of threads
- Set of resources

- Threads compete for access
- Graph structure:

- Request edge:
Edge from a thread to a resource it wants to use

- Assignment edge:
Edge from a resource to the thread which owns it



Resource Allocation Graph Examples

T1 T2 T3

R1 R2

R3 R4

Allocation Graph
With Deadlock

T1

T2

T3R2

R1

T4

Allocation Graph
With Cycle, but
No Deadlock

• Recall:
– request edge – directed edge Ti → Rj
– assignment edge – directed edge Rj → Ti

Simple Resource
Allocation Graph

T1 T2 T3

R1 R2

R3 R4



Sema A = init(3);

Sema B = init(1);

Sema C = init(1);

f1() {
down(A);
down(B);
up(A);
up(B);

}

Can this system enter deadlock?
Each function can be called by any 
number of threads.

Deadlock: Problem 1

f2() {
down(C);
down(B);
up(B);
up(C);

}

f3() {
down(B);
down(C);
up(B);
up(C);

}



Sema A = init(3);

Sema B = init(1);

Sema C = init(1);

f1() {
down(A);
down(B);
up(A);
up(B);

}

Yes. An example of circular wait.
Run: the first line of f1,
        first line of f2,
        then the first line of f3.

Deadlock: Problem 1 (Soln)

f2() {
down(C);
down(B);
up(B);
up(C);

}

f3() {
down(B);
down(C);
up(B);
up(C);

}



Sema A = init(3);

Sema B = init(1);

Sema C = init(1);

f1() {
down(A);
down(B);
up(A);
up(B);

}

Yes. An example of circular wait.
Run: the first line of f1,
        first line of f2,
        then the first line of f3.

Deadlock: Problem 1 (Soln)

f2() {
down(C);
down(B);
up(B);
up(C);

}

f3() {
down(B);
down(C);
up(B);
up(C);

}

Owns C Owns BOwns A



Deadlock: Problem 2

int matrix[100][100];
Lock xLocks[100];
Lock yLocks[100];
void foo(int x, int y) {
    acquire(xLocks[x]);
    acquire(yLocks[y]);
    matrix[x][y] += 1;
    release(xLocks[x]);
    release(yLocks[y]);
}

If multiple threads call this function, can 
the system enter deadlock? Why or why 
not?



Deadlock: Problem 2 (soln.)

int matrix[100][100];
Lock xLocks[100];
Lock yLocks[100];
void foo(int x, int y) {
    acquire(xLocks[x]);
    acquire(yLocks[y]);
    matrix[x][y] += 1;
    release(xLocks[x]);
    release(yLocks[y]);
}

If multiple threads call this function, can 
the system enter deadlock? Why or why 
not?
No, because there is no possibility of 
circular wait:
we always acquire from xLocks before 
yLocks



Deadlock Avoidance

Some Approaches:
1. Infinite Resources

a. Virtual Memory

2. Don’t share resources
a. No IPC

3. Don’t allow waiting 
a. Killing a process

What's the best and potentially easiest to implement?

4. Roll back
a. Journaling 

5. Impose ordering

6. Banker's Algorithm



Deadlock Avoidance

Some Approaches:
1. Infinite Resources

a. Virtual Memory

2. Don’t share resources
a. No IPC

3. Don’t allow waiting 
a. Killing a process

What's the best and potentially easiest to implement?

4. Roll back
a. Journaling 

5. Impose ordering

6. Banker's Algorithm



Banker’s Algorithm
The Approach: When a request comes 
in...

● Pretend the request is granted, are 
we at risk of entering deadlock?

○ If yes, then deny the request 
(or hang)

○ Else, allow the request

If all threads aren’t able finish, deadlock is 
possible. This is known as an unsafe state.



Banker’s Algorithm
The Approach: When a request comes 
in...

● Pretend the request is granted, are 
we at risk of entering deadlock?

○ If yes, then deny the request 
(or hang)

○ Else, allow the request

If UNFINISHED is not empty, deadlock is 
possible. This is known as an unsafe state.

[Avail] = [Free Resources]
add all threads to UNFINISHED
do {

DONE = true
for each NODE in UNFINISHED {

[Request] = [MaxNODE] - [AllocNODE]
if (request <= [Avail]) {

remove NODE from UNFINISHED
[Avail] += [AllocNODE]
DONE = false

}
}

} until (DONE)



Solving Banker’s Algorithm Problems
Can do whatever works best for you; one possible method:

- Given table of max resource amounts,
           table of resources used per thread:

- Create table of resources needed by each thread to complete,
             table of resources left in the common pool

- See if there are enough resources in the pool to give any one of the threads 
what it needs to complete

- If no: the program is not in a safe state
- If yes: ‘run’ the thread, thus returning its resources to the pool;

- if all threads have completed, the program is in a safe state;
- otherwise repeat the above until you run out of threads or get blocked



Banker’s Algorithm: Problem

A B C

T1 3 0 1

T2 0 4 4

T3 2 3 1

Max
A B C

Total 3 9 8

T1 1 0 1

T2 0 3 3

T3 1 2 1

Allocated

Is this system in a safe 
state? If this is the case, 
show a non-blocking 
sequence of thread 
executions.



Banker’s Algorithm: Problem

A B C

T1 3 0 1

T2 0 4 4

T3 2 3 1

Max
A B C

Total 3 9 8

T1 1 0 1

T2 0 3 3

T3 1 2 1

Allocated

Solution:
Yes, it is in a safe state.
Ordering: [T3, T1, T2]
       *Others exist!



Banker’s Algorithm: Problem

A B C

T1 3 0 1

T2 0 4 4

T3 2 3 1

Max

A B C

Total 3 9 8

T1 1 0 1

T2 0 3 3

T3 1 2 1

Allocated

A B C

Avail. 1 4 3

# Still Needed
A B C

T1 2 0 0

T2 0 1 1

T3 1 1 0

Solution:
Yes, it is in a safe state.
Ordering: [T3, T1, T2]



Banker’s Algorithm: Problem

A B C

T1 3 0 1

T2 0 4 4

T3 2 3 1

Max

A B C

Total 3 9 8

T1 1 0 1

T2 0 3 3

T3 1 2 1

Allocated

A B C

Avail. 1 4 3

# Still Needed
A B C

T1 2 0 0

T2 0 1 1

T3 1 1 0

Solution:
Yes, it is in a safe state.
Ordering: [T3, T1, T2]



Banker’s Algorithm: Problem

A B C

T1 3 0 1

T2 0 4 4

T3 2 3 1

Max

A B C

Total 3 9 8

T1 1 0 1

T2 0 3 3

T3 1 → 0 2 → 0 1 → 0

Allocated

A B C

Avail. 1 → 2 4 → 6 3 → 4

# Still Needed
A B C

T1 2 0 0

T2 0 1 1

T3 - - -

Solution:
Yes, it is in a safe state.
Ordering: [T3, T1, T2]



Banker’s Algorithm: Problem

A B C

T1 3 0 1

T2 0 4 4

T3 2 3 1

Max

A B C

Total 3 9 8

T1 1 0 1

T2 0 3 3

T3 0 0 0

Allocated

A B C

Avail. 2 6 4

# Still Needed
A B C

T1 2 0 0

T2 0 1 1

T3 - - -

Solution:
Yes, it is in a safe state.
Ordering: [T3, T1, T2]



Scheduling



Major Scheduling Algorithms

● Shortest Remaining Time First (SRTF)
■ Preemptively schedule process with 

shortest remaining time to execute
+ Optimal
– Impossible

● First-in, First-out (FIFO)
■ Schedule processes in the order of 

arrival
+ Very possible
– Unoptimal in certain cases (Convoy 

effect)

● Strict Priority (Priority)
■ Always run highest priority process
+ Good for getting important things 

done
– Starvation

● Round-Robin (RR)
■ Run the processes in a looping order 

for fixed quanta, pre-empting when 
they’ve used up their time

+ No starvation
– Context switching costs
– Have to select quantum



Real-Time Scheduling

● Key points:
○ Ensure system maintains performance guarantees (Deadlines)
○ Predictability >> Performance

● Task characteristics
○ Computation times known in advance (usually profiled)
○ Tasks have periodic deadlines

● Soft vs. Hard Real Time
○ Soft: Want to hit deadlines

⟶ Netflix packet streaming
○ Hard: Must hit deadlines

⟶ Embedded flight control computers



Real-Time Scheduling: Example Algorithms

● Hard Real-time:
○ Earliest Deadline First (EDF)
○ Deadline-Monotonic Scheduling 

(DM)
○ Rate-Monotonic Scheduling (RMS)
○ Least Slack Time Scheduling (LST)

● Soft Real-time
○ Constant Bandwidth Server (CBS)



Other Scheduling Algorithms

● More Important:
○ Lottery Scheduling

➢ Each process gets a ticket
+ Avoids starvation

○ Linux Completely Fair Scheduler
➢ Processes have a nice value; 

higher nice ≡ lower priority
➢ Red black tree to implement 

ready queue
➢ Pick thread with the smallest 

vruntime (measure of “CPU 
runtime”)

+ CoMpLeTeLy FaIr

● Still Important:
○ Shortest Job First
○ Multilevel Feedback Queue 

Scheduling



Other Scheduling Algorithms

● More Important:
○ Lottery Scheduling

➢ Each process gets a ticket
+ Avoids starvation

○ Linux Completely Fair Scheduler
➢ Processes have a nice value; 

higher nice ≡ lower priority
+ CoMpLeTeLy FaIr

● Still Important:
○ Shortest Job First
○ Multilevel Feedback Queue 

Scheduling



Abstract/Generalized Scheduling

● (Probably skip this slide tbh)
● Fairness in scheduling

○ Linux CFS
● Scheduling multiple resources

○ Lottery scheduling extension

● Dominant resource fairness (written by Shenker and Stoica!)
■ Sharing incentive
■ strategy-proofness
■ Pareto efficiency
■ Envy-freeness
■ Optimal (extension of max-min fairness)



Every Scheduling Problem Ever (sp17)

● Preemptive priority scheduler
● Break ties in SRTF by priority
● If a process arrives at time x, they are ready to run at the beginning of time x. 
● Ignore context switching overhead. 
● The quanta for RR is 1 unit of time. 
● For round robin: At the end of quantum X, add the previously running thread to the ready list, then add any new 

threads arriving at quantum X+1 to the ready list
● Total turnaround time is the time a process takes to complete after it arrives.

Process CPU Burst Arrives at start of Priority

A 4 1 1

B 1 2 2

C 2 4 4

D 3 5 3

Problem: Schedule 
& Give Tot. 
Turnaround Time 
for each of:

- Round Robin
- SRTF
- FIFO
- Strict Priority



Scheduling (RR)

Time: 1 2 3 4 5 6 7 8 9 10 Total Turnaround 
Time

RR

● The quanta for RR is 1 unit of time. 
● For round robin: At the end of quantum X, add the previously running thread to the ready 

list, then add any new threads arriving at quantum X+1 to the ready list
Process CPU Burst Arrives at start of Priority

A 4 1 1

B 1 2 2

C 2 4 4

D 3 5 3



Scheduling (RR)

Time: 1 (A) 2 (B) 3 4 (C) 5 (D) 6 7 8 9 10 Total Turnaround 
Time

RR

● The quanta for RR is 1 unit of time. 
● For round robin: At the end of quantum X, add the previously running thread to the ready 

list, then add any new threads arriving at quantum X+1 to the ready list
Process CPU Burst Arrives at start of Priority

A 4 1 1

B 1 2 2

C 2 4 4

D 3 5 3

Queue
 [ ]

Running
[ ]



Scheduling (RR)

Time: 1 (A) 2 (B) 3 4 (C) 5 (D) 6 7 8 9 10 Total Turnaround 
Time

RR

● The quanta for RR is 1 unit of time. 
● For round robin: At the end of quantum X, add the previously running thread to the ready 

list, then add any new threads arriving at quantum X+1 to the ready list
Process CPU Burst Arrives at start of Priority

A 4 1 1

B 1 2 2

C 2 4 4

D 3 5 3

Queue
 [A]

Running
[ ]



Scheduling (RR)

Time: 1 (A) 2 (B) 3 4 (C) 5 (D) 6 7 8 9 10 Total Turnaround 
Time

RR A

● The quanta for RR is 1 unit of time. 
● For round robin: At the end of quantum X, add the previously running thread to the ready 

list, then add any new threads arriving at quantum X+1 to the ready list
Process CPU Burst Arrives at start of Priority

A 4 1 1

B 1 2 2

C 2 4 4

D 3 5 3

Queue
 [ ]

Running
[A]



Scheduling (RR)

Time: 1 (A) 2 (B) 3 4 (C) 5 (D) 6 7 8 9 10 Total Turnaround 
Time

RR A

● The quanta for RR is 1 unit of time. 
● For round robin: At the end of quantum X, add the previously running thread to the 

ready list, then add any new threads arriving at quantum X+1 to the ready list
Process CPU Burst Arrives at start of Priority

A 4 1 1

B 1 2 2

C 2 4 4

D 3 5 3

Queue
 [A]

Running
[ ]



Scheduling (RR)

Time: 1 (A) 2 (B) 3 4 (C) 5 (D) 6 7 8 9 10 Total Turnaround 
Time

RR A

● The quanta for RR is 1 unit of time. 
● For round robin: At the end of quantum X, add the previously running thread to the ready 

list, then add any new threads arriving at quantum X+1 to the ready list
Process CPU Burst Arrives at start of Priority

A 4 1 1

B 1 2 2

C 2 4 4

D 3 5 3

Queue
 [A]
 [B]

Running
[ ]



Scheduling (RR)

Time: 1 (A) 2 (B) 3 4 (C) 5 (D) 6 7 8 9 10 Total Turnaround 
Time

RR A A

● The quanta for RR is 1 unit of time. 
● For round robin: At the end of quantum X, add the previously running thread to the ready 

list, then add any new threads arriving at quantum X+1 to the ready list
Process CPU Burst Arrives at start of Priority

A 4 1 1

B 1 2 2

C 2 4 4

D 3 5 3

Queue
 [B]

Running
[A]



Scheduling (RR)

Time: 1 (A) 2 (B) 3 4 (C) 5 (D) 6 7 8 9 10 Total Turnaround 
Time

RR A A

● The quanta for RR is 1 unit of time. 
● For round robin: At the end of quantum X, add the previously running thread to the ready 

list, then add any new threads arriving at quantum X+1 to the ready list
Process CPU Burst Arrives at start of Priority

A 4 1 1

B 1 2 2

C 2 4 4

D 3 5 3

Queue
 [B]
 [A]

Running
[ ]



Scheduling (RR)

Time: 1 (A) 2 (B) 3 4 (C) 5 (D) 6 7 8 9 10 Total Turnaround 
Time

RR A A B

● The quanta for RR is 1 unit of time. 
● For round robin: At the end of quantum X, add the previously running thread to the ready 

list, then add any new threads arriving at quantum X+1 to the ready list
Process CPU Burst Arrives at start of Priority

A 4 1 1

B 1 2 2

C 2 4 4

D 3 5 3

Queue
 [A]
 [ ]

Running
[B]



Scheduling (RR)

Time: 1 (A) 2 (B) 3 4 (C) 5 (D) 6 7 8 9 10 Total Turnaround 
Time

RR A A B

● The quanta for RR is 1 unit of time. 
● For round robin: At the end of quantum X, add the previously running thread to the ready 

list, then add any new threads arriving at quantum X+1 to the ready list
Process CPU Burst Arrives at start of Priority

A 4 1 1

B 1 2 2

C 2 4 4

D 3 5 3

Queue
 [A]
 [C]

Running
[ ]

(B is done!)



Scheduling (RR)

Time: 1 (A) 2 (B) 3 4 (C) 5 (D) 6 7 8 9 10 Total Turnaround 
Time

RR A A B A

● The quanta for RR is 1 unit of time. 
● For round robin: At the end of quantum X, add the previously running thread to the ready 

list, then add any new threads arriving at quantum X+1 to the ready list
Process CPU Burst Arrives at start of Priority

A 4 1 1

B 1 2 2

C 2 4 4

D 3 5 3

Queue
 [C]
 [ ]

Running
[A]



Scheduling (RR)

Time: 1 (A) 2 (B) 3 4 (C) 5 (D) 6 7 8 9 10 Total Turnaround 
Time

RR A A B A

● The quanta for RR is 1 unit of time. 
● For round robin: At the end of quantum X, add the previously running thread to the ready 

list, then add any new threads arriving at quantum X+1 to the ready list
Process CPU Burst Arrives at start of Priority

A 4 1 1

B 1 2 2

C 2 4 4

D 3 5 3

Queue
 [C]
 [A]

Running
[ ]



Scheduling (RR)

Time: 1 (A) 2 (B) 3 4 (C) 5 (D) 6 7 8 9 10 Total Turnaround 
Time

RR A A B A

● The quanta for RR is 1 unit of time. 
● For round robin: At the end of quantum X, add the previously running thread to the ready 

list, then add any new threads arriving at quantum X+1 to the ready list
Process CPU Burst Arrives at start of Priority

A 4 1 1

B 1 2 2

C 2 4 4

D 3 5 3

Queue
 [C]
 [A]
 [D]

Running
[ ]



Scheduling (RR)

Time: 1 (A) 2 (B) 3 4 (C) 5 (D) 6 7 8 9 10 Total Turnaround 
Time

RR A A B A C

● The quanta for RR is 1 unit of time. 
● For round robin: At the end of quantum X, add the previously running thread to the ready 

list, then add any new threads arriving at quantum X+1 to the ready list
Process CPU Burst Arrives at start of Priority

A 4 1 1

B 1 2 2

C 2 4 4

D 3 5 3

Queue
 [A]
 [D]
 [ ]

Running
[C]



Scheduling (RR)

Time: 1 (A) 2 (B) 3 4 (C) 5 (D) 6 7 8 9 10 Total Turnaround 
Time

RR A A B A C A D C D D

● The quanta for RR is 1 unit of time. 
● For round robin: At the end of quantum X, add the previously running thread to the ready 

list, then add any new threads arriving at quantum X+1 to the ready list
Process CPU Burst Arrives at start of Priority

A 4 1 1

B 1 2 2

C 2 4 4

D 3 5 3

Queue
 [ ]
 [ ]
 [ ]

Running
[ ]



Scheduling (RR)

Time: 1 (A) 2 (B) 3 4 (C) 5 (D) 6 7 8 9 10 Total Turnaround 
Time

RR A A B A C A D C D D 19

● The quanta for RR is 1 unit of time. 
● For round robin: At the end of quantum X, add the previously running thread to the ready 

list, then add any new threads arriving at quantum X+1 to the ready list
Process CPU Burst Arrives at start of Priority

A 4 1 1

B 1 2 2

C 2 4 4

D 3 5 3

Queue
 [ ]
 [ ]
 [ ]

Running
[ ]

A: Arrives @ 1, Finishes @ 6  → Turnaround of 6 
B: Arrives @ 2, Finishes @ 3  → Turnaround of 2 
C: Arrives @ 4, Finishes @ 8  → Turnaround of 5 
D: Arrives @ 5, Finishes @ 10 → Turnaround of 6 



Scheduling (SRTF)

Time: 1 (A) 2 (B) 3 4 (C) 5 (D) 6 7 8 9 10 Total Turnaround 
Time

SRTF

● Preemptive priority scheduler
● Break ties in SRTF by priority

Process CPU Burst Arrives at start of Priority

A 4 1 1

B 1 2 2

C 2 4 4

D 3 5 3

Available Processes: {}



Scheduling (SRTF)

Time: 1 (A) 2 (B) 3 4 (C) 5 (D) 6 7 8 9 10 Total Turnaround 
Time

SRTF

● Preemptive priority scheduler
● Break ties in SRTF by priority

Process CPU Burst Arrives at start of Priority

A 4 1 1

B 1 2 2

C 2 4 4

D 3 5 3

Available Processes: {A: 4}



Scheduling (SRTF)

Time: 1 (A) 2 (B) 3 4 (C) 5 (D) 6 7 8 9 10 Total Turnaround 
Time

SRTF A

● Preemptive priority scheduler
● Break ties in SRTF by priority

Process CPU Burst Arrives at start of Priority

A 4 1 1

B 1 2 2

C 2 4 4

D 3 5 3

Available Processes: {A: 3}



Scheduling (SRTF)

Time: 1 (A) 2 (B) 3 4 (C) 5 (D) 6 7 8 9 10 Total Turnaround 
Time

SRTF A

● Preemptive priority scheduler
● Break ties in SRTF by priority

Process CPU Burst Arrives at start of Priority

A 4 1 1

B 1 2 2

C 2 4 4

D 3 5 3

Available Processes: {A: 3, B: 1}



Scheduling (SRTF)

Time: 1 (A) 2 (B) 3 4 (C) 5 (D) 6 7 8 9 10 Total Turnaround 
Time

SRTF A B

● Preemptive priority scheduler
● Break ties in SRTF by priority

Process CPU Burst Arrives at start of Priority

A 4 1 1

B 1 2 2

C 2 4 4

D 3 5 3

Available Processes: {A: 3, B: 0}



Scheduling (SRTF)

Time: 1 (A) 2 (B) 3 4 (C) 5 (D) 6 7 8 9 10 Total Turnaround 
Time

SRTF A B A

● Preemptive priority scheduler
● Break ties in SRTF by priority

Process CPU Burst Arrives at start of Priority

A 4 1 1

B 1 2 2

C 2 4 4

D 3 5 3

Available Processes: {A: 2}



Scheduling (SRTF)

Time: 1 (A) 2 (B) 3 4 (C) 5 (D) 6 7 8 9 10 Total Turnaround 
Time

SRTF A B A

● Preemptive priority scheduler
● Break ties in SRTF by priority

Process CPU Burst Arrives at start of Priority

A 4 1 1

B 1 2 2

C 2 4 4

D 3 5 3

Available Processes: {A: 2, C: 2}



Scheduling (SRTF)

Time: 1 (A) 2 (B) 3 4 (C) 5 (D) 6 7 8 9 10 Total Turnaround 
Time

SRTF A B A C

● Preemptive priority scheduler
● Break ties in SRTF by priority

Process CPU Burst Arrives at start of Priority

A 4 1 1

B 1 2 2

C 2 4 4

D 3 5 3

Available Processes: {A: 2, C: 1} (break ties)



Scheduling (SRTF)

Time: 1 (A) 2 (B) 3 4 (C) 5 (D) 6 7 8 9 10 Total Turnaround 
Time

SRTF A B A C

● Preemptive priority scheduler
● Break ties in SRTF by priority

Process CPU Burst Arrives at start of Priority

A 4 1 1

B 1 2 2

C 2 4 4

D 3 5 3

Available Processes: {A: 2, C: 1, D:3}



Scheduling (SRTF)

Time: 1 (A) 2 (B) 3 4 (C) 5 (D) 6 7 8 9 10 Total Turnaround 
Time

SRTF A B A C C A A D D D 16

● Preemptive priority scheduler
● Break ties in SRTF by priority

Process CPU Burst Arrives at start of Priority

A 4 1 1

B 1 2 2

C 2 4 4

D 3 5 3



Scheduling (FIFO)

Time: 1 (A) 2 (B) 3 4 (C) 5 (D) 6 7 8 9 10 Total Turnaround 
Time

FIFO

Process CPU Burst Arrives at start of Priority

A 4 1 1

B 1 2 2

C 2 4 4

D 3 5 3



Scheduling (FIFO)

Time: 1 (A) 2 (B) 3 4 (C) 5 (D) 6 7 8 9 10 Total Turnaround 
Time

FIFO A A A A B C C D D D 18

Process CPU Burst Arrives at start of Priority

A 4 1 1

B 1 2 2

C 2 4 4

D 3 5 3



Scheduling (Priority)

Time: 1 (A) 2 (B) 3 4 (C) 5 (D) 6 7 8 9 10 Total Turnaround 
Time

Priority A B A C C D D D A A 17

● Preemptive priority scheduler

Process CPU Burst Arrives at start of Priority

A 4 1 1

B 1 2 2

C 2 4 4

D 3 5 3



Take a break :) 



Addressing

address translation & virtual memory



● Numbers:
○ 1 B = 8 bits
○ 1 KB = 2^10 B (not 1000!!!!)
○ 1 MB = 2^20 B
○ 1 GB = 2^30 B
○ 1 TB = 2^40 B

● Units of Time:
○ 1 ms = 10^-3 s
○ 1 µs = 10^-6 s
○ 1 ns = 10^-9 s
○ 1 ps = 10^-12 s

Units to Remember!



Why do we need Virtual Memory?

1. Protection: A process cannot access another process’s memory
2. Translation: Processor uses virtual addresses, Physical memory uses 

physical addresses
3. Efficiency: allows us to avoid paging out all of a process’ memory when taking 

it off of the CPU



Addressing Schemes

In increasing order of complexity:

● Base & Bound

● Memory Segmentation

● Paging
○ Single-Level
○ Multi-Level
○ Inverted (Linear)
○ Inverted (Hashed)



Base and Bound
vaddr

paddr

base

bound

If false, then error

+

<

+

● Pros:
+ Simple and fast protection & isolation
+ Can easily relocate program

● Cons:
– Promotes internal & external fragmentation
– Inter-process sharing is difficult 



(x86) Memory Segmentation

seg # offset

vaddr

Index Base Bound Other bits

0 <base for 
seg 0>

<bound 
for seg 0>

<other 
bits for 
seg 0>

1 <base for 
seg 1>

<bound 
for seg 1>

<other 
bits for 
seg 1>

... ... ... ...

(# of 
segs) - 1

<base for 
last seg>

<bound 
for last 
seg>

<other 
bits for 
last seg>

Segment map

<

If false, then error

+

paddr

If invalid, then error

● More flexible



Problems? Can we do better?

● Some fragmentation with variable-sized chunks in physical memory
● Move around processes a lot
● Translation happens on every single instruction
● Solution: Pages!

○ A new unit of memory where the physical address space is divided into fixed-sized chunks
○ Now physical memory ⇔ an array of pages 
○ Typically pages around ~1k-16k to avoid internal fragmentation 



Page Table: Single-Level

VPN offset

vaddr

Index PPN Other bits

0 <PPN for 
vpage 0>

<other bits 
for vpage 
0>

1 <PPN for 
vpage 1>

<other bits 
for vpage 
1>

... ... ...

(# of 
vpages) 
- 1

<PPN for 
last 
vpage>

<other bits 
for last 
vpage>

If bad bits, 
then error

PPN offset

paddr

● Pros:
○ Simple
○ Inter-process sharing is easy

● Cons:
○ Table too big

PageT
ableSi
ze

>

If false, then error

PageT
ablePt
r

Page table



Some terminology

● Virtual Page Number (VPN): Maps 1-to-1 with an entry in the page table
● Physical Page Number (PPN): Location in physical memory of the page

○ PTE = (# PPN bits) + (# control bits)
● Offset: Points to specific bytes in the physical page

○ 2^(# offset bits) ⇔ size of pages!
●



Paging Understanding Check!

1) What is contained in each entry of the page table?
2) How do we figure out how many entries in our page table there are?
3) T/F, paging produces less external fragmentation than base and bound.
4) What happens when I access memory marked as invalid?
5) How much memory does a page table with a 22-bit VPN with a 10-bit 

offset take?



Paging Understanding Check!
1) What is contained in each entry of the page table?

1. The PPN
2. Control bits (R, W, X, Valid, Dirty, Use, …)

(also called access bits, status bits, metadata bits, ‘other bits’)
2) How do we figure out how many entries in our page table there are?

● Number of possible VPNs (i.e. 2^(VPN #bits))
3) T/F, paging produces less external fragmentation than base and bound.

T
4) What happens when I access memory marked as invalid?

The page fault handler is run.
5) How much memory does a page table with a 22-bit VPN with a 10-bit 

offset take?
22-bits is 4 million entries => 16 MB!



Page Table: Multi-Level

VPNa VPNb

vaddr Index PPN Other bits

0 xxxxxxxx xxxxxxxx

1 xxxxxxxx xxxxxxxx

... ... ...

(# of 
vpages) 
- 1

xxxxxxxx xxxxxxxx

Index PageTab
lePtr

Other 
bits

0 xxxxxxxx xxxxx
xxx

1 xxxxxxxx xxxxx
xxx

... ... ...

(# of 
vpages) - 1

xxxxxxxx xxxxx
xxx

PPN offset

paddr

PageT
ablePt
r

offset

If bad 
bits, then 
error

Lvl a Page table

Lvl b Page table

Pro:
● Smaller tables



Multi-level Understanding Check!

Let’s say I still have a 32 bit virtual address space and 4 KiB pages, but I 
break the PPN up into 10 bits and 10 bits for use in a two level page table. 
How big are my page tables put together if I only have one page mapped?



Multi-level Understanding Check!

Let’s say I still have a 32 bit virtual address space and 4 KiB pages, but I 
break the PPN up into 10 bits and 10 bits for use in a two level page table. 
How big are my page tables put together if I only have one page mapped?

- If you only have one page mapped then you only need one node in the first layer and one 
node in the second layer. 10 bits for each level means 2^10 entries in each node. Because 
each entry is 4 bytes, 2^10 entries fits perfectly in one page (each node is one page). 
There are two nodes, so two pages = 4KiB + 4KiB = 8KiB memory needed. Huge 
improvement from 4MiB!



Multi-level Understanding Check!

4 B/entry * 
(2^22 
entries)
= 2^24 B

4 B/entry * 
(2^10 entries)
= 2^12 B

4 B/entry * 
(2^10 entries)
= 2^12 B

Single-level page table Multi-level page tables

Total: 16MiB Total: 
12KiB

4 B/entry * 
(2^10 entries)
= 2^12 B



(Linear) Inverted Page Table

VPN offset

vaddr

Index PID VPN Other bits

0 <PID for 
ppage 0>

<VPN for 
ppage 0>

<other bits 
for ppage 
0>

1 <PID for 
ppage 1>

<VPN for 
ppage 1>

<other bits 
for ppage 
1>

... ... ... ...

(# of 
ppages
) - 1

<PID for 
last 
ppage>

<VPN for 
last 
ppage>

<other bits 
for last 
ppage>

Inverted page table

PPN offset

paddr

pid

● Pros:
+ Single table → small

● Cons:
– Inter-process sharing 

hard
– Translation slow 

(linear scan)

If bad bits, 
then error



(Hashed) Inverted Page Table

VPN offset

vaddr Index PID VPN Other 
bits

0 xxxx xxxx xxxx

1 xxxx xxxx xxxx

... ... ... ...

(# of p- 
pages) - 
1

xxxx xxxx xxxx

Hash table (with linear probing)

PPN offset

paddr

pid

If bad bits, 
then error

Index PID VPN IPT 
index

0 <PID for 
ppage x>

<VPN for ppage x> x

1 <PID for 
ppage y>

<VPN for ppage y> y

... ... ... ...

(# of 
buckets) - 1

<PID for 
ppage z>

<VPN for ppage z> z

hash

Inverted page table

+ Faster translation



2018 Fall MT2 P5.a Derivative

● 24 bit virtual address space
● 2 KiB page size
● Single-level page table
● 2 B page table entries
● Q: how many bits is VPN; how many bits is offset?



2018 Fall MT2 P5.a Derivative

● Q: how many bits is VPN; how many bits is offset?
● A: 13; 11 because

○ offset #bits = lg(2 Ki) = 11
○ VPN #bits = (virtual addr space #bits) - (offset #bits) = 24 - 11 = 13

VPN: 13 offset: 11

vaddr: 24



2018 Fall MT2 P5.b Derivative

● 24-bit virtual address space
● 2 KiB page size
● Single-level page table
● 2 B page table entries
● 13 bit VPN; 11 bit offset

Problem:
Given that the PTE will 
contain 12 control bits per 
entry;
What is max possible size of 
the physical address space?



2018 Fall MT2 P5.b Derivative

● Given that the PTE will contain 12 control bits per entry;
What is max possible size of the physical address space?

● A: 15-bit because
○ PPN #bits = (PTE #bits) - (# other bits) = 2 * 8 - 12 = 16 - 12 = 4
○ physical address space #bits = (PPN #bits) + (offset #bits) = 4 + 11 = 15

PPN: 4 other: 12

PTE: 16



2018 Fall MT2 P5 Derivative

● 24-bit virtual address space
● 2 KiB page size
● Single-level page table
● 2 B page table entries
● 13 bit VPN; 11 bit offset
● Max 4 bit PPN; 12 other PTE bits (control bits)



2018 Fall MT2 P5.c Derivative
● 13 bit VPN; 11 bit offset
● Max 4 bit PPN
● 12 other/control bits
● Assume this is big-endian

Address +0 +1 +2 +3

0x00 fe 91 f6 a9

0x04 93 8c a8 d7

0x08 df c5 b0 fa

0x0c bc 83 c4 dd

0x10 9d af 88 ae

0x14 b8 e9 9d f0

PPN: 4

PTE: 16

other: 12

Problem:
Assuming we have 8 KiB physical 
memory w/ the PTE layout and 
memory on the right, and 
PageTablePtr as 0x8, translate 
0x000844, 0x000488, 0x000ccc 
*Assume valid bits & such check out fine

Address +0 +1 +2 +3

0x00 fe 91 f6 a9

0x04 93 8c a8 d7

0x08 df c5 b0 fa

0x0c bc 83 c4 dd

0x10 9d af 88 ae

0x14 b8 e9 9d f0



2018 Fall MT2 P5.c Derivative
● 13 bit VPN; 11 bit offset
● Max 4 bit PPN
● 12 other/control bits
● Assume this is big-endian

Address +0 +1 +2 +3

0x00 fe 91 f6 a9

0x04 93 8c a8 d7

0x08 df c5 b0 fa

0x0c bc 83 c4 dd

0x10 9d af 88 ae

0x14 b8 e9 9d f0

PPN: 4

PTE: 16

other: 12

Problem:
Assuming we have 8 KiB physical 
memory w/ the PTE layout and 
memory on the right, and 
PageTablePtr as 0x8, translate 
0x000844, 0x000488, 0x000ccc 

Soln: 0x5844, 0x6c88, 0xbccc

Address +0 +1 +2 +3

0x00 fe 91 f6 a9

0x04 93 8c a8 d7

0x08 df c5 b0 fa

0x0c bc 83 c4 dd

0x10 9d af 88 ae

0x14 b8 e9 9d f0



2018 Fall MT2 P5.c Derivative
● 13 bit VPN; 11 bit offset
● Q: PageTablePtr as 0x8,

     translate 0x000844
Answer: 0x5844 because
● vaddr: 0b1000 0100 0100
● VPN: 1; offset: 0b000 0100 0100
● PTE @ (PageTablePtr + VPN * 

(PTE size in bytes)) = 0x8 + 1 * 2 = 
0xa

● PTE: 0b1011 0000 1111 1010
● PPN: 0b1011 = b
● paddr: PPN || offset = 0b1011 || 

0b000 0100 0100 = 0x5844

Address +0 +1 +2 +3

0x00 fe 91 f6 a9

0x04 93 8c a8 d7

0x08 df c5 b0 fa

0x0c bc 83 c4 dd

0x10 9d af 88 ae

0x14 b8 e9 9d f0

PPN: 4

PTE: 16

other: 12

Address +0 +1 +2 +3

0x00 fe 91 f6 a9

0x04 93 8c a8 d7

0x08 df c5 b0 fa

0x0c bc 83 c4 dd

0x10 9d af 88 ae

0x14 b8 e9 9d f0



2018 Fall MT2 P5.c Derivative

● 13 bit VPN; 11 bit offset
● Q: PageTablePtr as 0x8,

     translate 0x000488

Answer: 0x6c88 because
● VPN: 0; offset: 0b100 1000 1000
● PTE @ (0x8 + 0 * 2) = 0x8
● PTE: 0b1101 1111 1100 0101
● PPN: 0b1101 = d
● paddr: 0b1101 || 0b100 1000 

1000 = 0x6c88

Address +0 +1 +2 +3

0x00 fe 91 f6 a9

0x04 93 8c a8 d7

0x08 df c5 b0 fa

0x0c bc 83 c4 dd

0x10 9d af 88 ae

0x14 b8 e9 9d f0

PPN: 4

PTE: 16

other: 12

Address +0 +1 +2 +3

0x00 fe 91 f6 a9

0x04 93 8c a8 d7

0x08 df c5 b0 fa

0x0c bc 83 c4 dd

0x10 9d af 88 ae

0x14 b8 e9 9d f0



2018 Fall MT2 P5.c Derivative

● 13 bit VPN; 11 bit offset
● Q: PageTablePtr as 0x8,

     translate 0x000ccc

Answer: 0x5ccc because
● VPN: 1; offset: 0b100 1100 1100
● PTE @ (0x8 + 1 * 2) = 0xa
● PTE: 0b1011 0000 1111 1010
● PPN: 0b1011 = b
● paddr: 0b1011 || 0b100 1100 1100 = 

0x5ccc

Address +0 +1 +2 +3

0x00 fe 91 f6 a9

0x04 93 8c a8 d7

0x08 df c5 b0 fa

0x0c bc 83 c4 dd

0x10 9d af 88 ae

0x14 b8 e9 9d f0

PPN: 4

PTE: 16

other: 12



2018 Fall MT2 P5.c Derivative
● 13 bit VPN; 11 bit offset
● Max 4 bit PPN; 12 other PTE bits 

(control bits)
● Q: assuming we have 16 KiB physical 

memory, PTE layout and memory on 
the right, and PageTablePtr as 0x4, 
translate 0x0008ad, 0x002655, 
0x001ff1 (also assume bits aside from 
valid always check out good)

Address +0 +1 +2 +3

0x00 fe 91 f6 a9

0x04 93 8c a8 d7

0x08 df c5 b0 fa

0x0c bc 83 c4 dd

0x10 9d af 88 ae

0x14 b8 e9 9d f0

PPN: 3 other: 11

PTE: 16

unused: 1 valid: 1



2018 Fall MT2 P5.c Derivative
● 13 bit VPN; 11 bit offset
● Max 4 bit PPN; 12 other PTE bits 

(control bits)
● Q: assuming we have 16 KiB physical 

memory, PTE layout and memory on 
the right, and PageTablePtr as 0x4, 
translate 0x0008ad, 0x002655, 
0x001ff1 (also assume bits aside from 
valid always check out good)

● A: 0x10ad, 0x1e55, page fault

Address +0 +1 +2 +3

0x00 fe 91 f6 a9

0x04 93 8c a8 d7

0x08 df c5 b0 fa

0x0c bc 83 c4 dd

0x10 9d af 88 ae

0x14 b8 e9 9d f0

PPN: 3 other: 11

PTE: 16

unused: 1 valid: 1



2018 Fall MT2 P5.c Derivative

● 13 bit VPN; 11 bit offset
● Q: PageTablePtr as 0x4, 

translate 0x001ff1
● A: page fault because

○ vaddr: 0b1 1111 1111 0001
○ VPN: 3; offset: 0b111 1111 

0001
○ PTE @ (0x4 + 3 * 2) = 0xa
○ PTE: 0b1011 0000 1111 

1010
○ valid: 0

Address +0 +1 +2 +3

0x00 fe 91 f6 a9

0x04 93 8c a8 d7

0x08 df c5 b0 fa

0x0c bc 83 c4 dd

0x10 9d af 88 ae

0x14 b8 e9 9d f0

PPN: 3 other: 11

PTE: 16

unused: 1 valid: 1



2018 Fall MT2 P5.d Derivative

● 24-bit virtual address space
● 2 KiB page size
● 2 B page table entries
● 11 bit offset
● Max 4 bit PPN; 12 other PTE bits 

(control bits)

Problem:
Now suppose we want to 
transform our single level page 
table into a multi-leveled page 
table.
Assuming that every page table is 
required to fit into a single page, 
how many total levels of page 
tables do we need to address the 
entire virtual address space?



2018 Fall MT2 P5.d Derivative

Question: Now suppose we want to transform our single level page table into a 
multi-leveled page table.
Assuming that every page table is required to fit into a single page, how many total 
levels of page tables do we need to address the entire virtual address space?
Answer:   2   
● #PTE per page = (page size) / (PTE size) = (2^11 B) / (2 B) = 2^10
● Max level x VPN #bits = lg(#PTE per page) = lg(2^10) = 10
● vaddr bits = 24.
● We need (total # VPN bits) + (# offset bits) >= 24 to address the entire virtual 

address space. With a max of 10 VPN bits per page and x pages:
○ 10 * x (# VPN bits) + 11 (# offset bits) >= 24
○ The smallest x that satisfies this is x = 2. Thus, we need at least 2 levels.



2016 Fall MT2 3.c Derivative
Consider a hashed inverted page table and 
two processes P1 and P2.  We use an 8-bit 
virtual address space and 4 byte page 
size.  The hash table uses a hash function 
which simply calculates the index by 
adding PID and VPN mod 8.  The IPT has 
its next free entry at index 4.

i) Translate the accesses: (P1, 0x3), (P1, 
0x28), (P1, 0xee).

ii) What happens upon read access (P2, 
0x84)?

id
x

PI
D

VPN IPT 
idx

0

1 1 0x0 3

2

3 1 0xA 0

4 2 0x3A 1

5 1 0x3B 2

6

7

idx PI
D

VPN other 
bits

0 1 0xA VRW

1 2 0x3A VR

2 1 0x3B VRW

3 1 0x0 VRW

4

...

Inverted page table

Hash table (with linear probing)



2016 Fall MT2 3.c Derivative (Soln.)
Consider a hashed inverted page table and 
two processes P1 and P2.  We use an 8-bit 
virtual address space and 4 byte page 
size.  The hash table uses a hash function 
which simply calculates the index by 
adding PID and VPN mod 8.  The IPT has 
its next free entry at index 4.

i) Translate the accesses: (P1, 0x3), (P1, 
0x28), (P1, 0xee). A: 0xF, 0x0, 0xA

ii) What happens upon read access (P2, 
0x84)? A: page fault, update tables

id
x

PI
D

VPN IPT 
idx

0

1 1 0x0 3

2

3 1 0xA 0

4 2 0x3A 1

5 1 0x3B 2

6 2 0x21 4

7

idx PI
D

VPN other 
bits

0 1 0xA VRW

1 2 0x3A VR

2 1 0x3B VRW

3 1 0x0 VRW

4 2 0x21 VR

...

Inverted page table

Hash table (with linear probing)



2016 Fall MT2 3.c Derivative

i) Translate the accesses:
   (P1, 0x3), (P1, 0x28), (P1, 0xee).
A: 0xF, 0x0, 0xA because
1. 0x3 = 0b0011 ⇒ (VPN = 0b00) &

(Offset = 0b11) ⇒
(VPN = 0x0) & (Offset = 0x3) ⇒
(Hash Value = 1)

2. (PID: 1, VPN: 0x0) at hash table idx 1 
matches, so IPT idx is 3
⇒ 0b11 PPN
⇒ paddr = 0b11 || 0b11 = 0xf

id
x

PI
D

VPN IPT 
idx

0

1 1 0x0 3

2

3 1 0xA 0

4 2 0x3A 1

5 1 0x3B 2

6

7

idx PI
D

VPN other 
bits

0 1 0xA VRW

1 2 0x3A VR

2 1 0x3B VRW

3 1 0x0 VRW

4

...

Inverted page table

id
x

PI
D

VPN IPT 
idx

0

1 1 0x0 3

2

3 1 0xA 0

4 2 0x3A 1

5 1 0x3B 2

6

7

Hash table (with linear probing)



2016 Fall MT2 3.c Derivative

i) Translate the accesses:
   (P1, 0x3), (P1, 0x28), (P1, 0xee).
A: 0xF, 0x0, 0xA because
1. 0x28 = 0b101000 ⇒ (VPN = 0b1010)& 

0b00 offset ⇒ (VPN =  0xA) &
(Offset = 0x0) ⇒ hash value =
        (0b1010 + 1) mod 8 =
         0b1011         mod 8 = 0b011 = 3

2. HT entry 3 matches PID and VPN, so 
IPT idx is 0
⇒ PPN = 0b0
⇒ paddr = (0b0 || 0b00) = 0x0

id
x

PI
D

VPN IPT 
idx

0

1 1 0x0 3

2

3 1 0xA 0

4 2 0x3A 1

5 1 0x3B 2

6

7

idx PI
D

VPN other 
bits

0 1 0xA VRW

1 2 0x3A VR

2 1 0x3B VRW

3 1 0x0 VRW

4

...

Inverted page table

id
x

PI
D

VPN IPT 
idx

0

1 1 0x0 3

2

3 1 0xA 0

4 2 0x3A 1

5 1 0x3B 2

6

7

Hash table (with linear probing)



2016 Fall MT2 3.c Derivative

i) Translate the accesses:
   (P1, 0x3), (P1, 0x28), (P1, 0xee).
A: 0xF, 0x0, 0xA because
1. 0xEE = 0b11101110 ⇒

(VPN = 0b111011) & (Offset = 0b10) ⇒ 
(VPN = 0x3B) & (Offset = 0x2) ⇒
Hash Value = (0b111011 + 1) mod 8 = 
0b111100 mod 8 = 0b100 = 4

2. HT #4 does not match PID and VPN!
3. HT entry 5 matches PID and VPN, so 

IPT idx is 2 ⇒ 0b10 PPN ⇒
paddr = (0b10 || 0b10) = 0xA

id
x

PI
D

VPN IPT 
idx

0

1 1 0x0 3

2

3 1 0xA 0

4 2 0x3A 1

5 1 0x3B 2

6

7

idx PI
D

VPN other 
bits

0 1 0xA VRW

1 2 0x3A VR

2 1 0x3B VRW

3 1 0x0 VRW

4

...

Inverted page table

id
x

PI
D

VPN IPT 
idx

0

1 1 0x0 3

2

3 1 0xA 0

4 2 0x3A 1

5 1 0x3B 2

6

7

Hash table (with linear probing)



2016 Fall MT2 3.c Derivative
ii) What happens upon read access (P2, 
0x84)?
A: page fault, update tables because
1. 0x84 = 0b10000100 ⇒ VPN = 0b100001 

0b00 offset ⇒ 0x21 VPN
0x0 offset ⇒ hashval =
          (0b100001 + 2) mod 8 = 
           0b100011         mod 8 = 3

2. HT entry 3 does not match
3. HT entry 4, 5 also fail
4. HT entry 6 is empty ergo page fault

○ Allocate ppage 4, and update 
tables accordingly

id
x

PI
D

VPN IPT 
idx

0

1 1 0x0 3

2

3 1 0xA 0

4 2 0x3A 1

5 1 0x3B 2

6 2 0x21 4

7

idx PI
D

VPN other 
bits

0 1 0xA VRW

1 2 0x3A VR

2 1 0x3B VRW

3 1 0x0 VRW

4 2 0x21 4

...

Inverted page table

Hash table (with linear probing)



2023 Spring MT2 P5.c

Question: In class, we discussed the “magic” address format for a 
multi-level page table on a 32-bit machine, namely one that divided the 
address as follows:

[VPN1: 10-bits | VPN2: 10-bits | Offset: 12-bits]
- What is “magic” about this configuration?



2023 Spring MT2 P5.c

Question: In class, we discussed the “magic” address format for a 
multi-level page table on a 32-bit machine, namely one that divided the 
address as follows:

[VPN1: 10-bits | VPN2: 10-bits | Offset: 12-bits]
- What is magic about this configuration?

Answer:
● Each level of the 2-level page table takes up exactly 1 page in 

size. 2^(# offset bits) = 2^12 = 4 KB pages.
○ 10-bit = 1024 entries. 4 B entries => 4 KB per page table!



2023 Spring MT2 P5.d

Question: Assume that we have a 64-bit processor which has the 
same page size as you gave in problem (5a) and the same 12 access 
control bits as given in the above PTE.
1) Now, if we reserve 8-bytes for each PTE, how would the virtual 

address be divided for a 64-bit address space to preserve magic 
(except maybe highest level)?

2) How many levels of page table would this imply?
3) Bonus: why do we choose the highest level to not necessarily map 

to a full page?



2023 Spring MT2 P5.d

Question: Assume that we have a 64-bit processor which has the same page size as you 
gave in problem (5a) and the same 12 access control bits as given in the above PTE.
1) Now, if we reserve 8-bytes for each PTE, how would the virtual address be divided for 

a 64-bit address space to preserve magic (except highest level)?
2) How many levels of page table would this imply?
3) Bonus: why do we only choose the highest level to not necessarily map to a full page?
Answer:
1) Instead of 10-bit VPN, a 9-bit VPN => 4 KB page (since PTE = 8 bytes). With 12 offset 

bits, 52 bits for PPN => 7/9/9/9/9/9/12.
2) This is a 6-level page table!
3) This ensures that the magic property holds for as many page tables as possible!



Caching



61c Review

● Other core concepts
○ AMAT!
○ Tag-Index-Offset!
○ Write-Through vs. Write-Back

● Locality
○ Temporal Locality:

Recently accessed data close to processor
○ Spatial Locality

Contiguous blocks are close to each other



61c Review

● 3 Big Types:
○ Direct Mapped
○ N-way Set Associative
○ Fully Associative

● Misses
○ Compulsory 
○ Capacity
○ Conflict
○ Coherence



Memory Hierarchy!

● Registers
● L1 Cache
● L2, L3... Caches
● Main Memory
● Secondary Storage

More Space         More Speed





Direct Mapped Cache



Fully Associative Cache



Set Associative Cache



Question

Can a direct mapped cache sometimes have  higher 
hit rate than a fully associative cache with an LRU 
replacement policy (with the same access pattern)?



Question

Can a direct mapped cache sometimes have  higher 
hit rate than a fully associative cache with an LRU 
replacement policy (with the same access pattern)?
Yes. If a cache has N blocks, then repeatedly 
accessing N+1 sequential addresses will exhibit a 
higher hit rate for direct mapped caches.



Fall 2018 MT2 Q6
Find hit rate for N = M = 8, 1B elements

Cache: 4-way, 512B, LRU eviction, 8B blocks
for (int j=0; j < N; j++) {
   for (int i=0; i < M; i++) {
     y[i] += A[i][j] * x[i];
     z[i] = i;
   }
}
● A is saved as a 2d array starting at the address 0x10
● X is saved as an array starting at address 0x500000010
● Y is saved as an array starting at address 0x1000000010
● Z is saved as an array starting at address 0x1500000010
● The matrix A is stored as a row-major matrix (i.e., rows are stored contiguously in
memory) 



Fall 2018 MT2 Q6
Find hit rate for N = M = 8, 1B elements

5*8*8 = 320 total accesses. 8*8 loop iterations. 5 memory 
operations: read A[i][j], x[i], y[i]. Write y[i], z[i].

The matrix and vectors fit inside the cache.
- 1 block for x, y, and z. Brought in and never kicked out.
- 8 blocks for A. Brought in and never kicked out.
- 320 accesses - 8 - 1 - 1 -1 = 309 hits.

HR = 309/320



Eviction

cache/page replacement and write policies



Replacement Policies

1. FIFO - throw out the oldest page
2. RANDOM - pick a random page for every replacement
3. MIN - replace page that won’t be used for longest time
4. LRU - replace page that hasn’t been used for longest time
5. MRU - replace page that was just used
6. Clock - approximates LRU; crude partitioning of pages into 

two groups, young and old
7. Nth Chance - give page N chances; a more granular 

partitioning for Clock algorithm



Optimal Replacement Policy

Q: Which replacement policy is optimal?



Optimal Replacement Policy

Q: Which replacement policy is optimal?

A: MIN (a.k.a. OPT, clairvoyant replacement algorithm, or Bélády's optimal page 
replacement policy)



Warm-up Question

Say we have 3 empty physical frames of memory, and we access A B C B C A C 
C.  How many page faults will occur when using

1. FIFO?
2. LRU?
3. MRU?



Warm-up Question

Say we have 3 empty physical frames of memory, and we access A B C B C A C 
C.  How many page faults will occur when using

1. FIFO?
2. LRU?
3. MRU?

A: 3



Warm-up Question

Say we have 3 empty physical frames of memory, and we access A B C B C A C 
C.  How many page faults will occur when using

1. FIFO?
2. LRU?
3. MRU?

A: 3 because compulsory misses



Clock Algorithm

● Each cache entry (or PTE) keeps track of extra bit called 
use bit (a.k.a. clock bit, reference bit)
○ Use bit 1 means young; use bit 0 means old

● Upon hit, set the entry’s use bit to 1
● Upon miss

○ Clock hand sweeps over entries until finding one to 
evict:
■ If entry has use bit 1, clear it (set it to 0)
■ If entry has use bit 0, evict this entry

○ Sets use bit of new entry to 1



Clock Algorithm Example

We have a 4-entry empty cache/PT and access A B C B D A E B D A



Clock Algorithm Example

We have a 4-entry empty cache/PT and access A B C B D A E B D A

A 1



Clock Algorithm Example

We have a 4-entry empty cache/PT and access A B C B D A E B D A

A 1

B 1



Clock Algorithm Example

We have a 4-entry empty cache/PT and access A B C B D A E B D A

A 1

B 1

C 1



Clock Algorithm Example

We have a 4-entry empty cache/PT and access A B C B D A E B D A

A 1

B 1

C 1



Clock Algorithm Example

We have a 4-entry empty cache/PT and access A B C B D A E B D A

D 1

A 1

B 1

C 1



Clock Algorithm Example

We have a 4-entry empty cache/PT and access A B C B D A E B D A

D 1

A 1

B 1

C 1



Clock Algorithm Example

We have a 4-entry empty cache/PT and access A B C B D A E B D A

D 1

A 1

B 1

C 1



Clock Algorithm Example

We have a 4-entry empty cache/PT and access A B C B D A E B D A

D 1

A 0

B 1

C 1



Clock Algorithm Example

We have a 4-entry empty cache/PT and access A B C B D A E B D A

D 1

A 0

B 0

C 1



Clock Algorithm Example

We have a 4-entry empty cache/PT and access A B C B D A E B D A

D 1

A 0

B 0

C 0



Clock Algorithm Example

We have a 4-entry empty cache/PT and access A B C B D A E B D A

D 0

A 0

B 0

C 0



Clock Algorithm Example

We have a 4-entry empty cache/PT and access A B C B D A E B D A

D 0

E 1

B 0

C 0



Clock Algorithm Example

We have a 4-entry empty cache/PT and access A B C B D A E B D A

D 0

E 1

B 1

C 0



Clock Algorithm Example

We have a 4-entry empty cache/PT and access A B C B D A E B D A

D 1

E 1

B 1

C 0



Clock Algorithm Example

We have a 4-entry empty cache/PT and access A B C B D A E B D A

D 1

E 1

B 1

C 0



Clock Algorithm Example

We have a 4-entry empty cache/PT and access A B C B D A E B D A

D 1

E 1

B 0

C 0



Clock Algorithm Example

We have a 4-entry empty cache/PT and access A B C B D A E B D A

D 1

E 1

B 0

A 1



Practice

Suppose we have the following memory accesses: D C B A D C E D C B A E.

If we have 3 empty physical frames of memory, how many page faults will occur 
when using FIFO, LRU, or Clock? What if there are 4 frames?



FIFO:

D C B A D C E D C B A E

1 D

2 C

3 B

How many page faults? 



Answers

FIFO:

D C B A D C E D C B A E

1 D A E

2 C D B

3 B C A

9 Page Faults



LRU:

D C B A D C E D C B A E

1 D

2 C

3 B

How many page faults? 



Answers

LRU:

D C B A D C E D C B A E

1 D A E B

2 C D A

3 B C E

10 Page Faults



Clock:

D C B A D C E D C B A E

1 B

2 D

3 C

How many page faults? 



Answers

Clock:

D C B A D C E D C B A E

1 B C A

2 D A E

3 C D B

9 Page Faults



FIFO:

D C B A D C E D C B A E

1 D

2 C

3 B

4 A

How many page faults? 



Answers

FIFO:

D C B A D C E D C B A E

1 D E A

2 C D E

3 B C

4 A B

10 Page Faults



LRU:

D C B A D C E D C B A E

1 D

2 C

3 B

4 A

How many page faults? 



Answers

LRU:

D C B A D C E D C B A E

1 D E

2 C

3 B E A

4 A B

8 Page Faults



Clock:

D C B A D C E D C B A E

1 A

2 D

3 C

4 B

How many page faults? 



Answers

Clock:

D C B A D C E D C B A E

1 A B

2 D E A

3 C D E

4 B C

10 Page Faults



Conceptual Question

Q: Does adding more entries to a cache/PT reduce miss rate for every 
replacement policy?



Conceptual Question

Q: Does adding more entries to a cache/PT reduce miss rate for every 
replacement policy?

No. Known as Bélády's anomaly.

● LRU not affected
● FIFO clock, Nth chance affected



Conceptual Question

Q: Does adding more entries to a cache/PT reduce miss rate for every 
replacement policy?

No. Counterexample with FIFO accessing A B C D A B E A B C D E

● 3 entries: 9 misses  A B C D A B E A B C D E
● 4 entries: 10 misses A B C D A B E A B C D E



Write Policies

● write through: write both cache & memory
○ Simple design

● write back: write cache only, memory is written only when 
the entry is evicted

○ A dirty bit per entry to denote whether the entry needs to be written back to memory upon 
eviction



Write Policies Question

● Q: For write through (WT) policy, how many accesses to memory must you 
make for a
a. Read hit
b. Write hit
c. Read miss with eviction
d. Write miss with eviction



Write Policies Question

● Q: For write through (WT) policy, how many accesses to memory must you 
make for a
a. Read hit
b. Write hit
c. Read miss with eviction
d. Write miss with eviction

● A: 0, 1 (W), 1 (R), 2 (RW)



Write Policies Question

● Q: For write back (WB) policy, how many accesses to memory must you 
make for a
a. Read hit
b. Write hit
c. Read miss with eviction on entry that’s not dirty
d. Write miss with eviction on entry that’s not dirty
e. Read miss with eviction on entry that’s dirty
f. Write miss with eviction on entry that’s dirty



Write Policies Question

● Q: For write back (WB) policy, how many accesses to memory must you 
make for a
a. Read hit
b. Write hit
c. Read miss with eviction on entry that’s not dirty
d. Write miss with eviction on entry that’s not dirty
e. Read miss with eviction on entry that’s dirty
f. Write miss with eviction on entry that’s dirty

● A: 0, 0, 1 (R), 1 (R), 2 (WR), 2 (WR)



Good luck!
Stay safe and healthy!


