CS168: Discussion 3

 $\bullet \bullet \bullet$

Intro to the Internet Spring 2024

Agenda: Routing!

- Distance-Vector Routing
 - Lecture recap
 - Small modification
 - Slides w/ worksheet

Distance-Vector Routing

- Each router:
 - Has a map of **destinations** to **next hop/distance**
 - Connected hosts are **statically programmed** into the table

Destination	NextHop, Dist.	
Х	Direct, 1	
Y	S1, 8	
Z	S2, 10	

Destination	NextHop, Dist.	Destination	NextHop, Dis
А	Direct, 1	В	Direct, 1
		А	S1, 2

Destinatio	n NextHop	, Dist.	Destinat	ion	NextHop, Dist.	
А	Direct, 1		В		Direct, 1	
В	S2, 2		A		S1, 2	
	A S	1	(B. 1) (A, 2) (E) S2 3, 1) (A, 2)	B	
	Destination	NextHop, Dist				
	А	S1, 2				
	В	S2, 2				

Destination	NextHop, Dist.	
А	Direct, 1	
В	S2, 2	

Destination	NextHop, Dist.	
В	Direct, 1	
А	S1, 2	

D-V Review (Converged)

Destination NextHop, Dist.	
А	Direct, 1
В	S2, 2

Destination	NextHop, Dist.	
В	Direct, 1	
А	S1, 2	

Distances

- What assumptions are we making on each update?
 - o S3 gets (A, 1)
 - But stores "A, S1, 2"
 - 2 = 1+<u>1 hop</u>
- Can relax this to be *arbitrary "distance"* values per link
 - S3 gets (A, [advertised cost])
 - But stores "A, S1, [advertised cost] + [link cost]"
 - Assuming min(current cost, proposed cost) is the proposed

Destination	NextHop, Dist.	
А	Direct, 1	

Destination	NextHop, Dist.	
В	Direct, 1	

Destination	NextHop, Dist.	Destination	NextHop, Dist.
А	Direct, 1	В	Direct, 1
		А	S1, 9

Destinatio	on NextHo	p, Dist.		Destination	NextHop, Dist.
А	Direct,	1		В	Direct, 1
В	S2, 9			А	S1, 9
	A <u>1</u>	S1 4 S3	8 2	(B. 1) (A, 9) S (B, 1) (A, 9)	2 <u>1</u> B
	Destination	NextHop, Dist			
	А	S1, 5			
	В	S2, 3	<		

Destination	NextHop, Dist.		
А	Direct, 1		
В	S2, 9		

Destination	NextHop, Dist.		
В	Direct, 1		
А	S1, 9		

Destination	NextHop, Dist.	Destination	NextHop, Dist.
А	Direct, 1	В	Direct, 1
В	S3, 7	А	S3, 7

D-V Review (Converged)

Destination	NextHop, Dist.		
A	Direct, 1		
В	S3, 7		

Destination	NextHop, Dist.		
В	Direct, 1		
А	S3, 7		

Distance-Vector Key Points

- Scalable
 - (unlike link-state) routers don't need global network topology
- Distributed
 - Routers communicate with neighbors to compute routes
- Minimizes Distance
 - Avoids loops and minimizes "distance," not necessarily physical distance (really can minimize any value: price, latency, etc.)

Two Components of Distance-Vector

- Protocol
 - Each router advertises routes in its table to neighbors
- Algorithm
 - On receiving an advertisement, a router may update its own table

Protocol

Each router advertises its routes to all of its neighbors...

- Periodically
 - Every so many seconds
- Whenever its table changes
 - Due to: new advertisements from neighbors, local link failure, new local link, route timeouts, ...

In *theory*, you only need the first.

In *practice*, the first alone is sufficient to eventually converge, but the second *isn't* if advertisements are dropped. Thus, the second acts like an *optimization*.

Algorithm

Upon receiving advertisement from its neighbor, a router updates its table if one of the following is true:

- 1. The destination isn't already in its table at all
- 2. The route in the table is worse than the one advertised
- 3. The advertiser is the current next hop

Worksheet

Worksheet Q3 (Split Horizon)

t0 [Fully Converged]

Destination	NextHop, Dist.	Destination	NextHop, Dist.
А	Direct, 1	?	??/?
?	??/?	?	??/?

t0 [Fully Converged]

Destination	NextHop, Dist.	Destination
А	Direct, 1	А
В	S2, 3	В

NextHop, Dist.

S1, 2

S3, 2

t0 <now< t1

Destination	NextHop, Dist.	Destination	NextHop, Dist.
А	Direct, 1	А	S1, 2
В	S2, 3	В	S3, 2

t0 < t1

Destination	NextHop, Dist.	Destination	NextHop, Dist.
А	Direct, 1	А	S1, 2
В	S2, 3	В	S3, 2

t1 [S2--S3 link goes down]

Destination	NextHop, Dist.	Destination	NextHop, Dist.
А	Direct, 1	А	S1, 2
В	S2, 3	В	S3, 2

Destination	NextHop, Dist.	Destination	NextHop, Dist.
А	Direct, 1	А	S1, 2
В	S2, 3	В	S3, 2

Destination	NextHop, Dist.	Destination	NextHop, Dist.
А	Direct, 1	А	S1, 2
В	S2, 3	В	S3, 2

t2 [S2's route to B via S3 expires]

Destination	NextHop, Dist.	Destination	NextHop, Dist.
А	Direct, 1	А	S1, 2
В	S2, 3	-	

Destination	NextHop, Dist.	Destination	NextHop, Dist.
А	Direct, 1	А	S1, 2
В	S2, 3	-	

Destination	NextHop, Dist.	Destination	NextHop, Dist.
А	Direct, 1	?	??/?
?	??/?	?	??/?

Destination	NextHop, Dist.	Destination	NextHop, Dist.
А	Direct, 1	А	S1, 2
В	S2, 3	В	S1, 4

t3 [S2's route to B via S3 expires]

Destination	NextHop, Dist.	Destination	NextHop, Dist.
А	Direct, 1	А	S1, 2
-		В	S1, 4

t3 [S2's route to B via S3 expires]

Destination	NextHop, Dist.	Destination	NextHop, Dist.
А	Direct, 1	А	S1, 2
-		В	S1, 4

Because it hasn't been updated recently

Destination	NextHop, Dist.	Destination	NextHop, Dist.
А	Direct, 1	?	??/?
?	??/?	?	??/?

After S1 receives S2's message, what will S1's table look like? After S2 receives S1's message, what will S2's table look like?

Destination	NextHop, Dist.	Destination	NextHop, Dist.
А	Direct, 1	А	S1, 2
В	S2, 5	В	S2, 4

How can we fix this?

- Split Horizon!
 - If you route to destination D through neighbor N:
 - Don't send updates about D to N

t0 [Fully Converged]

Destination	NextHop, Dist.	Destination
А	Direct, 1	А
В	S2, 3	В

NextHop, Dist.

S1, 2

S3, 2

t0 <now< t1

Destination	NextHop, Dist.	Destination	NextHop, Dist.
А	Direct, 1	А	S1, 2
В	S2, 3	В	S3, 2

t0 < t1

Destination	NextHop, Dist.	Destination	NextHop, Dist.
А	Direct, 1	А	S1, 2
В	S2, 3	В	S3, 2

t1 [S2--S3 link goes down]

Destination	NextHop, Dist.	Destination	NextHop, Dist.
А	Direct, 1	А	S1, 2
В	S2, 3	В	S3, 2

Destination	NextHop, Dist.	Destination	NextHop, Dist.
А	Direct, 1	А	S1, 2
В	S2, 3	В	S3, 2

Destination	NextHop, Dist.	Destination	NextHop, Dist.
А	Direct, 1	А	S1, 2
В	S2, 3	В	S3, 2

t2 [S2's route to B via S3 expires]

Destination	NextHop, Dist.	Destination	NextHop, Dist.
А	Direct, 1	А	S1, 2
В	S2, 3	-	

Destination	NextHop, Dist.	Destination	NextHop, Dist.
А	Direct, 1	А	S1, 2
В	S2, 3	-	

Destination	NextHop, Dist.	Destination	NextHop, Dist.
А	Direct, 1	?	??/?
?	??/?	?	??/?

Destination	NextHop, Dist.	Destination	NextHop, Dist.
А	Direct, 1	А	S1, 2
-		-	

Does this a fix everything?

- Nope,
 - Count-To-Infinity can still happen with Split Horizon

t0 < now < t1 Α Destination NextHop, Dist. **S1** Direct, 1 Α (A, 1) Destination NextHop, Dist. **S2** (A, 2) (A, 2) S1, 2 Α **S**3 SZ Destination NextHop, Dist. Destination NextHop, Dist. (A, 3) (A, 3) S2, 3 S2, 3

Α

Α

t5 Α S4's NextHop updated its **S1** distance, so S4 must update its Destination NextHop, Dist. distance as well **S2** S3, 5 Α **S**3 C NextHop, Dist. Destination NextHop, Dist. Destination S4, 4 Α S2, 6 Α

Poison Reverse vs. Route Poisoning

- Poison Reverse
 - Instead of not advertising a route back to its next hop...
 - .. advertise ∞ to its next hop!
 - May mean you advertise different things to different neighbors!
- Route Poisoning
 - Instead of removing a route (e.g., due to a timeout)...
 - \circ ... change its distance to ∞ and continue advertising!
 - Same information sent to every neighbor
- In both cases, instead of omitting a "bad" route, you explicitly advertise it as bad

Diagram for Q1

