CS162
Operating Systems and
Systems Programming

Lecture 16

Memory 3: Caching and TLBs (Con’t), Demand Paging

March 12th, 2024
Prof. John Kubiatowicz
http://cs162.eecs.Berkeley.edu

Recall: The two-level page table
] Physical
12 bits Address:

10 bits 10 bits

Virtual
Address:

» Tree of Page Tables
— “Magic” 10b-10b-12b pattern!

» Tables fixed size (1024 entries)
— On context-switch: save single PageTablePtr register

(i.e. CR3)

+ Valid bits on Page Table Entries
— Don’t need every 2M-level table
— Even when exist, 2"9-level tables can reside on disk if

not in use
3/12/24 Kubiatowicz CS162 © UCB Spring 2024 Lec 16.2

—> 4 bytes «—

—> 4 bytes «—

3/12/24

Recall: X86_64: Four-level page table!

i 9 bit 9 bits 9 bits 12 bi
48-bit Virtual 9 bits its i i bits

Address:

— 8 bytes «—

4096-byte pages (12 bit offset)
Page tables also 4k bytes (pageable)

Physical
Address:
(40-50 bits)

Kubiatowicz CS162 © UCB Spring 2024 Lec 16.3

From x86_64 architecture specification

Linear Address
47 3938 3029 2120 12 11 0
[PML4 [Directory Pr | Directory Table Offset |
|
el]
Ao /12 4-KByte Page
Physical Addr

» PTE

Page-Directory- - 3| PDE with PS=0
Pointer Table 6 Page Table
Page-Directory

»/PDPTE A0

> PML4E

CR3

Figure 4-8. Linear-Address Translation to a 4-KByte Page using 4-Level Paging

 All current x86 processor support a 64 bit operation
+ 64-bit words (so ints are 8 bytes) but 48-bit addresses

3/12/24 Kubiatowicz CS162 © UCB Spring 2024 Lec 16.4

Larger page sizes supported as well

Linear Address
56 a7 39 38 3029 2120 21 o
PMLE

Linear Address Linear Address
47 3938 3029 2120 0 47 3938 3029 [
| Directory | Offset] [“PMLe T Directory Prr | Offset
p
Jo pe | EY
7y
2-MByte Page
»| Physical AGGr
PML Pago-Diroctory- L»=| PDE wih PS=1 7z > Page-Directory- 1-GBylo Pogo
o Pointer Table 3 Pontor Tablo
A Page-Directory } Physical Adde
»|FOPTE 1 »{POPTE win P81 | —
N % Jo 22
PhIL ° - -
10 A0
S40 >[PMLIE >| PML4E
cR e -
| E— 40
- a
Figue 21, L| 1%
L = CcR3

Figure -9, Uincar-Address Translation to a 2-MByte Page using 4-Level Paging Figure 4-10. Linear-Address Translation to a 1-GByte Page using 4-Level Paging

* Larger page sizes (2MB, 1GB) make sense since memory is now cheap
— Great for kernel, large libraries, etc

— Use limited primarily by internal fragmentation...
3/12/24 Kubiatowicz CS162 © UCB Spring 2024 Lec 16.5

Recall: Alternative: Inverted Page Table

» With all previous examples (“Forward Page Tables”)
— Size of page table is at least as large as amount of virtual memory allocated
to processes
— Physical memory may be much less
» Much of process space may be out on disk or not in use

Hash
Table

* Answer: use a hash table
— Called an “Inverted Page Table”
— Size is independent of virtual address space
— Directly related to amount of physical memory
— Very attractive option for 64-bit address spaces
» PowerPC, UltraSPARC, |1A64
» Cons:
— Complexity of managing hash chains: Often in hardware!
— Poor cache locality of page table

3/12/24 Kubiatowicz CS162 © UCB Spring 2024 Lec 16.6

Address Translation Comparison

_ Advantages Disadvantages

Fast context switching
(segment map maintained by External fragmentation
CPU)

Simple Segmentation

Large table size (~ virtual
memory)
Internal fragmentation

. . No external fragmentation
Paging (Single-Level) Fast and easy allocation
Paged Segmentation Table size ~ # of pages in
virtual memory

Fast and easy allocation

Multiple memory references

Multi-Level Paging per page access

Hash function more complex
No cache locality of page
table

Table size ~ # of pages in

Inverted Page Table :
physical memory

3/12/24 Kubiatowicz CS162 © UCB Spring 2024 Lec 16.7

How is the Translation Accomplished?

Virtual Physical
Addresses Addresses
MMU

+ The MMU must attempt to translate virtual address to physical address on:
— Every instruction fetch, Every load, Every store
— Generate a “Page Fault” (Trap) if it encounters invalid PTE
» Fault handler will decide what to do (more on this next lecture)
* What does the MMU need to do to translate an address?
— 1-level Page Table
» Read PTE from memory, check valid, merge address
» Set “accessed” bit in PTE, Set “dirty bit” on write
— 2-level Page Table
» Read and check first level
» Read, check, and update PTE at second level
— N-level Page Table ...
* MMU does page table Tree Traversal to translate each address
— Turns a potentially fast memory access into a slow multi-access table traversal...
3/12/24 — Need CACHING! Kubiatowicz CS162 © UCB Spring 2024 Lec 16.8

Where and What is the MMU ?

pmmmmm oo smmmmmmmm o R
4 o™ e , Physical
i N i | M
i ae?® @e? % emory
i | Processor > > PREIIN aa?
| MMU Cache(s) cummp (o0
'] (core) |e < NV
1 () page
] PTER 1 N tables
L < data @ mem[VtoP(m)] > J

» The processor requests READ Virtual-Address to memory system
— Through the MMU to the cache (to the memory)

+ Some time later, the memory sgstem responds with the data stored at the physical
address (resulting from virtual - physical) translation

— Fast on a cache hit, slow on a miss
+ So what is the MMU doing?

» On every reference (I-fetch, Load, Store) read (multiple levels of) page table entries
to get physical frame or FAULT
— Through the caches to the memory
— Then read/write the physical location

Recall: CS61c Caching Concept
El Foe =

Seert

5 g . = —
E! 00 D B

» Cache: a repository for dopies that can be accessed more quickly than
the original

—Make frequent case fast and infrequent case less dominant
+ Caching underlies many techniques used today to make computers fast

— Can cache: memory locations, address translations, pages, file blocks, file
names, network routes, etc...

* Only good if:
— Frequent case frequent enough and
— Infrequent case not too expensive

* Many important OS concepts boil down to caching! We cache:
—Pages, Files, Virtual Memory Translations, |IP Addresses...

3/12/24 Kubiatowicz CS162 © UCB Spring 2024 Lec 16.9 3/12/24 Kubiatowicz CS162 © UCB Spring 2024 Lec 16.10
Recall: In Machine Structures (eg. 61C) ... Another Major Reason to Deal with Caching
» Hardware Caching is the key to memory system performance for CPUs: Virtual Offset
Address:
Main page#0 [V.R
Processor[€ > M =
r Access time = 100ns (DeRn;ch;\;l); Base0 L!ml ﬂgemﬁ%_d-oﬁset |
Base1 it1 |V page #2 \RW Phvsical Add
BaseZ| Limi page #3 | VR, ysica ress
» SasecfumcXN | [pagess [=
ain ase: |m| age #5 VR,
Processor|€ —> (CsaRCRf,.) € > Memory Base5| Limits pag Check Per
1ns 100ns [(DRAM) Base6| Limité | N
Base7| Limit7 | V. —Access Access
» Average Memory Access Time (AMAT) Error Error
= (Hit Rate x HitTime) + (Miss Rate x MissTime) + Cannot afford to translate on every access
+ Where: — At least three DRAM accesses per actual DRAM access
— HitRate + MissRate =1 —Or: perhaps /O if page table partially on disk!
— MissTime = HitTime + MissPenalty « Even worse: What if we are using caching to make memory
. Exam%'es- - 90% <> AMAT < 1 AN access faster than DRAM access?
~ HitRate = 90% => =(0.9x1) +(0.1x101)=11 ns « Solution? Cache translations!
— HitRate = 99% => AMAT = (0.99 x 1) + (0.01 x 101)=2.01 ns . ») . ,
— Translation Cache: TLB (“Translation Lookaside Buffer”)
3/12/24 Kubiatowicz CS162 © UCB Spring 2024 Lec 16.11 3/12/24 Kubiatowicz CS162 © UCB Spring 2024 Lec 16.12

Why Does Caching Help? Locality!

Probability
of reference

Recall: Memory Hierarchy

» Caching: Take advantage of the principle of locality to:
— Present the illusion of having as much memory as in the cheapest technology
— Provide average speed similar to that offered by the fastest technology

Page table lives here
(perhaps cached)

Address Translation
needs to occur here

0 Address Space 2n-1
. . . . rocessor
» Temporal Locality (Locality in Time): S —
; ——V— r
—Keep recently accessed data items closer to processor E N I
e [of [
+ Spatial Locality (Locality in Space): gl 8] |& Secondary
. 1] (] . Secondary Storage
—Move contiguous blocks to the upper levels Main s (Disk)
Core a5 Memory torage
M | — r
Lower Level FAES g g Qo (DRAM) (8S0)
To Processor | Upper Level Memory R o 29
Memory a o 3 - ®
i @
BIk X .
From Processor BIKY . g 100,000 10,000,000
—_— Speed (ns): 0.3 1 3 10-30 100 (0.1'ms) 10 ma)
Size (bytes): 100Bs 10kBs 100kBs MBs GBs 100GBs TBs
3/12/24 Kubiatowicz CS162 © UCB Spring 2024 Lec 16.13 3/12/24 Kubiatowicz CS162 © UCB Spring 2024 Lec 16.14
Recall 61C: Dealing with Hierarchy How is a Block found in a Cache?
» Used to compute access time probabilistically: m
AMAT = Hit Rate; x Hit Time , + Miss Rate ,; x Miss Time S [Block Address [Block |
Hit Rate,, + Miss Rate, = 1 8 [Tag [_index | offset
Hit Time, = Time to get value from L1 cache. S \ J
Miss Time, = Hit Time , + Miss Penalty Y
Miss Penalty, = AVG Time to get value from lower level (DRAM)
So, AMAT = Hit Time , + Miss Rate; x Miss Penalty,, Set Select
; Data Select
* Xn\al:Tat it‘)flfrt' more L‘?Vd: ‘tJf hler;rchg/? " o + Block is minimum quantum of caching
= Hit Time, + Miss Rate, x Miss Penalty,, o _ X L
Miss Penalty,, = AVG time to get value from lower level (L2) 2 Data select field used to select data within block
= Hit Time, + Miss Rate,, x Miss Penalty,, - — Many caching applications don’t have data select field
Miss Penalty,, = Average Time to fetch from below L2 (DRAM) . .
* Index Used to Lookup Candidates in Cache
AMAT = HIT Time,, + — Index identifies the set
Miss Rate,, x (Hit Time, + Miss Rate,, x Miss Penalty,,) . .
. - » Tag used to identify actual copy
« And so on ... (can do this recursively for more levels!) —If no candidates match, then declare cache miss
Lec 16.15 3/12/24 Kubiatowicz CS162 © UCB Spring 2024 Lec 16.16

3/12/24 Kubiatowicz CS162 © UCB Spring 2024

Review: Direct Mapped Cache

« Direct Mapped 2N byte cache:
— The uppermost (32 - N) bits are always the Cache Tag
— The lowest M bits are the Byte Select (Block Size = 2M)
« Example: 1 KB Direct Mapped Cache with 32 B Blocks
— Index chooses potential block
— Tag checked to verify block
— Byte select chooses byte within block

31 9 4 0
| Cache Tag | CacheIndex | Byte Select |
Ex: 0x50 Ex: 0x01 Ex: 0x00
Valid Bit Cache Tag Cache Data

... L|...Byte31)....0. 1 Byte 1. |.Bytd0.1.0

0x50 Byte 63| °° | Byte 33| Byte 32| 1
.. 5

3
Byte 1023 Byte 992 | 31

Review: Set Associative Cache
* N-way set associative: N entries per Cache Index
—N direct mapped caches operates in parallel
+ Example: Two-way set associative cache
— Cache Index selects a “set” from the cache
—Two tags in the set are compared to input in parallel
- Dglta is selected based on the tag réasult

0

| Cache Tag [Cachelndex | Byte Select |
Valid Cache Tag Cache Data Cache Data Cache Tag Valid
Cache Block 0 Cache Block 0

3/12/24 Kubiatowicz CS162 © UCB Spring 2024 Lec 16.17 3/12/24 Lec 16.18
Review: Fully Associative Cache Administrivia
» Fully Associative: Every block can hold any line - Midterm 2: Thursday 8pm-10pm
— Address does not include a cache index ' ,
— Compare Cache Tags of all Cache Entries in Parallel —You are responsible materlallup to and |ncIL.Jd|ng today’s lecture
- Example: Block Size=32B blocks — Two sheets of notes: handwritten, double-sided
—We need N 27-bit comparators » Next week after exam: some extra credit for attending
— Still have byte select to choose from within block — Decided not to do it this week since people are really crazy busy
31 4 0 . .
| Cache Tag (27 bits long) | Byte Select | * Midterm 2 is on T Day!!!
Ex: 0x01 — 40 digits sufficient to calculate circumference of visible universe to atomic dimensions:
https://www.jpl.nasa.gov/edu/news/2016/3/16/how-many-decimals-of-pi-do-we-really-need/
Cache Tag Valid Bi; - S;d‘e Da‘; e — Here are 40 decimal places: 3.14159265358979323846264 3383279502884 1971
- O— " P s .
© the 63| - Bi:e 33 Bite 32))
- O— * Best formula for Pl is from Ramanujan:
= _1_ ﬂzm (4k)!(1103+26390k)
w9801 ~k=0 (k!)*3964K
—O— . — Google announced back in 2019 (3/14/19) that Emma Haruka Iwao had just
calculated pi to 31,415,926,535,897 digits (new record...)
3/12/24 Kubiatowicz CS162 © UCB Spring 2024 Lec 16.19 3/12/24 Kubiatowicz CS162 © UCB Spring 2024 Lec 16.20

Where does a Block Get Placed in a Cache?

* Example: Block 12 placed in 8 block cache
32-Block Address Space:

Block 1111111111222222222233
no. 01234567890123456789012345678901

Which block should be replaced on a miss?

» Easy for Direct Mapped: Only one possibility
» Set Associative or Fully Associative:
—Random
—LRU (Least Recently Used)

« Miss rates for a workload:

Direct mapped: Set associative: Fully associative: 2-way 4-way 8-way
block 12 block 12 block 12 ;
or:)I; into(l::::c?(o4 an‘;(\:fvher:?:sgéo an‘:’y‘fmherecan 9 Size LRU Random LRU Random _LRU Random
(12mod 8) (12mod 4) 16 KB 52% 57% 47% 53% 44% 5.0%
BIT:)k, 01234567 BI(::;k. 01234567 Blt:‘c:f 01234567 64 KB 19% 20% 15% 17% 14% 15%
256 KB1.15% 1.17% 1.13% 1.13% 1.12% 1.12%
Set Set Set Set
01 2 3
3/12/24 Kubiatowicz CS162 © UCB Spring 2024 Lec 16.21 3/12/24 Kubiatowicz CS162 © UCB Spring 2024 Lec 16.22
Review: What happens on a write? A Summary on Sources of Cache Misses
« Write through: The information is written to both the block in the cache « Compulsory (cold start or process migration, first reference): first access to a block
and to the block in the lower-level memory — “Cold” fact of life: not a whole lot you can do about it unless you prefetch
« Write back: The information is written only to the block in the cache — Solution: Prefetch values before use
—Modified cache block is written to main memory only when it is — Note: If you run “billions” of instruction, Compulsory Misses are insignificant
replaced « Capacity:
B o PN
P QUGS(;I(():H 1S bl(f)Ck c:??an or dirty* — Cache cannot contain all blocks access by the program
rovsv$!'1 ons ot each — Solution 1: increase cache size
- :) . . . — “Solution 2”: Change (e.g. reduce) associativity to focus misses in a few places?!
» PRO: read misses cannot resu_lt inwrites » Consider fully-associative cache of size n: access pattern 0, 1, ... n-1,n, 0, 1, ...
» CON: Processor held up on writes unless writes buffered » Contrast with direct mapped of size n: Fewer misses!
—-WB: _ _ + Conflict (collision):
» PRO: repeated writes not sent to DRAM — Multiple memory locations mapped to the same cache location
processor not held up on writes — Solution 1: increase cache size
» CON: More complex . - s
Read miss may require writeback of dirty data — Solution 2: increase associativity
» Coherence (Invalidation): other process (e.g., I/0) updates memory
3/12/24 Kubiatowicz CS162 © UCB Spring 2024 Lec 16.23 3/12/24 Kubiatowicz CS162 © UCB Spring 2024 Lec 16.24

How do we make Address Translation Fast?

» Cache results of recent translations !
— Different from a traditional cache
— Cache Page Table Entries using Virtual Page # as the key

$7

205 i " p0%° Physical
-
" PalP 3 pa) o Memory
Ao pe’ QQ s
Processor > > Aiem\ ge
MMU Cache(s) > o™
(core) |e < rS
O
page
PTBR @ ~
V_Pg M, : <Phs_Frame #,, V, .. > -
V_Pg M, : <Phs_Frame #,, V, .. > [i
V_Pg M, : <Phs Frame #,, V, .. >
3/12/24 Kubiatowicz CS162 © UCB Spring 2024 Lec 16.25

Translation Look-Aside Buffer

* Record recent Virtual Page # to Physical Frame # translation
If present, have the physical address without reading any page tables !!!
— Even if the translation involved multiple levels
— Caches the end-to-end result
* Was invented by Sir Maurice Wilkes — prior to caches
— When you come up with a new concept, you get to name it!

— People realized “if it's good for page tables, why not the rest of the data in
memory?”

On a TLB miss, the page tables may be cached, so only go to memory
when both miss

3/12/24 Kubiatowicz CS162 © UCB Spring 2024 Lec 16.26

Caching Applied to Address Translation

Physical

Physical
Memory

Translate
(MMU)

Data Read or Write (untranslated)

* Question is one of page locality: does it exist?
— Instruction accesses spend a lot of time on same page (accesses are sequential)
— Stack accesses have definite locality of reference
— Data accesses have less page locality, but still some...
« Can we have a TLB hierarchy?
— Sure: multiple levels at different sizes/speeds

3/12/24 Kubiatowicz CS162 © UCB Spring 2024 Lec 16.27

Physically-Indexed vs Virtually-Indexed Caches

» Physically-Indexed, Physically-Tagged
— Address handed to cache after translation offset

— Page Table in physical memory (so that it
car%J be cached? y ¥ Cache | Memo

— Benefits: ['?:g:f:(;']y 3 y

» Every piece of data has single place in cache . ‘@

. [Physically

» Cache can stay unchanged on context switch addressed] : 5
— Challenges: Page Table physical

» TLB is in critical path of lookup!
— Pretty Common today (e.g. x86 processors)

« Virtually-Indexed, Virtually-Tagged or Physically-Tagged virtual | Cache
— Address handed to cache before translation [i\rf'(;t:xa;'g]
— Page Table in virtual memory (so that it can be cached);
Only last level of Page Table points to physical memory.

— Benefits: offset

» TLB not in critical path of lookup, so system can be faster . TLB :, Memory
— Challenges: virtual I

» Same data could be mapped in multiple places of cache : 2

» May need to flush cache on context switch a[;g?:sagz " s

3/;2/¥Ve will stick with Physically Indered Caches for now! virtual Page Table
ubiatowicz CS162 © UCB Spring 2024 Lec 16.28

What TLB Organization Makes Sense?

Cache
TLB [Physically Memory
indexed]

» For Physically Indexed/Tagged, Needs to be really fast
— Critical path of memory access
» In simplest view: before the cache
» Thus, this adds to access time (reducing cache speed)
— Seems to argue for Direct Mapped or Low Associativity
* However, needs to have very few conflicts!
— With TLB, the MissTime extremely high! (Page Table traversal)
— Cost of Conflict (Miss Time) is high
— Hit Time — dictated by clock cycle
* Thrashing: continuous conflicts between accesses
— What if use low order bits of virtual page number as index into TLB?
» First page of code, data, stack may map to same entry
» Need 3-way associativity at least?
— What if use high order bits as index?
» TLB mostly unused for small programs
3/12/24 Kubiatowicz CS162 © UCB Spring 2024 Lec 16.29

TLB organization: include protection

* How big does TLB actually have to be?
—Usually small: 128-512 entries (larger now)
—Not very big, can support higher associativity

« Small TLBs usually organized as fully-associative cache
—Lookup is by Virtual Address
—Returns Physical Address + other info

» What happens when fully-associative is too slow?
—Put a small (4-16 entry) direct-mapped cache in front
—Called a “TLB Slice”

+ Example for MIPS R3000:

Virtual Address | Physical Address | Dirty | Ref | Valid |Access |ASID
0xFA00 0x0003 Y N Y R/W | 34
0x0040 0x0010 N Y Y R 0
0x0041 0x0011 N Y Y R 0
3/12/24 Kubiatowicz CS162 © UCB Spring 2024 Lec 16.30

Making physically-indexed caches fast: Fit into Pipeline!

Example: MIPS R3000 Pipeline
[lnst Fetch | Dcd/ Reg |ALU | EA | Memory | Write Reg |
|TLB ‘ I-Cache ‘ RF | Operation | | WB |
| E.A.| TLB | D-Cache |

TLB
64 entry, on-chip, fully associative, software TLB fault handler

Virtual Address Space

[asip |[]]] v.Page Number | offset |

6 _|_1 20 12

0xx User segment (caching based on PT/TLB entry)
100 Kernel physical space, cached

101 Kernel physical space, uncached

11x Kernel virtual space

Allows context switching among
64 user processes without TLB flush

3/12/24 Kubiatowicz CS162 © UCB Spring 2024 Lec 16.31

Further reducing translation time for physically-indexed caches
Virtual Address

» As described, TLB lookup is in serial with [Voage no.] oﬁ'o s;]
cache lookup I
— Consequently, speed of TLB can impact

TLB Lookup

speed of access to cache

V /Rights| PA

* Machines with TLBs go one step further:
overlap TLB lookup with cache access

— Works because offset available early
— Offset in virtual address exactly covers the “cache index” and “byte select”
— Thus can select the cached byte(s) in parallel to perform address translation

virual adcress: SRR ORESIT]

physical address: | tag / page #

[P page no. | offset |

Physical Address

3/12/24 Kubiatowicz CS162 © UCB Spring 2024 Lec 16.32

Overlapping Cache and TLB access

* Here is how this might work with a 4K cache:
[assoc [
lookup

T TLB ‘—‘ ’M> 4K Cache 1[K

——4 bytes——|

20 10 2
[page # [disp oo
Hit/
Miss
FN FN Data Hit/
Miss

» What if cache size is increased to 8KB?
— Overlap not complete
— Need to do something else. See CS152/252
» As discussed earlier, Virtual Caches would make this faster
— Tags in cache are virtual addresses
— Translation only happens on cache misses

What Actually Happens on a TLB Miss?

Hardware traversed page tables (x86, many others):

— On TLB miss, hardware in MMU looks at current page table to fill TLB (may walk
multiple levels)

» If PTE valid, hardware fills TLB and processor never knows

» If PTE marked as invalid, causes Page Fault, after which kernel decides what to do
afterwards

Software traversed Page tables (like MIPS):
— On TLB miss, processor receives TLB fault
— Kernel traverses page table to find PTE
» If PTE valid, fills TLB and returns from fault
» If PTE marked as invalid, internally calls Page Fault handler
Most chip sets provide hardware traversal
— Modern operating systems tend to have more TLB faults since they use translation
for many things
— Examples:
» shared segments
» user-level portions of an operating system

3112124 Kubiatowicz CS162 © UCB Spring 2024 Lec 16.33 3112124 Kubiatowicz CS162 © UCB Spring 2024 Lec 16.34
Transparent Exceptions: Page fault Consider weird things that can happen
o _ © _ 2 £ o + What if an instruction has side effects?
User = 2% = 7% — Options:
o £ &< T £ e =< » Unwind side-effects (easy to restart)
Page Faults w » Finish off side-effects (messy!)
g — Example 1: mov (sp)+,10
oS » What if page fault occurs when write to stack pointer?
» Did sp get incremented before or after the page fault?
o] — Example 2: strcpy (rl), (r2)
* How to tranSparenﬂy restart faulting instructions? » Source and destination overlap: can’t unwind in principle!
— (Consider load or store that gets Page fault) » IBM S/370 and VAX solution: execute twice — once read-only
— Could we just skip faulting instruction? * What about “RISC” processors?
J p g
» No: need to perform load or store after reconnecting physical page! — For instance delayed branches?
« Hardware must help out by saving: » Example: bre somewhere
— Faulting instruction and partial state » Restart after page fault: need two PCs, PC and nPC!
» Neelzd to know wr.m.:h |nstr.uct|o.n causgd fault. . — Delayed exceptions:
» Is single PC sufficient to identify faulting position???? » Example: div rl, r2, r3
— Processor State: sufficient to restart user thread 1d rl, (sp)
» Savelrestore registers, stack, etc » What if takes many cycles to discover divide by zero, but load has already
. . . L d fault?
» What if an instruction has side-effects? caused page fad
3112124 Kubiatowicz CS162 © UCB Spring 2024 Lec 16.35 3112724 Kubiatowicz CS162 © UCB Spring 2024 Lec 16.36

Precise Exceptions
» Precise = state of the machine is preserved as if program executed up to
the offending instruction
— All previous instructions completed

— Offending instruction and all following instructions act as if they have not
even started

— Same system code will work on different implementations
— Difficult in the presence of pipelining, out-of-order execution, ...
— x86 takes this position
+ Imprecise = system software has to figure out what is where and put it all
back together
» Performance goals often lead designers to forsake precise interrupts
— system software developers, user, markets etc. usually wish they had not
done this
» Modern techniques for out-of-order execution and branch prediction help
implement precise interrupts

Recent Intel x86 (Skylake, Cascade Lake)

Execution Engine

3/12/24 Kubiatowicz C$162 © UCB Spring 2024 Lec 16.37 3/12/24 Kubiatc memory Subsystem Lec 16.38
Recent Example: Memory Hierarchy What happens on a Context Switch?
. . * Need to do something, since TLBs map virtual addresses to physical addresses
» Caches (all 64 B line size) — Address Space 'ustgchan ed, so TLB e?wtries no longer valid! e
— L1 I-Cache: 32 KiB/core, 8-way set assoc. . 5 P] ged, 9 ’
— L1 D Cache: 32 KiB/core, 8-way set assoc., 4-5 cycles load-to-use, Write-back policy ¢ Optlons.)))
— L2 Cache: 1 MiB/core, 16-way set assoc., Inclusive, Write-back policy, 14 cycles — Invalidate (“Flush”) TLB: simple but might be expensive
latency » What if switching frequently between processes?
— L3 Cache: 1.375 MiB/core, 11-way set assoc., shared across cores, Non-inclusive — Include ProcessID in TLB
victim cache, Write-back policy, 50-70 cycles latency . . .
. TLB » This is an architectural solution: needs hardware
. i i ?

— L1 ITLB, 128 entries; 8-way set assoc. for 4 KB pages What if translation tables change? . .

» 8 entries per thread; fully associative, for 2 MiB / 4 MiB page — For example, to move page from memory to disk or vice versa...
— L1 DTLB 64 entries; 4-way set associative for 4 KB pages — Must invalidate TLB entry!

» 32 entries; 4-way set associative, 2 MiB / 4 MiB page translations: » Otherwise, might think that page is still in memory!

» 4 entries; 4-way associative, 1G page translations: — Called “TLB Consistency”
— L2 STLB: 1536 entries; 12-way set assoc. 4 KiB + 2 MiB pages + Aside: with Virtually-Indexed, Virtually-Tagged cache, need to flush cache!

» 16 entries; 4-way set associative, 1 GiB page translations: — Everyone has their own version of the address “0” and can’t distinguish them

— This is one advantage of Virtually-Indexed, Physically-Tagged caches..
3/12/24 Kubiatowicz C$162 © UCB Spring 2024 Lec 16.39 3/12/24 Kubiatowicz C$162 © UCB Spring 2024 Lec 16.40

Putting Everything Together: Address Translation

Physical

Virtual Address: Memory:

| PageTablePtr PhysicalAddre

Page Table
(13t level)

Page Table
(2 level)

3/12/24

Putting Everything Together: TLB

Physical
Virtual Address: Memory:
— 1)
[PageTablfptr p—""] Physic re
\ Page #
-
|
Page Table |
(15t level) —
Page Table
(2nd level)
TLB:

Kubiatowicz CS162 © UCB Spring 2024 Lec 16.41 3/12/24 Kubiatowicz CS162 © UCB Spring 2024 Lec 16.42
Putting Everything Together: Cache Page Fault Handling
_ Physical * The Virtual-to-Physical Translation fails
Virtual Address: Memory:
VITTar T vinTat — PTE marked invalid, Privilege Level Violation, Access violation, or does not exist
[P1 indexd P2 index Offset
— — Causes an Fault / Trap
» Not an interrupt because synchronous to instruction execution
AN — May occur on instruction fetch or data access
l@ﬂl""» Physic: re — Protection violations typically terminate the process
N » Other Page Faults engage operating system to fix the situation and retry the
instruction
Page Table — Allocate an additional stack page, or
L= — Make the page accessible — (Copy on Write),
2???;2%’9 — Bring page in from secondary storage to memory — demand paging
e » Fundamental inversion of the hardware / software boundary
I — Need to execute software to allow hardware to proceed!
-
3/12/24 Lec 16.43 3/12/24 Kubiatowicz CS162 © UCB Spring 2024 Lec 16.44

Demand Paging

* Modern programs require a lot of physical memory
—Memory per system growing faster than 25%-30%/year

» But they don’t use all their memory all of the time
—90-10 rule: programs spend 90% of their time in 10% of their code
— Wasteful to require all of user’s code to be in memory

» Solution: use main memory as “cache” for disk

Page Fault = Demand Paging

Process virtual address physical address

page#
instr MMU > frame#
e
exception‘-/page faultf 1~ =

rame#

Operaling System offset

”/Update PT entry
Page Fault Handler

Processor
c : pagin d from disk
ontrol cachin: Tertiary oad page from dis
econg|Main Secondary | Storage¢
@ 3 evel [|Memory [Storage (Tape) h
Datapatt] |0 ache| [(DRAM) |(Disk)
k=l SRAM r
scheduler
3/12/24 Kubiatowicz CS162 © UCB Spring 2024 Lec 16.45 3/12/24 Kubiatowicz CS162 © UCB Spring 2024 Lec 16.46

Summary (1/2) Summary (2/2)

* The Principle of Locality:

— Program likely to access a relatively small portion of the address space at any
instant of time.

» Temporal Locality: Locality in Time
» Spatial Locality: Locality in Space
* Three (+1) Major Categories of Cache Misses:
— Compulsory Misses: sad facts of life. Example: cold start misses.
— Conflict Misses: increase cache size and/or associativity
— Capacity Misses: increase cache size
— Coherence Misses: Caused by external processors or I/O devices
» Cache Organizations:
— Direct Mapped: single block per set
— Set associative: more than one block per set
— Fully associative: all entries equivalent

3/12/24 Kubiatowicz CS162 © UCB Spring 2024 Lec 16.47

* “Translation Lookaside Buffer” (TLB)
— Small number of PTEs and optional process IDs (< 512)
— Often Fully Associative (Since conflict misses expensive)

— On TLB miss, page table must be traversed and if located PTE is invalid, cause
Page Fault

— On change in page table, TLB entries must be invalidated
* Demand Paging: Treating the DRAM as a cache on disk
— Page table tracks which pages are in memory

— Any attempt to access a page that is not in memory generates a page fault,
which causes OS to bring missing page into memory

3/12/24 Kubiatowicz CS162 © UCB Spring 2024 Lec 16.48

