HTTP & CDNs

Spnn§2024
cs168.io0

Rob Shakir

Thanks to Iuniana Oprescu for some of the content!

http://cs168.io

Today
e Think about another application that runs on the Internet.
e What is Hypertext Transfer Protocol - HTTP?
e How do we make HTTP services perform well?
e What are Content Delivery Networks (CDNSs)?

e Evolving HTTP.

HTTP

e Development initiated by Tim Berners-Lee at CERN in 1989,

o Published a specification that was developed to eventually become the first version.

e Driven by a need to have information shared between scientists.
o Developed the first website - recreated by CERN at https://info.cern.ch/.

e Needed a mechanism to transfer these “hypertext” pages between

computers.
o And hence invented a protocol for it - HyperText Transfer Protocol

https://www.w3.org/Protocols/HTTP/AsImplemented.html
https://info.cern.ch/

HTTP is a TCP-based Request/Response Protocol

TCP connection to example.com:80

Client Server

e HTTP runs on a well-known TCP port, 80.
o We will discuss secure HTTP later, which runs on tcp/443.

e TCP allows for reliable transport of the bytes that make up content.

HTTP is a TCP-based Request/Response Protocol

|
Client O Server

e An HTTP client generates requests which ask for specific content from
the server.

e To start with we are going to think about HTTP/1.1.
o Initial specification was HTTP/0.9 in 1991.
o HTTP/1.0 was standardised in 1996.
o HTTP/1.1 was standardised in 1997.

HTTP is a TCP-based Request/Response Protocol

Client \ >O Server

e HTTP client sends a request which the server responds to with a
response.

e Requests are a fixed format - ended by a carriage return and linefeed
(\x\n):

<method> <requested URL> <version>

HTTP is a TCP-based Request/Response Protocol

|
Client 2V Lot >O Server

e Initially, HTTP had only one method - GET.
o Allowed a client to retrieve a specific URL (page) from the server.

e C(lients caninclude Headers which allow additional information to be
propagated to the server.

HTTP is a TCP-based Request/Response Protocol

|
Client | HTTP/1.1 200 OK O Server

e Following a client request, the server provides a HTTP response.

e Responses are in the format:

<version> <status code> <optional message>
<content>

HTTP Request Messages
e Simple text-based protocol that has been in the same form for >20 years.

e You can implement this protocol by connecting to a remote server on port
80 and just typing messages...

» telnet google.com 80

Trying 2607:1f8b0:4005:802::200e. ..
Connected to google.com.

Escape character is '~]'.

GET / HTTP/1.1

Usexr-Agent: robjs

HTTP Request Messages
e Simple text-based protocol that has been in the same form for >20 years.

e You can implement this protocol by connecting to a remote server on port
80 and just typing messages...

Informing the server

Using the GET method .
we are using HTTP/1.1

to get the “root” page -
/

elnet google.com 80
ing 2607:f8b0:4005:
nected to googl

cape characte Addi -k
ing a well-known
GET / HTTP/1.1 header telling the

User-Agent: robjs server the type of client
I am using...

HTTP Response Messages

e The server responds back using the same TCP connection with a response...

HTTP/1.1 200 OK
Date: Sat, 16 Mar 2024 18:33:08 GMT
Content-Type: text/html; charset=IS0-8859-1

<!doctype html><html itemscope="" itemtype="http://schema.org/WebPage"
lang="en"><head><meta content="Search the world's information,
including webpages, images, videos and more. Google has many special
features to help you find exactly what you're looking for."
name="description">....

HTTP Response Messages

The server responds back using the same TCP connection with a response...

HTTP response with

Date: Sat, 16 Mar 2024 18:33:08 GMT description “OK

Content-Type: text/html; charset=IS0-8859-1

Headers that tell the client
about the response - the
date and content-type to
allow responses to be
decoded.

<!doctype html><html itemscope= itemtype=
lang="en"><head><meta content="Search the world's in
including webpages, images, videos and more. Google
features to help you fi : Lookin

name="description">....
The content we requested!

Questions?

Types of HTTP Methods

e GET is not the only method that we can use - although it is very common.

e HTTP was extended to add other methods.

e HEAD
o receive the headers of the content that is being requested, but not the content itself.
e POST

o supplying content from the client to the server at the specified URL.

e PUT, CONNECT, DELETE, OPTIONS, PATCH, TRACE.

o Makes HTTP a mechanism for manipulating content - not just receiving it.
o Client can make changes to content on the server, or retrieve it.

Format of HTTP Requests

GET /test.html HTTP/1.1 GET <URL> HTTP/1.1
User-Agent: robjs <Headexrs>

e URL allows for the content location on the server to be specified.

e Headers allow for additional information about the client to be
propagated to the server.

Format of HTTP Requests

GET /test.html HTTP/1.1 GET <URL> HTTP/1.1
User-Agent: robjs <Headexrs>

POST /test HTTP/1.1 POST <URL> HTTP/1.1
User-Agent: robjs <Headers>
fieldl=vall&field2=val2 <Contents supplied by client>

e The URL lets the server know how to parse the information that is
received in the body of the request.

Format of HTTP Requests

GET /test.html HTTP/1.1
User-Agent: robjs

GET <URL> HTTP/1.1
<Headexs>

POST /test HTTP/1.1
Usexr-Agent: robjs

fieldl=vall&field2=val2

PUT /test.html HTTP/1.1
Usexr-Agent: robjs

<p>Some File</p>

Format of HTTP Responses

HTTP/1.1 200 OK
Content-Type: text/html

<html><head>...

HTTP/1.1 <Status Code> <Description>
<Headexs>

<Contents>

HTTP/1.1 201 Created
Location: foo.html

HTTP/1.1 201 Created
Content-Location: test.html

HTTP Status Codes

e Status codes are used by the server to propagate information about the
result of the request to the client.

e (lassified into various categories - according to numeric value:
o 100 - Informational responses

200 - Successful responses

300 - Redirection messages

400 - Client error responses

500 - Server error responses

o O O O

e Some are very recognisable - 404 (File Not Found), 503 (Service Unavailable)
o You'll probably run into these errors just through your browser.

Google

404. That’s an error.

The requested URL /doesnotexist was not found on this
server. That’s all we know.

google.com/doesnotexist

http://google.com/doesnotexist

Common Successful HTTP Status Codes

e 200 — OK

o Request was successful.
o Definition of success depends on the HTTP method that was being used.

e 201 - Created

o Request succeeded and some new resource was created.
o Seen generally in POST or PUT requests.

Common Redirection HTTP Status Codes

e Used when a server is telling a client that they should go and look for the
resource (specified by the URL) somewhere else.

e 301 — Moved Permanently
o This resource has moved somewhere else!
o Includes a header - Location: https://some.other.site/newpage.html

e 302 — Found

o This resource has moved somewhere else, but temporarily.
o Includes a header - Location: https://some.other.site/temppage.html

e Headers are required to give client additional context.

e Status code lets the client determine future behaviour.
o e.g., temporarily redirected - client should come back to this URL to check in the future,
permanently redirected - client can always go to the new location.

https://some.other.site/newpage.html
https://some.other.site/temppage.html

Common Error HTTP Status Codes

e 401 - Unauthorized

o Clientis not allowed to access this content and must authenticate to do so.

e 403 - Forbidden

o Client has authenticated, and the server knows its identity, but access is forbidden.

e 404 — File Not Found

o Clientis requesting a file that doesn't exist.

e 500 - Internal Server Error
o The server hit an error processing the request and can't respond.

e 503 - Service Unavailable
o The server cannot respond at the current time.

203

Non-Authoritative Informat

ion

httpstatusdogs.com/203

http://httpstatusdogs.com/203

HTTP Error Codes

e There can be some ambiguity as to the status code to be used...

» telnet google.com 80

Trying 2607:1f8b0:4005:80c::200e...

Connected to google.com. Status code could be 505 (HTTP
Escape character is '~]'. version not supported), but rather
GET / HTTP/0.9 400 (Bad Request) used.

Generally, category of error is the most

HTTP/1.0 400 Bad Request important (400 or 500 = error)

Content-Type: text/html; charset=UTF-8

Referrer-Policy: no-referrer
Content-Length: 1555
Date: Sat, 16 Mar 2024 19:17:01 GMT

HTTP Headers

e In some types of messages, Headers are optional information.

o e.g., User-Agent allows some metadata about the client browser or program to be
provided to the server.
o Couldresult in different processing of the request.

e In other types, Headers are critical information.

o e.g, Content-Type tells the client how to parse the body that is enclosed.
o e.g., Host tells aserver that has multiple different web sites hosted on it, which is being
addressed.

e However, in HTTP/1.1 no header is mandatory.

Classes of HTTP Headers - Request

e Request Headers
o Pass information about the client to the server.

e Accept

o Allows the client to determine what encoding of the response should be.
o e.g.,Accept: text/html

o e.g.,Accept: application/json

o e.g.,Accept: image/*

e Host

o Allows the client to specify which host specifically they are aiming to access.
o e.g,Host: google.com:80

e Referer [sic], User-Agent ...

Classes of HTTP Header - Response
e Used in the response of the message - but does not relate to content.

e Content-Encoding - how the server encoded the content to be carried
over HTTP.

o e.g.,Content-Encoding: gzip says thatthe server compressed the contents.

e Date - when the server generated the response.

Classes of HTTP Header - Representation

e Used in HTTP requests and responses to describe how the content is
represented.

e Content-Type specifies the document type of the content.

o e.g., Content-Type: text/html
o e.g,Content-Type: image/png

e Representation headers allow us to carry different types of content over
HTTP!

o We can now request an image as well as an HTML page over HTTP!

Questions?

HTTP for More than Just HTML Pages

e HTTP is flexible to carry many different types of content.

HTML page delivered
as text/html.

GOOgle traceroute packet format
Images Example Forums Videos Shopping

Abo 83,000 results (0.35 seconds)

On Unix-like operating systems, traceroute sends, by default, a
sequence of User Datagram Protocol (UDP) packets, with destination
port numbers ranging from 33434 to 33534; the implementations of
traceroute shipped with Linux, FreeBSD, NetBSD, OpenBSD, DragonFly
BSD, and macOS include an option to use ICMP Echo Request ...

Wikipedia
https:/en.wikipedia.org » wiki » Traceroute }

traceroute - Wikipedia

+ @ Feedback

NetworkLessons.com
https://networklessons.com > cisco > traceroute
Traceroute
You have now learned how traceroute uses the TTL (Time to Live) field in the IP packet to send
probes to the destination, allowing us to discover the path from ...
Traceroute Command - Windows - Linux - Troubleshooting

Images - delivered over HTTP with the
correct Content-Type.

Dynamic vs. Static Content

e Whilst dynamic pages might have their content change often, other
“resources” (specified by a URL) are static.

Google traceroute packet format : Static images - the same for every
request made to the page.

Images Example Forums Videos Shopping

About 783,000 resu

On Unix-like operating systems, traceroute sends, by default, a
sequence of User Datagram Protocol (UDP) packets, with destination

Dyn am | CCO nte nt - port numbers ranging from 33434 to 33534; the implementations of
traceroute shipped with Linux, FreeBSD, NetBSD, OpenBSD, DragonFly

ge ne rated fO I eac h BSD, and macOS include an option to use ICMP Echo Request ...

d iffe re nt S e a rc h :KLfﬁil:?vawkiped\a.org » wiki » Traceroute }
I’eq u est. traceroute - Wikipedia

NetworkLessons.com
https:/networklessons.com > cisco » traceroute &

Traceroute

You have now learned how traceroute uses the TTL (Time to Live) field in the IP packet to send

probes to the destination, allowing us to discover the path from ...
Traceroute Command - Windows - Linux - Troubleshooting

Improving Web Performance

L1

GET googlelogo.png HTTP/1.1

TN
S

google.com

~

Improving Web Performance

L1

GET googlelogo.png HTTP/1.1

TN
S

google.com

—
GET googleicon.png HTTP/1.1

~

Improving Web Performance

[]

TCP 3-way handshake..
GET googlelogo.png HTTP/1.1

TN
S

google.com

—>>

TCP 3-way handshake..
GET googleicon.png HTTP/1.1

~

Improving Web Performance - Pipelining

GET googlelogo.png HTTP/1.1 P

1 =

GET googleicon.png HTTP/1.1

e Rather than requiring a new TCP connection per HTTP request, allow for
multiple requests to be “pipelined” over the same connection.

e Often need to load a lot of objects together!
o e.g., youtube.com HTML page, and then each image for each video.
o Server must maintain more open connections.

Improving Web Performance

N
GET googlelogo.png HTTP/1.1 P™~—0ut “

/ google.com
< =
\
—

——— ~

GET googlelogo.png HTTP/1.1

e Rather than requiring a client to load the same content on every request
- can we have them cache the content if it won't change?

e Need some way to carry metadata about the content that we returned =
Headers!

HTTP - Headers indicating content validity

e The server can use response headers to indicate when content is valid until.

GET http://www.google.com/images/branding/googlelogo/2x/googlelogo_coloxr_150x54dp.png HTTP/1.1

HTTP/1.1 200 OK

Accept-Ranges: bytes

Content-Type: image/png

Date: Sat, 16 Mar 2024 19:40:24 GMT
Expires: Sat, 16 Mar 2024 19:40:24 GMT
Cache-Control: private, max-age=31536000

?PNG
IHDR, ?R???IDATx??

HTTP - Headers indicating content validity

e The server can use response headers to indicate when content is valid until.

GET http://www.google.com/images/branding/googlelogo/2x/googlelogo_color_150x54dp.png
HTTP/1.1

HTTP/1.1 200 OK

Accept-Ranges: bytes Legacy header used in HTTP/1.0,

SOy per diEgey/ i obsoleted in HTTP/1.1
Date: Sat, 16 Mar 2024 19:40:24 GMT

Expires: Sat, 16 Mar 2024 19:40:24 GMT
Cache-Control: private, max-age=31536000.<:::f

Cache-Control header allows the
server to inform the client how to cache
the resource.

?PNG
IHDR, ?R???IDATX??

Types of HTTP Cache

e There are different types of HTTP cache.

e Private - tied to a specific end client that is connecting to the server.
o e.g. abrowser’s cache.

e Proxy - not run by the application provider, but exists in the network to
reduce network bandwidth.

e Managed - run by the application provider, but is not the original server
that generated content.

Operation with No Caching

Y
S

google.com

Origin server

~

L1

Every request results in a new request between a client and the origin
server.

Private Caches

Y
S

google.com

bt

Origin server

 '¥/

e Introducing private caches at each client means that cacheable content will
not be retrieved every request.

"

Proxy Caches

N
]

google.com

Origin server

~

non

e Introducing a proxy cache can reduce the bandwidth needed between a network

and the origin server.
o Most useful where there is low bandwidth out of a particular network.
o Requires clients to be redirected to the proxy cache.

Managed Caches

Y
S

google.com

Origin server

~

e Managed caches allow the application provider to have more control.

o Achieved by having some redirection mechanism (e.g., different DNS name - static.foo.com)
e Improves performance for clients by reducing latency.

o Faster object retrieval for small content.

o Higher throughput for large content.

Questions?

Cache-Control Header

e How do we control how long these caches hold on to some resource?

e Use a header that specifies the type of cache and what the required behaviours are

for such caches.
o No contract though - really a request!

e (Cache-Control: private,max-age=86400
o private allows us to specify that this applies to a private (browser) cache.
o max-age allows the owner of the content to specify how long to store the contents before
invalidating the cache.

e (Cache-Control: no-store
o Client/proxy is not allowed to cache the content.

e More complex policies possible.
o E.g."revalidate before using cache” (using HEAD etc.).

Loading a Complex HTTP Application

@ © CRAZYFINALE® [Mian 9 X | +

C = youtube.com/watch?v=fToNSPIid68 A O w00

Dynamic HTML Page ... o c o o e 6o 6 mes s e o1
generated in 5 Yoo
response to search
or user.

Pawn Stars: Top 7 PRICELESS
Items!

SWISS A-Juniors
.“! Championships 2024 | St....

CRAZY FINALE & | Milano-Sanremo 2024 Race Highlights | Eurosport Cycling

Blanc - UTMB 2022
f Pe

Eurosport Cycling @ " g §
Pl b 401 G A share Racing the Ultra Trail du Mont
U

6,007 views 2 hours ago #HomeofCycling
Race highlights from the 2024 Milano-Sanremo.

1 year ago

News and coverage from the #1 sports destination and the #Ho ing in Europe. Watch Eurosport - ...more The Gfla“d Tour - Car Meetup
Compilation

28 Comments = Sortby - K -1 month ago

“HEY PANINI HEAD, YOU'LL KILL
R Add a comment.

@charliedillon1400 1 hour ag
Seven minutes is about the average amount of time | devote to watching MSR every year! Great edit! i : i Milano-Sanremo 2024 |
Thanks for no spoilers!! - Highlights

IFs $ 2 @

Video delivered over
HTTP - large amount
of data!

Images delivered

over HTTP - more

data than HTML of
web page.

Improving Application Performance

e Want to achieve the best TCP throughput we can for our application.
o Especially important for the larger objects on the page - i.e., video and images.

o TCP throughput ©€ 1/RTT

e Conveniently, the larger objects are static.
o Image and video content does not change based on user.

e S0, can we find a way to use proxies to be able to improve our load time?

o Only go to the origin server for the dynamic content (HTML page), and have all the static
objects loaded from a proxy.

Using Caches for Content Delivery

e Private caches - implies the user accesses the same content multiple times.
o Some performance improvements, but only on the second access.

e Proxy caches - must be installed by the network operator.

o And need some changes to the client to know to access them.
o May not obey the rules specified in the Cache-Control header.

e Managed caches
o Can be controlled by the application provider.
o Can be placed “close” to end users.
o Redirects can be achieved by the application provider.

Content Delivery Networks (CDNs)

e Deployments of servers that can serve content (HTTP resources!)

e “Close” to end users.
o Geographically.
o From a network perspective.

e Allow for:
o Higher-performance delivery of content (low-latency access to a close server)
Significant reductions in the bandwidth needed in the network.
Reduces the scaling needed for server infrastructure.
Allows for new modes of handling failures.

o O O

CDN Deployments.

WAN Peering Peering WAN DC Network

ISP Network Application Provider

e C(lients going to the origin:
o Maximum latency = lowest performance.
o Maximum amount of “backbone” network traversed = highest cost.
o Scale must be supported on the origin server.

CDN Deployments.

WAN Peering Peering WAN DC Network

ISP Network Application Provider

e (DN infrastructure can be deployed in the application provider.
o Smaller sets of servers at the “edge” of the application provider’s networks.
o Reduces the volume of backbone traffic for the application provider.
o Reduces scale per deployment.

CDN Deployments.

WAN Peering

Peering WAN DC Network

ISP Network

Application Provider

e (Can push caching “deeper” into the network.

o Deploy in the ISP’s network - improves performance and reduces cost.
o ISP reduces their backbone network cost.

CDN Deployments.

WAN Peering

/-_ 4

Peering WAN DC Network

—
-/'/—
_ VAN A\ VAN VAN

ISP Network

Application Provider

e Deployment depth is limited by efficiency.

o Need multiple users to be accessing t

he same content.

o Cost savings are only worth it if the cost of the additional server infrastructure is less than the

network capacity.

Large Global CDNs

e Specific CDN providers.
o Akamai, Cloudflare, Edgio.

e Large application providers.
o Netflix, Google, Amazon, Meta.

https://peering.google.com/#/infrastructure

e Deployments either in their
own networks, or directly into
ISP networks.

w i :é.‘.‘&" e °

. ° 3 b5
)

d \ X &
°s % .& -.

. Y
X o “l @

https://www.cloudflare.com/network/

CDNSs in ISP Networks

e Often ISPs have their own content.
o Video-on-Demand, or Live TV content as part of TV+Internet bundles.

e (DN server infrastructure is also deployed by these ISPs.

e Often a need for both third-party caches and ISP’s own infrastructure.
o Sandvine report
m Netflix - 15% of Internet traffic,
m YouTube - 11.4% of traffic,
m Disney+ - 4.5% of traffic.

e Deploying caches can mean reducing ~25% of network capacity!

https://www.sandvine.com/inthenews/netflix-is-responsible-for-15-of-global-internet-traffic-consumption#:~:text=No%201%3A%20Netflix%20%7C%20The%20OTT,percent%20of%20global%20internet%20traffic.

Questions?

Mapping Clients to Caches - recall.

Recall from our DNS lecture:
e Anycast - advertise the same IP prefix from multiple locations, allow

least-cost routing to choose the best location.

e DNS-based load-balancing - use the resolver/client’s address to be able to
choose what response to give.

Mapping Clients to Caches

e Anycast-based mapping - may have problems with long-lived connections.
o Routing can change!

1.0.0.0/24

s 1.0.0.0/24

Mapping Clients to Caches

e Anycast-based mapping - may have problems with long-lived connections.
o Routing can change!

1.0.0.0/24

1.0.0.0/24

DNS-Based Mapping

e Allows stable mapping - but only at the granularity of client address.
o May be at the resolver level.
o EDNS extensions for client information may not be available

Recursive
DNS

Application-Level Mapping

e Application can determine for a specific client where to map a user.
o Ifthe clientis in Berkeley, give the DNS name of a cache in San Francisco.

e Application servers know the remote client’s address.

e Still need to understand the “closest” cache to a client.
o And what the right strategy for failures is.

e Allows for mapping at per-content item granularity.

o e.g., Catvideos are served at cache in Berkeley
o e.g., Niche content is served from cache close to the origin.

Caching Server Deployments

e Highly optimised for content delivery and storage.

Flash appliance focus areas Storage appliance focus areas

e | arge storage capacity
e 2U for rack efficiency (no deeper than 29 inches)

2U for rack efficiency (no deeper than 29 inches)
e Enough low cost NAND to reach 24GB/s of Enough low cost NAND to reach 10GB/s of

throughput (<0.3 DWPD) throughput (<0.3 DWPD)
Connect at up to 2X100G LAG

Network flexibility to connect at 6x10G LAG or up to

. 2x100GE
e 2 and 4 post racking % arid 4 K

e 2 and 4 post racking
e AC or DC power e AC or DC power

Single processor

Single processor

https://openconnect.netflix.com/en/appliances/

Commercial Model

e Mutually beneficial!

o Content provider gets better application performance
o ISP gets lower bandwidth costs

e (Cooperative commercial model:

o Content provider usually provides the servers for free.
o ISP usually pays the fees for hosting them.

e In some cases, commercial negotiations required.
o Cost of power/space might be more “deeper” into the network.

e Becomes more difficult as there are more caching providers.

Commercial Challenges - Fragmentation

e Cache deployment makes sense
if there are small numbers of
large content providers.

Bandwidth

e Long-tail of content providers.
o [Sandvine, 2023] Disney+ 4.5% of
traffic, Amazon Prime 2.8%. —

Time
e Idea: can we have shared caching
infrastructure?

o CDN Interconnect (CDNI) - IETF
o OpenCaching

Bandwidth

e Challenging!
o Who ensures quality?
o How are resources shared?]

Time

https://datatracker.ietf.org/wg/cdni/about/
https://opencaching.svta.org/

Questions?

Beyond HTTP/1.1

e Lots of applications are over HTTP!

e Security of HTTP is a concern.
o HTTPS introduces security - Transport Layer Security (TLS) handshakes for certificate

exchange.
Subsequent communications are encrypted.
o Majority of traffic on the Internet is now HTTPS.
m [W3Techs] 85.4% of sites are default HTTPS.

https://w3techs.com/technologies/details/ce-httpsdefault#:~:text=Our%20reports%20are%20updated%20daily,85.4%25%20of%20all%20the%20websites.

Beyond HTTP/1.1 - HTTP/2.0

e Introduced in 2015 (first new revision since 1997!).

e Aimed to improve performance:
o Decrease latency and improve page load speed.
m Data compression of headers.
m Server-side pushing (server can send objects the client will need!)
m Prioritisation of requests.
m Better multiplexing of requests over an HTTP connection.

e Widely adopted across client software (browsers, RPC software) and CDNSs.

Beyond HTTP/1.1 - HTTP/3.0

e Introducedin 2022.

e Semantics are the same as HTTP/2.0, but adopts a new underlying transport
- QUIC.

e QUIC:
o Quick UDP Connections.
o Designed at Google, standardised in IETF.

e Avoids some of the impact of TCP reliability mechanisms on HTTP
performance.

Recap

e HTTP is a protocol used to transfer data between a client and server -
originally designed for HTML web pages.

e HTTP consists of request and response messages with headers in them -
allowing for different types of content to be carried over it.

e Performance of HTTP can be improved through caching static content -
HTTP provides means to control how this caching is used.

e Content Delivery Networks (CDNs) provide infrastructure to allow for this
caching to be implemented to improve application performance.

