
CS162
Operating Systems and
Systems Programming

Lecture 16

Memory 3: Caching and TLBs (Con’t), Demand Paging

March 12th, 2024
Prof. John Kubiatowicz

http://cs162.eecs.Berkeley.edu

Lec 16.23/12/24 Kubiatowicz CS162 © UCB Spring 2024

Physical
Address:

OffsetPhysical
Page #

4KB

10 bits 10 bits 12 bits
Virtual
Address:

OffsetVirtual
P2 index

Virtual
P1 index

4 bytes

PageTablePtr

• Tree of Page Tables
– “Magic” 10b-10b-12b pattern!

• Tables fixed size (1024 entries)
– On context-switch: save single PageTablePtr register

(i.e. CR3)
• Valid bits on Page Table Entries

– Don’t need every 2nd-level table
– Even when exist, 2nd-level tables can reside on disk if

not in use 4 bytes

Recall: The two-level page table

Lec 16.33/12/24 Kubiatowicz CS162 © UCB Spring 2024

Physical
Address:
(40-50 bits)

12bit OffsetPhysical Page #

Recall: X86_64: Four-level page table!
9 bits 9 bits 12 bits

48-bit Virtual
Address: OffsetVirtual

P2 index
Virtual
P1 index

8 bytes

PageTablePtr

Virtual
P3 index

Virtual
P4 index

9 bits 9 bits

4096-byte pages (12 bit offset)
Page tables also 4k bytes (pageable)

Lec 16.43/12/24 Kubiatowicz CS162 © UCB Spring 2024

From x86_64 architecture specification

• All current x86 processor support a 64 bit operation
• 64-bit words (so ints are 8 bytes) but 48-bit addresses

Lec 16.53/12/24 Kubiatowicz CS162 © UCB Spring 2024

Larger page sizes supported as well

• Larger page sizes (2MB, 1GB) make sense since memory is now cheap
– Great for kernel, large libraries, etc
– Use limited primarily by internal fragmentation…

Lec 16.63/12/24 Kubiatowicz CS162 © UCB Spring 2024

• With all previous examples (“Forward Page Tables”)
– Size of page table is at least as large as amount of virtual memory allocated

to processes
– Physical memory may be much less

» Much of process space may be out on disk or not in use

• Answer: use a hash table
– Called an “Inverted Page Table”
– Size is independent of virtual address space
– Directly related to amount of physical memory
– Very attractive option for 64-bit address spaces

» PowerPC, UltraSPARC, IA64
• Cons:

– Complexity of managing hash chains: Often in hardware!
– Poor cache locality of page table

Recall: Alternative: Inverted Page Table

OffsetVirtual
Page #

Hash
Table

OffsetPhysical
Page #

Lec 16.73/12/24 Kubiatowicz CS162 © UCB Spring 2024

Address Translation Comparison

Advantages Disadvantages

Simple Segmentation
Fast context switching
(segment map maintained by
CPU)

External fragmentation

Paging (Single-Level) No external fragmentation
Fast and easy allocation

Large table size (~ virtual
memory)
Internal fragmentation

Paged Segmentation Table size ~ # of pages in
virtual memory
Fast and easy allocation

Multiple memory references
per page accessMulti-Level Paging

Inverted Page Table Table size ~ # of pages in
physical memory

Hash function more complex
No cache locality of page
table

Lec 16.83/12/24 Kubiatowicz CS162 © UCB Spring 2024

How is the Translation Accomplished?

• The MMU must attempt to translate virtual address to physical address on:
– Every instruction fetch, Every load, Every store
– Generate a “Page Fault” (Trap) if it encounters invalid PTE

» Fault handler will decide what to do (more on this next lecture)
• What does the MMU need to do to translate an address?

– 1-level Page Table
» Read PTE from memory, check valid, merge address
» Set “accessed” bit in PTE, Set “dirty bit” on write

– 2-level Page Table
» Read and check first level
» Read, check, and update PTE at second level

– N-level Page Table …
• MMU does page table Tree Traversal to translate each address

– Turns a potentially fast memory access into a slow multi-access table traversal…
– Need CACHING!

CPU MMU
Virtual

Addresses
Physical
Addresses

Lec 16.93/12/24 Kubiatowicz CS162 © UCB Spring 2024

Where and What is the MMU ?

• The processor requests READ Virtual-Address to memory system
– Through the MMU to the cache (to the memory)

• Some time later, the memory system responds with the data stored at the physical
address (resulting from virtual physical) translation

– Fast on a cache hit, slow on a miss
• So what is the MMU doing?
• On every reference (I-fetch, Load, Store) read (multiple levels of) page table entries

to get physical frame or FAULT
– Through the caches to the memory
– Then read/write the physical location

Processor
(core) Cache(s)

Physical
Memory

MMU

< data @ mem[VtoP(m)] >

page
tablesPTBR

Lec 16.103/12/24 Kubiatowicz CS162 © UCB Spring 2024

Recall: CS61c Caching Concept

• Cache: a repository for copies that can be accessed more quickly than
the original

– Make frequent case fast and infrequent case less dominant
• Caching underlies many techniques used today to make computers fast

– Can cache: memory locations, address translations, pages, file blocks, file
names, network routes, etc…

• Only good if:
– Frequent case frequent enough and
– Infrequent case not too expensive

• Many important OS concepts boil down to caching! We cache:
– Pages, Files, Virtual Memory Translations, IP Addresses…

Lec 16.113/12/24 Kubiatowicz CS162 © UCB Spring 2024

Recall: In Machine Structures (eg. 61C) …
• Hardware Caching is the key to memory system performance for CPUs:

• Average Memory Access Time (AMAT)
= (Hit Rate x HitTime) + (Miss Rate x MissTime)

• Where:
– HitRate + MissRate = 1
– MissTime = HitTime + MissPenalty

• Examples:
– HitRate = 90% => AMAT = (0.9 x 1) + (0.1 x 101)=11 ns
– HitRate = 99% => AMAT = (0.99 x 1) + (0.01 x 101)=2.01 ns

Processor
Main

Memory
(DRAM)100ns1 ns

Cache
(SRAM)

Processor
Main

Memory
(DRAM)Access time = 100ns

Lec 16.123/12/24 Kubiatowicz CS162 © UCB Spring 2024

• Cannot afford to translate on every access
– At least three DRAM accesses per actual DRAM access
– Or: perhaps I/O if page table partially on disk!

• Even worse: What if we are using caching to make memory
access faster than DRAM access?

• Solution? Cache translations!
– Translation Cache: TLB (“Translation Lookaside Buffer”)

Another Major Reason to Deal with Caching

page #0
page #1

page #3
page #4
page #5

V,R
V,R

page #2 V,R,W
V,R,W
N
V,R,W

Offset

Physical Address

Virtual
Address:

OffsetVirtual
Page #

Virtual
Seg #

Base0 Limit0 V
Base1 Limit1 V
Base2 Limit2 V
Base3 Limit3 N
Base4 Limit4 V
Base5 Limit5 N
Base6 Limit6 N
Base7 Limit7 V Access

Error>

Physical
Page #

Check Perm

Access
Error

Lec 16.133/12/24 Kubiatowicz CS162 © UCB Spring 2024

Why Does Caching Help? Locality!

• Temporal Locality (Locality in Time):
– Keep recently accessed data items closer to processor

• Spatial Locality (Locality in Space):
– Move contiguous blocks to the upper levels

Address Space0 2n - 1

Probability
of reference

Lower Level
MemoryUpper Level

Memory
To Processor

From Processor
Blk X

Blk Y

Lec 16.143/12/24 Kubiatowicz CS162 © UCB Spring 2024

Recall: Memory Hierarchy
• Caching: Take advantage of the principle of locality to:

– Present the illusion of having as much memory as in the cheapest technology
– Provide average speed similar to that offered by the fastest technology

Core

Core

Secondary
Storage
(Disk)

Processor

Main
Memory
(DRAM)

1 10,000,000
(10 ms)Speed (ns): 10-30 100

100BsSize (bytes): MBs GBs TBs

0.3 3

10kBs 100kBs

Secondary
Storage
(SSD)

100,000
(0.1 ms)
100GBs

Address Translation
needs to occur here

Page table lives here
(perhaps cached)

Lec 16.153/12/24 Kubiatowicz CS162 © UCB Spring 2024

• Used to compute access time probabilistically:
AMAT = Hit RateL1 x Hit TimeL1 + Miss RateL1 x Miss TimeL1
Hit RateL1 + Miss RateL1 = 1
Hit TimeL1 = Time to get value from L1 cache.
Miss TimeL1 = Hit TimeL1 + Miss PenaltyL1
Miss PenaltyL1 = AVG Time to get value from lower level (DRAM)
So, AMAT = Hit TimeL1 + Miss RateL1 x Miss PenaltyL1

• What about more levels of hierarchy?
AMAT = Hit TimeL1 + Miss RateL1 x Miss PenaltyL1
Miss PenaltyL1 = AVG time to get value from lower level (L2)

= Hit TimeL2 + Miss RateL2 x Miss PenaltyL2
Miss PenaltyL2 = Average Time to fetch from below L2 (DRAM)

AMAT = Hit TimeL1 +
Miss RateL1 x (Hit TimeL2 + Miss RateL2 x Miss PenaltyL2)

• And so on … (can do this recursively for more levels!)

Recall 61C: Dealing with Hierarchy

Pr
oc

L1
 C

ac
he

L2
 C

ac
he

D
R

AM

Pr
oc

L1
 C

ac
he

D
R

AM

Lec 16.163/12/24 Kubiatowicz CS162 © UCB Spring 2024

• Block is minimum quantum of caching
– Data select field used to select data within block
– Many caching applications don’t have data select field

• Index Used to Lookup Candidates in Cache
– Index identifies the set

• Tag used to identify actual copy
– If no candidates match, then declare cache miss

How is a Block found in a Cache?

Block
offset

Block Address
Tag Index

Set Select

Data Select

Lec 16.173/12/24 Kubiatowicz CS162 © UCB Spring 2024

:

0x50

Valid Bit

:

Cache Tag

Byte 32
0
1
2
3

:

Cache Data
Byte 0Byte 1Byte 31 :

Byte 33Byte 63 :
Byte 992Byte 1023 : 31

Review: Direct Mapped Cache
• Direct Mapped 2N byte cache:

– The uppermost (32 - N) bits are always the Cache Tag
– The lowest M bits are the Byte Select (Block Size = 2M)

• Example: 1 KB Direct Mapped Cache with 32 B Blocks
– Index chooses potential block
– Tag checked to verify block
– Byte select chooses byte within block

Ex: 0x50 Ex: 0x00
Cache Index

0431
Cache Tag Byte Select

9

Ex: 0x01

Lec 16.183/12/24 Kubiatowicz CS162 © UCB Spring 2024

Cache Index
0431

Cache Tag Byte Select
8

Cache Data
Cache Block 0

Cache TagValid

:: :

Cache Data
Cache Block 0

Cache Tag Valid

: ::

Mux 01Sel1 Sel0

OR

Hit

Review: Set Associative Cache
• N-way set associative: N entries per Cache Index

– N direct mapped caches operates in parallel
• Example: Two-way set associative cache

– Cache Index selects a “set” from the cache
– Two tags in the set are compared to input in parallel
– Data is selected based on the tag result

Compare Compare

Cache Block

Lec 16.193/12/24 Kubiatowicz CS162 © UCB Spring 2024

Review: Fully Associative Cache
• Fully Associative: Every block can hold any line

– Address does not include a cache index
– Compare Cache Tags of all Cache Entries in Parallel

• Example: Block Size=32B blocks
– We need N 27-bit comparators
– Still have byte select to choose from within block

:

Cache Data
Byte 0Byte 1Byte 31 :

Byte 32Byte 33Byte 63 :

Valid Bit

::

Cache Tag

04
Cache Tag (27 bits long) Byte Select

31

=

=
=

=

=

Ex: 0x01

Lec 16.203/12/24 Kubiatowicz CS162 © UCB Spring 2024

Administrivia
• Midterm 2: Thursday 8pm-10pm

– You are responsible material up to and including today’s lecture
– Two sheets of notes: handwritten, double-sided

• Next week after exam: some extra credit for attending
– Decided not to do it this week since people are really crazy busy

• Midterm 2 is on Day!!!
– 40 digits sufficient to calculate circumference of visible universe to atomic dimensions:

https://www.jpl.nasa.gov/edu/news/2016/3/16/how-many-decimals-of-pi-do-we-really-need/
– Here are 40 decimal places: 3.1415926535897932384626433832795028841971

• Best formula for PI is from Ramanujan:

– ଵ
గ
ൌ ଶ ଶ

ଽ଼ଵ
∑ ସ !ሺଵଵଷାଶଷଽሻ

ሺ!ሻరଷଽరೖ
ஶ
ୀ

– Google announced back in 2019 (3/14/19) that Emma Haruka Iwao had just
calculated pi to 31,415,926,535,897 digits (new record…)

Lec 16.213/12/24 Kubiatowicz CS162 © UCB Spring 2024

• Example: Block 12 placed in 8 block cache

0 1 2 3 4 5 6 7Block
no.

Direct mapped:
block 12 can go
only into block 4
(12 mod 8)

Set associative:
block 12 can go
anywhere in set 0
(12 mod 4)

0 1 2 3 4 5 6 7Block
no.

Set
0

Set
1

Set
2

Set
3

Fully associative:
block 12 can go
anywhere

0 1 2 3 4 5 6 7Block
no.

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

32-Block Address Space:

1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3Block
no.

Where does a Block Get Placed in a Cache?

Lec 16.223/12/24 Kubiatowicz CS162 © UCB Spring 2024

• Easy for Direct Mapped: Only one possibility
• Set Associative or Fully Associative:

– Random
– LRU (Least Recently Used)

• Miss rates for a workload:
2-way 4-way 8-way

Size LRU Random LRU Random LRU Random
16 KB 5.2% 5.7% 4.7% 5.3% 4.4% 5.0%
64 KB 1.9% 2.0% 1.5% 1.7% 1.4% 1.5%
256 KB1.15% 1.17% 1.13% 1.13% 1.12% 1.12%

Which block should be replaced on a miss?

Lec 16.233/12/24 Kubiatowicz CS162 © UCB Spring 2024

• Write through: The information is written to both the block in the cache
and to the block in the lower-level memory

• Write back: The information is written only to the block in the cache
– Modified cache block is written to main memory only when it is

replaced
– Question is block clean or dirty?

• Pros and Cons of each?
– WT:

» PRO: read misses cannot result in writes
» CON: Processor held up on writes unless writes buffered

– WB:
» PRO: repeated writes not sent to DRAM

processor not held up on writes
» CON: More complex

Read miss may require writeback of dirty data

Review: What happens on a write?

Lec 16.243/12/24 Kubiatowicz CS162 © UCB Spring 2024

A Summary on Sources of Cache Misses
• Compulsory (cold start or process migration, first reference): first access to a block

– “Cold” fact of life: not a whole lot you can do about it unless you prefetch
– Solution: Prefetch values before use
– Note: If you run “billions” of instruction, Compulsory Misses are insignificant

• Capacity:
– Cache cannot contain all blocks access by the program
– Solution 1: increase cache size
– “Solution 2”: Change (e.g. reduce) associativity to focus misses in a few places?!

» Consider fully-associative cache of size n: access pattern 0, 1, … n-1, n, 0, 1, …
» Contrast with direct mapped of size n: Fewer misses!

• Conflict (collision):
– Multiple memory locations mapped to the same cache location
– Solution 1: increase cache size
– Solution 2: increase associativity

• Coherence (Invalidation): other process (e.g., I/O) updates memory

Lec 16.253/12/24 Kubiatowicz CS162 © UCB Spring 2024

How do we make Address Translation Fast?
• Cache results of recent translations !

– Different from a traditional cache
– Cache Page Table Entries using Virtual Page # as the key

Processor
(core) Cache(s)

Physical
Memory

MMU
page
tablesPTBR

V_Pg M1 : <Phs_Frame #1, V, … >

V_Pg M2 : <Phs_Frame #2, V, … >

V_Pg Mk : <Phs_Frame #k, V, … >

Lec 16.263/12/24 Kubiatowicz CS162 © UCB Spring 2024

Translation Look-Aside Buffer
• Record recent Virtual Page # to Physical Frame # translation
• If present, have the physical address without reading any page tables !!!

– Even if the translation involved multiple levels
– Caches the end-to-end result

• Was invented by Sir Maurice Wilkes – prior to caches
– When you come up with a new concept, you get to name it!
– People realized “if it’s good for page tables, why not the rest of the data in

memory?”
• On a TLB miss, the page tables may be cached, so only go to memory

when both miss

Lec 16.273/12/24 Kubiatowicz CS162 © UCB Spring 2024

Caching Applied to Address Translation

• Question is one of page locality: does it exist?
– Instruction accesses spend a lot of time on same page (accesses are sequential)
– Stack accesses have definite locality of reference
– Data accesses have less page locality, but still some…

• Can we have a TLB hierarchy?
– Sure: multiple levels at different sizes/speeds

Data Read or Write (untranslated)

CPU Physical
Memory

TLB

Translate
(MMU)

No

Virtual
Address

Physical
Address

Yes
Cached?

Lec 16.283/12/24 Kubiatowicz CS162 © UCB Spring 2024

Physically-Indexed vs Virtually-Indexed Caches
• Physically-Indexed, Physically-Tagged

– Address handed to cache after translation
– Page Table in physical memory (so that it

can be cached)
– Benefits:

» Every piece of data has single place in cache
» Cache can stay unchanged on context switch

– Challenges:
» TLB is in critical path of lookup!

– Pretty Common today (e.g. x86 processors)
• Virtually-Indexed, Virtually-Tagged or Physically-Tagged

– Address handed to cache before translation
– Page Table in virtual memory (so that it can be cached);

Only last level of Page Table points to physical memory.
– Benefits:

» TLB not in critical path of lookup, so system can be faster
– Challenges:

» Same data could be mapped in multiple places of cache
» May need to flush cache on context switch

• We will stick with Physically Indexed Caches for now!

CPU
Cache
[Virtually
indexed]

Memory

[Virtually
addressed]

Page Table

TLB

offset

virtual

virtual

virtual

ph
ys

ic
al

CPU Cache
[Physically

indexed]
Memory

[Physically
addressed]

Page Table

TLB

offset

physicalvirtual

physical ph
ys

ic
al

Lec 16.293/12/24 Kubiatowicz CS162 © UCB Spring 2024

What TLB Organization Makes Sense?

• For Physically Indexed/Tagged, Needs to be really fast
– Critical path of memory access

» In simplest view: before the cache
» Thus, this adds to access time (reducing cache speed)

– Seems to argue for Direct Mapped or Low Associativity
• However, needs to have very few conflicts!

– With TLB, the MissTime extremely high! (Page Table traversal)
– Cost of Conflict (Miss Time) is high
– Hit Time – dictated by clock cycle

• Thrashing: continuous conflicts between accesses
– What if use low order bits of virtual page number as index into TLB?

» First page of code, data, stack may map to same entry
» Need 3-way associativity at least?

– What if use high order bits as index?
» TLB mostly unused for small programs

CPU TLB
Cache

[Physically
indexed]

Memory

Lec 16.303/12/24 Kubiatowicz CS162 © UCB Spring 2024

TLB organization: include protection
• How big does TLB actually have to be?

–Usually small: 128-512 entries (larger now)
–Not very big, can support higher associativity

• Small TLBs usually organized as fully-associative cache
–Lookup is by Virtual Address
–Returns Physical Address + other info

• What happens when fully-associative is too slow?
–Put a small (4-16 entry) direct-mapped cache in front
–Called a “TLB Slice”

• Example for MIPS R3000:

0xFA00 0x0003 Y N Y R/W 34
0x0040 0x0010 N Y Y R 0
0x0041 0x0011 N Y Y R 0

Virtual Address Physical Address Dirty Ref Valid Access ASID

Lec 16.313/12/24 Kubiatowicz CS162 © UCB Spring 2024

Making physically-indexed caches fast: Fit into Pipeline!

Inst Fetch Dcd/ Reg ALU / E.A Memory Write Reg
TLB I-Cache RF Operation WB

E.A. TLB D-Cache

Example: MIPS R3000 Pipeline

ASID V. Page Number Offset
12206

0xx User segment (caching based on PT/TLB entry)
100 Kernel physical space, cached
101 Kernel physical space, uncached
11x Kernel virtual space

Allows context switching among
64 user processes without TLB flush

Virtual Address Space

TLB
64 entry, on-chip, fully associative, software TLB fault handler

Lec 16.323/12/24 Kubiatowicz CS162 © UCB Spring 2024

• As described, TLB lookup is in serial with
cache lookup

– Consequently, speed of TLB can impact
speed of access to cache

• Machines with TLBs go one step further:
overlap TLB lookup with cache access

– Works because offset available early
– Offset in virtual address exactly covers the “cache index” and “byte select”
– Thus can select the cached byte(s) in parallel to perform address translation

Virtual Address

TLB Lookup

V Access
Rights PA

V page no. offset
10

P page no. offset
10

Physical Address

OffsetVirtual Page #

indextag / page # byte

virtual address:

physical address:

Further reducing translation time for physically-indexed caches

Lec 16.333/12/24 Kubiatowicz CS162 © UCB Spring 2024

• Here is how this might work with a 4K cache:

• What if cache size is increased to 8KB?
– Overlap not complete
– Need to do something else. See CS152/252

• As discussed earlier, Virtual Caches would make this faster
– Tags in cache are virtual addresses
– Translation only happens on cache misses

TLB 4K Cache

10 2
00

4 bytes

index 1 K

page # disp
20

assoc
lookup

32

Hit/
Miss

FN Data Hit/
Miss

=FN

Overlapping Cache and TLB access

Lec 16.343/12/24 Kubiatowicz CS162 © UCB Spring 2024

What Actually Happens on a TLB Miss?
• Hardware traversed page tables (x86, many others):

– On TLB miss, hardware in MMU looks at current page table to fill TLB (may walk
multiple levels)

» If PTE valid, hardware fills TLB and processor never knows
» If PTE marked as invalid, causes Page Fault, after which kernel decides what to do

afterwards
• Software traversed Page tables (like MIPS):

– On TLB miss, processor receives TLB fault
– Kernel traverses page table to find PTE

» If PTE valid, fills TLB and returns from fault
» If PTE marked as invalid, internally calls Page Fault handler

• Most chip sets provide hardware traversal
– Modern operating systems tend to have more TLB faults since they use translation

for many things
– Examples:

» shared segments
» user-level portions of an operating system

Lec 16.353/12/24 Kubiatowicz CS162 © UCB Spring 2024

Transparent Exceptions: Page fault

• How to transparently restart faulting instructions?
– (Consider load or store that gets Page fault)
– Could we just skip faulting instruction?

» No: need to perform load or store after reconnecting physical page!
• Hardware must help out by saving:

– Faulting instruction and partial state
» Need to know which instruction caused fault
» Is single PC sufficient to identify faulting position????

– Processor State: sufficient to restart user thread
» Save/restore registers, stack, etc

• What if an instruction has side-effects?

Copy on Write/
Update PTE

Fa
ul

tin
g

In
st

1

R
es

ta
rt

In
st

1

Fa
ul

tin
g

In
st

2

R
es

ta
rt

In
st

2

Fetch page/sleep on queue
Later: Update PTE/restart

User

OS

Page Faults

Lec 16.363/12/24 Kubiatowicz CS162 © UCB Spring 2024

Consider weird things that can happen
• What if an instruction has side effects?

– Options:
» Unwind side-effects (easy to restart)
» Finish off side-effects (messy!)

– Example 1: mov (sp)+,10
» What if page fault occurs when write to stack pointer?
» Did sp get incremented before or after the page fault?

– Example 2: strcpy (r1), (r2)
» Source and destination overlap: can’t unwind in principle!
» IBM S/370 and VAX solution: execute twice – once read-only

• What about “RISC” processors?
– For instance delayed branches?

» Example: bne somewhere
ld r1,(sp)

» Restart after page fault: need two PCs, PC and nPC!
– Delayed exceptions:

» Example: div r1, r2, r3
ld r1, (sp)

» What if takes many cycles to discover divide by zero, but load has already
caused page fault?

Lec 16.373/12/24 Kubiatowicz CS162 © UCB Spring 2024

Precise Exceptions
• Precise state of the machine is preserved as if program executed up to

the offending instruction
– All previous instructions completed
– Offending instruction and all following instructions act as if they have not

even started
– Same system code will work on different implementations
– Difficult in the presence of pipelining, out-of-order execution, ...
– x86 takes this position

• Imprecise system software has to figure out what is where and put it all
back together

• Performance goals often lead designers to forsake precise interrupts
– system software developers, user, markets etc. usually wish they had not

done this
• Modern techniques for out-of-order execution and branch prediction help

implement precise interrupts

Lec 16.383/12/24 Kubiatowicz CS162 © UCB Spring 2024

Recent Intel x86 (Skylake, Cascade Lake)

Lec 16.393/12/24 Kubiatowicz CS162 © UCB Spring 2024

Recent Example: Memory Hierarchy
• Caches (all 64 B line size)

– L1 I-Cache: 32 KiB/core, 8-way set assoc.
– L1 D Cache: 32 KiB/core, 8-way set assoc., 4-5 cycles load-to-use, Write-back policy
– L2 Cache: 1 MiB/core, 16-way set assoc., Inclusive, Write-back policy, 14 cycles

latency
– L3 Cache: 1.375 MiB/core, 11-way set assoc., shared across cores, Non-inclusive

victim cache, Write-back policy, 50-70 cycles latency
• TLB

– L1 ITLB, 128 entries; 8-way set assoc. for 4 KB pages
» 8 entries per thread; fully associative, for 2 MiB / 4 MiB page

– L1 DTLB 64 entries; 4-way set associative for 4 KB pages
» 32 entries; 4-way set associative, 2 MiB / 4 MiB page translations:
» 4 entries; 4-way associative, 1G page translations:

– L2 STLB: 1536 entries; 12-way set assoc. 4 KiB + 2 MiB pages
» 16 entries; 4-way set associative, 1 GiB page translations:

Lec 16.403/12/24 Kubiatowicz CS162 © UCB Spring 2024

What happens on a Context Switch?
• Need to do something, since TLBs map virtual addresses to physical addresses

– Address Space just changed, so TLB entries no longer valid!
• Options?

– Invalidate (“Flush”) TLB: simple but might be expensive
» What if switching frequently between processes?

– Include ProcessID in TLB
» This is an architectural solution: needs hardware

• What if translation tables change?
– For example, to move page from memory to disk or vice versa…
– Must invalidate TLB entry!

» Otherwise, might think that page is still in memory!
– Called “TLB Consistency”

• Aside: with Virtually-Indexed, Virtually-Tagged cache, need to flush cache!
– Everyone has their own version of the address “0” and can’t distinguish them
– This is one advantage of Virtually-Indexed, Physically-Tagged caches..

Lec 16.413/12/24 Kubiatowicz CS162 © UCB Spring 2024

Putting Everything Together: Address Translation

Virtual Address:
OffsetVirtual

P2 index
Virtual
P1 index

PageTablePtr

Page Table
(1st level)

Page Table
(2nd level)

Physical
Memory:

Offset
Physical Address:

Physical
Page #

Lec 16.423/12/24 Kubiatowicz CS162 © UCB Spring 2024

Page Table
(2nd level)

PageTablePtr

Page Table
(1st level)

Putting Everything Together: TLB

Offset

Virtual Address:
OffsetVirtual

P2 index
Virtual
P1 index

Physical
Memory:

Physical Address:

…

TLB:

Physical
Page #
Physical
Page #

Lec 16.433/12/24 Kubiatowicz CS162 © UCB Spring 2024

Page Table
(2nd level)

PageTablePtr

Page Table
(1st level)

Virtual Address:
OffsetVirtual

P2 index
Virtual
P1 index

…

TLB:

Putting Everything Together: Cache

Offset

Physical
Memory:

Physical Address:

…

tag: block:
cache:

index bytetag

Physical
Page #

Lec 16.443/12/24 Kubiatowicz CS162 © UCB Spring 2024

Page Fault Handling
• The Virtual-to-Physical Translation fails

– PTE marked invalid, Privilege Level Violation, Access violation, or does not exist
– Causes an Fault / Trap

» Not an interrupt because synchronous to instruction execution
– May occur on instruction fetch or data access
– Protection violations typically terminate the process

• Other Page Faults engage operating system to fix the situation and retry the
instruction

– Allocate an additional stack page, or
– Make the page accessible – (Copy on Write),
– Bring page in from secondary storage to memory – demand paging

• Fundamental inversion of the hardware / software boundary
– Need to execute software to allow hardware to proceed!

Lec 16.453/12/24 Kubiatowicz CS162 © UCB Spring 2024

Demand Paging
• Modern programs require a lot of physical memory

– Memory per system growing faster than 25%-30%/year
• But they don’t use all their memory all of the time

– 90-10 rule: programs spend 90% of their time in 10% of their code
– Wasteful to require all of user’s code to be in memory

• Solution: use main memory as “cache” for disk

O
n-C

hip
C

ache

Control

Datapath

Secondary
Storage
(Disk)

Processor

Main
Memory
(DRAM)

Second
Level
Cache
(SRAM)

Tertiary
Storage
(Tape)

pagingcaching

Lec 16.463/12/24 Kubiatowicz CS162 © UCB Spring 2024

Page Fault Demand Paging

virtual address

MMU
PT

instruction

physical address
page#

frame#

offsetpage fault

Operating System

exception

Page Fault Handler

load page from disk

update PT entry

Process

scheduler

retry
frame#

offset

Lec 16.473/12/24 Kubiatowicz CS162 © UCB Spring 2024

Summary (1/2)
• The Principle of Locality:

– Program likely to access a relatively small portion of the address space at any
instant of time.

» Temporal Locality: Locality in Time
» Spatial Locality: Locality in Space

• Three (+1) Major Categories of Cache Misses:
– Compulsory Misses: sad facts of life. Example: cold start misses.
– Conflict Misses: increase cache size and/or associativity
– Capacity Misses: increase cache size
– Coherence Misses: Caused by external processors or I/O devices

• Cache Organizations:
– Direct Mapped: single block per set
– Set associative: more than one block per set
– Fully associative: all entries equivalent

Lec 16.483/12/24 Kubiatowicz CS162 © UCB Spring 2024

Summary (2/2)
• “Translation Lookaside Buffer” (TLB)

– Small number of PTEs and optional process IDs (< 512)
– Often Fully Associative (Since conflict misses expensive)
– On TLB miss, page table must be traversed and if located PTE is invalid, cause

Page Fault
– On change in page table, TLB entries must be invalidated

• Demand Paging: Treating the DRAM as a cache on disk
– Page table tracks which pages are in memory
– Any attempt to access a page that is not in memory generates a page fault,

which causes OS to bring missing page into memory

